首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
2.
Active site localization in a viral mRNA capping enzyme   总被引:9,自引:0,他引:9  
Capping of reovirus mRNAs is catalyzed by a guanylyltransferase that corresponds to virion structural polypeptide lambda 2. It forms a phosphoamide linked enzyme-pG covalent complex as an intermediate in the capping reaction. The nucleotide attachment site on lambda 2 was localized to a region between amino acids 213 and 269 by incