首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the role of APC protein transport in presentation of class II MHC-restricted T cell determinants of influenza virus glycoproteins that have distinct Ag processing requirements. Two I-Ed-restricted epitopes were analyzed: hemagglutinin (HA) 111-119, which is processed by the exogenous/endocytic pathway, and neuraminidase (NA) 79-93, which has a requirement for cytosolic processing. NA 79-93 is presented from infectious but not non-replicative virus under ordinary conditions. This requirement for viral biosynthesis could be bypassed by using a soluble inhibitor of NA,2,3-dehydro-2-deoxy-N-acetyl neuraminic acid (DDAN), to facilitate cytosolic introduction of virus. APC exposed to UV virus/DDAN present HA and NA determinants derived directly from proteins of the input virus particles. This allows presentation of both endocytically and cytosolically processed epitopes in the same experiment using noninfectious virus. The inhibitor brefeldin A (BFA) was used to interrupt host protein transport at various times relative to virus/DDAN addition. We observed that BFA added simultaneously with virus blocked recognition of NA 79-93 but not HA 111-119. This distinction was found to be based upon different expression kinetics of the HA and NA determinants. Expression of NA 79-93 required 6 to 9 h, whereas HA 111-119 was presented by 1 h after Ag addition. When APC were incubated with BFA at intervals before virus addition, presentation of HA 111-119 was also blocked as a function of time. Data indicate that about 5 h of BFA treatment is needed to deplete host protein pools required for presentation of I-Ed-restricted T cell determinants processed from either endosomes or the cytosol.  相似文献   

2.
Brief exposure of influenza virus to pH 5 was found to have extensive effects upon presentation of viral Th cell antigenic determinants. This acidity, comparable to that encountered in host cell endosomes, was known to effect conformational changes in the viral hemagglutinin (HA) which alter the molecule's fusion activity, antigenicity, and susceptibility to enzymes. Three major effects of low pH upon presentation of viral T cell determinants were observed: first, acid pretreatment permitted presentation by pre-fixed APC of two of three linear T cell sites of the HA molecule, bypassing the APC activity required to present untreated virus; second, the two determinants presented in this manner disappeared rapidly from APC surfaces; third, acid-pretreated virus was not efficiently utilized by active APC in the normal pathway of viral antigen presentation. These observations suggest that the pH-induced conformational transition of HA may constitute sufficient processing for certain linear determinants of the molecule and additionally influences the processes involved in the general formation and presentation of viral T cell sites.  相似文献   

3.
Human T cell clones present antigen   总被引:1,自引:0,他引:1  
Two human T cells clones are described which react with influenza virus hemagglutinin type H3 and synthetic peptides of H3 when presented by PBMC APC. Both T cell clones also responded to peptide Ag in the absence of additional APC suggesting that T cells can simultaneously present and respond to Ag. T cell clones could only present peptide Ag and not an appropriate strain of inactivated whole influenza virus thus indicating an inability to process Ag conventionally. Peptide presentation by T cells was dose dependent, restricted by MHC class II Ag and was dependent on the number of Ag presenting T cells per culture. Experiments with nested peptides showed that the same epitope was recognized in the presence and absence of PBMC APC. No Ag or IL-2 from the propagation procedure was carried over into assays and two-color fluorescence-activated cell sorter analysis of each clone detected no contaminating cells with the phenotype of monocytes, macrophages or B cells; in each T cell clone, all cells expressing MHC class II Ag co-expressed CD3. These date therefore provide strong evidence that human T cell clones can simultaneously present and respond to appropriate forms of Ag.  相似文献   

4.
Class I H-2Kd-restricted influenza hemagglutinin (HA)-specific CTL recognize two immuno-dominant sites as represented by synthetic peptides spanning epitopes located in the HA1 and hydrophobic transmembrane domains of the influenza HA. Using a vaccinia virus recombinant expression system, we have examined CTL recognition of HA deletion mutants expressed in target cells. We have demonstrated that a truncated influenza HA gene encoding only the transmembrane anchor region containing a class I recognition site and a short segment of the cytoplasmic tail of the HA can be efficiently presented to class I CTL. These results set the stage for detailed analyses of the intracellular events associated with Ag presentation to class I CTL and offer novel possibilities for future vaccine design.  相似文献   

5.
Vaccinia virus (VV), currently used in humans as a live vaccine for smallpox, can interfere with host immunity via several discrete mechanisms. In this study, the effect of VV on MHC class II-mediated Ag presentation was investigated. Following VV infection, the ability of professional and nonprofessional APC to present Ag and peptides to CD4+ T cells was impaired. Viral inhibition of class II Ag presentation could be detected within 1 h, with diminished T cell responses dependent upon the duration of APC infection and virus titer. Exposure of APC to replication-deficient virus also diminished class II Ag presentation. Virus infection of APC perturbed Ag presentation by newly synthesized and recycling class II molecules, with disruptions in both exogenous and cytoplasmic Ag presentation. Virus-driven expression of an endogenous Ag, failed to restore T cell responsiveness specific for this Ag in the context of MHC class II molecules. Yet, both class II protein steady-state and cell surface expression were not altered by VV. Biochemical and functional analysis revealed that VV infection directly interfered with ligand binding to class II molecules. Together, these observations suggest that disruption of MHC class II-mediated Ag presentation may be one of multiple strategies VV has evolved to escape host immune surveillance.  相似文献   

6.
The recognition of influenza virus hemagglutinin (HA) by T lymphocytes was examined by assaying the T cell proliferative response of influenza virus-primed T cells to purified HA of different influenza A subtypes or to isolated heavy (HA1) or light (HA2) polypeptide chains of the HA molecule. The proliferative response to HA was dependent on the activation of an Ly-1+2- subset of T cells and required the presence of nylon wool-adherent, radiation-resistant accessory cells. T cells from mice primed by infection with one strain of type A influenza virus cross-reacted with other purified HA not only of the same subtype as the priming virus but also of serologically distinct subtypes of influenza A (but not B) virus. The response of virus-primed T cells to the homologous HA or to HA of the same subtype was shown to involve recognition of determinants on both the HA1 and the HA2 chains. The recognition of HA of different subtype by cross-reactive T cells appeared to be directed predominantly to determinants on HA2. Because the antibody response to influenza virus HA is not cross-reactive between subtypes and is directed predominantly to determinants on HA1, the present results indicate that at least some of the determinants on HA recognized by T cells are different from those recognized by B cells and that the HA2 chain may be involved primarily in stimulation of T cell rather than B cell immunity.  相似文献   

7.
The 2009 swine-origin influenza virus (S-OIV,H1N1 subtype) has developed into a new pandemic influenza as announced by the World Health Organization.In order to uncover clues about the determinants for virulence and pathogenicity of the virus,we characterized the functional modules of the surface glycoprotein hemagglutinin (HA),the most important protein in molecular epidemiology and pathogenesis of influenza viruses.We analyzed receptor binding sites,basic patch,neutralization antibody epitopes and T cell epitopes in the HA protein of the current S-OIV according to the corresponding functional and structural modules previously characterized in other H1 HA molecules or HA molecules of other subtypes.We compared their differences and similarities systematically.Based on the amino acids defined as the functional and structural modules,the HA protein of 2009 S-OIV should specifically bind to the human 2,6-receptor.The D225G/E mutation in HA,which is found in some isolates,may confer dual binding specificity to the 2,3and 2,6-receptor based on previously reported work.This HA variant contains two basic patches,one of which results in increased basicity,suggesting enhanced membrane fusion function.The 2009 S-OIV HA also has an extra glycosylation site at position 276.Four of the five antibody neutralization epitopes identified in A/RP/8/34(H1N1) were exposed,but the other was hidden by a glycosylation site.The previously identified cytotoxic T cell epitopes in various HA molecules were summarized and their corresponding sequences in 2009 S-OIV HA were defined.These results are critical for understanding the pathogenicity of the virus and host immune response against the virus.  相似文献   

8.
The 2009 swine-origin influenza virus (S-OIV, H1N1 subtype) has developed into a new pandemic influenza as announced by the World Health Organization. In order to uncover clues about the determinants for virulence and pathogenicity of the virus, we characterized the functional modules of the surface glycoprotein hemagglutinin (HA), the most important protein in molecular epidemiology and pathogenesis of influenza viruses. We analyzed receptor binding sites, basic patch, neutralization antibody epitopes and T cell epitopes in the HA protein of the current S-OIV according to the corresponding functional and structural modules previously characterized in other H1 HA molecules or HA molecules of other subtypes. We compared their differences and similarities systematically. Based on the amino acids defined as the functional and structural modules, the HA protein of 2009 S-OIV should specifically bind to the human 2,6-receptor. The D225G/E mutation in HA, which is found in some isolates, may confer dual binding specificity to the 2,3- and 2,6-receptor based on previously reported work. This HA variant contains two basic patches, one of which results in increased basicity, suggesting enhanced membrane fusion function. The 2009 S-OIV HA also has an extra glycosylation site at position 276. Four of the five antibody neutralization epitopes identified in A/RP/8/34(H1N1) were exposed, but the other was hidden by a glycosylation site. The previously identified cytotoxic T cell epitopes in various HA molecules were summarized and their corresponding sequences in 2009 S-OIV HA were defined. These results are critical for understanding the pathogenicity of the virus and host immune response against the virus.  相似文献   

9.
The mechanisms underlying epitope selection and the potential impact of immunodominance hierarchies on peptide-based vaccines are not well understood. Recently, we have shown that two immunodominant MHC class I-restricted epitopes, NP(366-374)/D(b) (nucleoprotein (NP)) and PA(224-233)/D(b) (acidic polymerase (PA)), which drive the CD8(+) T cell response to influenza virus infection in C57BL/6 mice, are differentially expressed on infected cells. Whereas NP appears to be strongly expressed on all infected cells, PA appears to be strongly expressed on dendritic cells but only weakly expressed on nondendritic cells. Thus, the immune response to influenza virus may involve T cells specific for epitopes, such as PA, that are poorly expressed at the site of infection. To examine the consequences of differential Ag presentation on peptide vaccination, we compared the kinetics of the T cell response and influenza virus clearance in mice vaccinated with the NP or PA peptide. Vaccination with either the NP or PA peptide resulted in accelerated and enhanced Ag-specific T cell responses at the site of infection following influenza virus challenge. These T cells were fully functional in terms of their ability to produce IFN-gamma and TNF-alpha and to mediate cytolytic activity. Despite this enhancement of the Ag-specific T cell response, PA vaccination had a detrimental effect on the clearance of influenza virus compared with unvaccinated or NP-vaccinated mice. These data suggest that differential Ag presentation impacts the efficacy of T cell responses to specific epitopes and that this needs to be considered for the development of peptide-based vaccination strategies.  相似文献   

10.
11.
Evidence is presented for an endogenous route of Ag processing for CD4+ T cell recognition of influenza hemagglutinin that requires obligatory traffic of de novo synthesized hemagglutinin across the lumen of the endoplasmic reticulum for processing in a cytosolic compartment. I-Ad-restricted T cell clones that recognize synthetic peptides corresponding to two distinct antigenic regions of the HA1 subunit, HA1 56-76 and HA1 177-199, are cytotoxic and, dependent on epitope specificity can recognize endogenously processed Ag and lyse class II+ target cells infected with a recombinant vaccinia-X31 HA virus. HA1 56-76 specific T cell clones fail to recognize (target cells infected with) influenza X31 viruses, containing a single residue change, HA1 63 Asp----Asn that introduces an oligosaccharide attachment site: Asp63Cys64Thr65. Recognition is restored, however, by tunicamycin treatment of mutant virus infected target cells. Inasmuch as N-glycosylation of nascent hemagglutinin polypeptides occurs in the lumen of the endoplasmic reticulum, this indicates a route of endogenous processing for hemagglutinin, requiring transport across the endoplasmic reticulum, which has been confirmed by the failure of CD4+ T cells to recognize a recombinant VACC-hemagglutinin virus in which the same single residue change, HA1 63 Asp----Asn has been introduced by site directed mutagenesis.  相似文献   

12.
The ability of an adherent Ia+, interleukin 1+ (IL-1) tumor cell line (P388AD) to present turkey gamma-globulin (TGG) to primed T lymphocytes was demonstrated and compared with normal antigen-presenting cells (APC) found in mouse spleen. P388AD tumor cells presented TGG to long-term cultures of TGG-reactive T cells (LTTC) and to lymph node-derived T cells which were enriched on nylon wool columns and subsequently depleted of endogenous antigen-presenting cells with anti-Ia antisera and complement. MHC-restricted antigen presentation by P388AD was observed when long-term cultures of TGG-reactive T cells were used as the responding T-cell population. Furthermore, antisera directed against I-region determinants expressed on the P388AD tumor cells inhibited TGG-specific T-cell proliferation in a dose-related fashion, suggesting a functional role for the tumor cell-associated Ia molecules. The kinetics of antigen presentation to LTTC by P388AD were similar to the kinetics observed for splenic APC, although the magnitude of the proliferative response to LTTC to TGG was generally lower when antigen (Ag) was presented by the tumor cells compared to splenic antigen-presenting cells (APC). However, the magnitude of T-cell proliferation of immune lymph node (LN) T cells was comparable when Ag was presented on tumor cells or splenic APC. Several experiments suggested that Ag uptake and/or processing may be less effective in P388AD tumor cells as compared to normal splenic APC. A nonadherent Ia+, IL-1- tumor cell line (P388NA), which was isolated from the same parental tumor as P388AD, was also tested for the ability to present Ag to primed T lymphocytes and Ag-reactive LTTC. In contrast, to P388AD, the nonadherent tumor cell failed to present TGG under identical culture conditions even though Ia molecules were expressed on the tumor cells and Ag uptake had occurred. However, the defect in Ag presentation by P388NA could be corrected if an exogenous source of purified interleukin 1 was supplied to the cultures. A unique opportunity thus exists with both the P388AD and P388NA tumor cell lines to decipher some of the molecular interactions leading to T-cell proliferation during antigen presentation.  相似文献   

13.
We have previously demonstrated diversity in the specificity of murine, H-2k class II-restricted, T cell clones for the hemagglutinin (HA) molecule of H3N2 influenza viruses and have mapped two T cell determinants, defined by synthetic peptides, to residues 48-68 and 118-138 of HA1. In this study we examine the nature of the determinant recognized by six distinct P48-68-specific T cell clones by using a panel of truncated synthetic peptides and substituted peptide analogs. From the peptides tested, the shortest recognized were the decapeptides, P53-62 and P54-63, which suggests that the determinant was formed from the 9 amino acids within the sequence 54-62. Asn54 was critical for recognition since P49-68 (54S) was not recognized by the T cell clones. Furthermore this peptide analog was capable of competing with P48-68 for Ag presentation, thereby suggesting that residue 54 is not involved in Ia interaction and may therefore be important for TCR interaction. Residue substitutions at position 63 also affected T cell recognition, but in a more heterogeneous fashion. Peptide analogs or mutant viruses with a single amino acid substitution at position 63 (Asp to Asn or Tyr) reduced the responses of the T cell clones to variable extents, suggesting that Asp63 may form part of overlapping T cell determinants. However since the truncated peptide P53-62 was weakly recognized, then Asp63 may not form part of the TCR or Ia interaction site, but may affect recognition through a steric or charge effect when substituted by Asn or Tyr. Ag competition experiments with the two unrelated HA peptides, P48-68 and P118-138, recognized by distinct T cell clones in the context of the same restriction element (I-Ak), showed that the peptides did not compete for Ag presentation to the relevant T cell clones, whereas a structural analog of P48-68 was a potent inhibitor. This finding is discussed in relation to the nature of the binding site for peptide Ag on the class II molecule.  相似文献   

14.
A functional analysis was undertaken of the effects of mutating single amino acid residues in the alpha chain of the I-Ak molecule (to alanine; residues 50-79) on the ability of I-Ak transfectants to process and present influenza haemagglutinin to CD4+ T cell clones specific for two major antigenic sites of the HA1 subunit. In each instance, T cells were insensitive to a majority of substitutions in Ak with the exception of a few critical residues that differed for individual T cell clones. But more significantly, the failure of T cell clones to respond to mutant influenza viruses, containing drift substitutions within a T cell recognition site, in association with wild type I-Ak, could be reversed by single substitutions in Ak alpha. A T cell clone specific for HA1 120-139 failed to respond to a laboratory mutant virus (HA1 135 Gly----Arg) whereas optimal responses were observed with a mutant Ak transfectant (Ak alpha 56 Arg----Ala). Similarly, mutant transfectant 62 (Ak alpha 62 Gly----Ala) was able to present a natural variant virus A/TEX/77 to a T cell clone specific for HA1 48-67. We propose that Ak alpha 56 and Ak alpha 62 increase the affinity of association of mutant HA1 peptides for class II and therefore confer T cell recognition of variant viruses.  相似文献   

15.
The transmembrane hydrophobic domain of the type A influenza A/JAPAN/305/57 (H2N2) hemagglutinin (HA) contains an immunodominant site encompassing amino acids 523-545 (J523-545) recognized by class I MHC-restricted cytolytic T lymphocytes (CTL). Class I CTL of two fine specificity subsets map to this transmembrane (TM) site. One of these CTL subpopulations is subtype specific. These T lymphocytes recognize the site generated during infection of target cells with A/JAPAN/305/57 virus (H2N2) but not target cells expressing the comparable TM site of the influenza A/PR/8/34 virus (H1N1) hemagglutinin (P527-549) after infection with this virus. The other CTL subpopulation is cross-reactive and recognizes the TM site of the A/JAPAN/305/57 HA and the A/PR/8/34 HA with similar efficiency. Analyses of the critical amino acids in the TM site necessary for CTL recognition with the use of synthetic peptides unexpectedly revealed reactivity for the A/PR/8 HA TM site by subtype-specific CTL. This reactivity was only observed with truncated peptides corresponding to a limited portion of the A/PR/8 HA TM site but also required peptide concentrations greater than 10(-7) M. These results suggested either that the endogenously processed A/PR/8 HA TM site generated during infection was larger than the site defined by the truncated cross-reactive peptides or that the concentration of endogenously processed TM site produced during infection was limiting. To distinguish between these possibilities, we expressed in target cells synthetic minigenes encoding only the portion of the A/PR/8 HA transmembrane sites defined by the synthetic peptides. Unlike the peptides, the "preprocessed" endogenous minigene products were not recognized by subtype-specific CTL. These data suggest that the level of available endogenously processed Ag rather than selectivity in the site of fragmentation of newly synthesized Ag may play a critical role in determining whether the complex of the antigenic moiety and class I MHC is efficiently presented to and recognized by class I CTL.  相似文献   

16.
We investigated the roles of nascent and recycling MHC class II molecules (MHC II) in the presentation of two well-defined I-E(d)-restricted epitopes that are within distinct regions of the influenza virus hemagglutinin (HA) protein. The site 3 epitope (S3; residues 302-313) lies in the stalk region that unfolds in response to mild acidification, while the site 1 epitope (S1; residues 107-119) is situated in the stable globular domain. In a murine B lymphoma cell line and an I-E(d)-transfected fibroblast cell line, presentation from inactivated virus of S3 is inhibited by primaquine, a compound that prevents recycling of cell surface proteins, including MHC II, while S1 presentation is unaffected. In contrast, brefeldin A, an agent that inhibits exit of proteins from the endoplasmic reticulum, selectively inhibited S1 presentation without affecting S3 presentation, suggesting that S1 presentation requires nascent MHC II. The use of agents that perturb endosomal function revealed a requirement for acidification of internalized viral particles for presentation of both epitopes. Notably, all compounds tested had similar effects on presentation of the two epitopes derived from endogenously synthesized HA. Thus, recycling I-E(d) molecules appear to be crucial for capturing and presenting an epitope that is revealed in mild acidic conditions following the uptake of virions or the synthesis of Ag, while nascent I-E(d) molecules are required for presentation of a second epitope located in a structurally constrained region of the same polypeptide. Viral glycoproteins, such as HA, may have been a major impetus for the evolutionary establishment of this recycling pathway.  相似文献   

17.
Cationization of BSA generates a molecule that mounts antibody responses of increased magnitude and duration and induces T cell proliferation at concentrations 500 times less than native BSA (nBSA). To explain the alteration in immunogenic properties of this Ag, the uptake of nBSA and cationized BSA (cBSA) by splenic APC has been investigated. T cell proliferation assays were conducted with nBSA and cBSA preparations with varying degrees of substitution. An inverse correlation between the degree of cationization and the amounts of Ag needed for optimal T cell reactivity was observed. To determine whether affinity for APC resulted in an increased uptake of cBSA, splenic APC were incubated with nBSA or cBSA for varying amounts of time. Comparisons were made at each time point between untreated Ag-pulsed APC (Ag uptake) and paraformaldehyde-fixed Ag-pulsed APC (processed Ag). Proliferation of T cells primed with nBSA or cBSA increased in proportion to the amount of time of APC exposure to high concentrations of nBSA, first appearing after a 2-h pulse and peaking at 8 h. Conversely, untreated APC needed only a 30-min cBSA exposure to induce either nBSA- or cBSA-primed T cell proliferation, indicating a rapid uptake of cBSA. Comparisons with proliferation induced by paraformaldehyde-fixed cBSA APC indicate that nBSA T cells recognize a lag phase-processed form of cBSA, whereas a majority of cBSA T cells recognize either a rapidly processed form of cBSA, or a membrane-processed cBSA molecule without a classical lag phase processing event. When monensin was used as an inhibitor of fluid phase pinocytosis in splenic APC, the presentation of nBSA was inhibited by 85%, but the presentation of cBSA was inhibited by only 20%. These results imply that nBSA enters the cell by fluid phase pinocytosis, whereas cBSA enters by a nonspecific adsorptive mechanism. The different modes of cellular entry for the two molecules, nBSA and cBSA, resulting in a rapid uptake of cBSA, may have important ramifications on T cell activation and immunoregulation.  相似文献   

18.
Class II MHC molecules on the surface of an APC present immunogenic peptides derived mainly from exogenous proteins to CD4+ T cells. During its transport to the cell surface, class II molecules intersect the endocytic pathway where they acquire peptides derived from endocytosed proteins. However, class II-restricted presentation of endogenously derived peptides can also occur. The current studies were undertaken to examine the ability of different types of APC to generate and present four different T cell determinants derived from an endogenous, nonsecreted, truncated form of hen-egg white lysozyme (HEL[1-80]-Kk). This was compared with the ability of these APC to generate the same determinants from exogenous HEL. All the peptides derived from endogenous HEL[1-80]-Kk tested, were presented by B cells to HEL-specific T cell hybridomas with an efficiency similar to presentation of the same determinants from exogenous HEL. In contrast, an I-Ak-bearing rat fibroblast was unable to generate the HEL peptide 25-43 from exogenous HEL, but could efficiently produce it from endogenous HEL[1-80]-Kk. The results indicate first, that peptides derived from an endogenous Ag can be presented by MHC class II molecules with an efficiency comparable to that of the presentation of the exogenous Ag. Second, that Ag-presenting B cells can generate the same repertoire of antigenic peptides from endogenous Ag as those generated from the exogenous protein. And third, that in contrast to B cells, certain "nonprofessional" APC can generate, from an endogenous protein, T cell determinants distinct from those generated after endocytosis of the exogenous protein. These results suggest that processing of exogenous and endogenous Ag by different APC take place in different intracellular compartments.  相似文献   

19.
The production of antibody to a thymus-dependent Ag requires cooperation between the B cell and an Ag-specific Th cell. MHC restriction of this interaction implies that the Th cell recognizes Ag on the B cell surface in the context of MHC molecules and that the Ag-specific B cell gets help by acting as an APC for the Th cell. However, a number of studies have suggested that normal resting B cells are ineffective as APC, implying that the B cell must leave the resting state before it can interact specifically with a Th cell. Other studies, including our own with rabbit globulin-specific mouse T cell lines and hybridomas, show that certain T cell lines can be efficiently stimulated by normal resting B cells. One possible explanation for the above contradiction is that our B cells have become activated before presentation. Here we show that presentation by size-selected small B cells is not the result of nonspecific activation signals generated by the T cells or components of the medium. Also, although LPS activation does increase the efficiency of presentation by small B cells, use of large cells in place of small cells or preincubation of resting B cells with mitogenic doses of anti-Ig does not. Another possibility that we considered was that small B cells are unable to process Ag and that we had selected T cell lines that were capable of recognizing native Ag on the B cell surface. In the majority of cases, experiments with B cell lines and macrophages have shown that Ag presentation requires Ag processing, a sequence of events that includes internalization of Ag into an acid compartment, denaturation or digestion of Ag into fragments, and its return to the cell surface in the context of class II MHC molecules. The experiments reported here show that our T cell lines require an Ag processing step and that small resting B cells, like other APC, process Ag before presenting it to T cells. Specifically, we show that an incubation of 2 to 4 h is required after the Ag pulse before Ag presentation becomes resistant to irradiation. Shortly after the pulse, the Ag enters a pronase-resistant compartment. Although efficient Ag presentation requires initial binding to membrane Ig, Ag is no longer associated with membrane Ig at the time of presentation and is not presented in its intact form, because removal of membrane Ig by goat anti-Ig blocks presentation before but not after the Ag pulse.  相似文献   

20.
We report a methodology for selecting APC with mutations that have impaired their ability to present Ag to T cells. A20 B lymphoblastoid cells were mutagenized and then repeatedly cocultured with murine T-T hybridomas in the presence of specific Ag. During these cocultures, the T-T hybridomas kill the competent APC, allowing the outgrowth of inactive variants. Two variants, A20.M1 and A20.M2, were isolated and studied in detail. These variants are impaired in their ability to present multiple Ag to T cells. This defect is also observed for the presentation of processing independent peptides by fixed APC indicating that a lesion exists in a post-Ag processing step. The level of expression of MHC molecules is unaffected and the functional defect in the APC is not localized to a particular MHC molecule. In contrast, these mutants were found to have a selective decrease in the expression of the murine homolog of ICAM-1, and the residual ability of these cells to present Ag was not blocked by anti-ICAM-1 mAb. Conversely, Ag presentation by the wild-type A20 is inhibited by anti-ICAM-1 mAb. Similarly, anti-LFA-1 mAb inhibited the response of T cells to Ag presented by the wild-type A20 to a much greater degree than by the mutant cells, indicating that LFA-1 is involved in interaction of T cells with the former, but not latter, APC. In the apparent absence of a contribution of LFA-1 to the T cell-APC interaction, either as a result of mAb blocking or the disruption of the APC membrane, the mutant and wild-type APC have a similar level of Ag-presenting activity. Reconstitution of ICAM-1 expression in these mutants by transfection with murine ICAM-1 cDNA fully restores their ability to present Ag. Together these results demonstrate that a murine ICAM-1 homolog is expressed on A20 B cells, where it functions as a major cell interaction molecule. The degree of functional impairment in these mutant APC gives insight into the contribution of cell interaction molecules to efficient Ag presentation and T cell-B cell interaction. Finally, these results also demonstrate the feasibility of selecting APC with mutations affecting Ag presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号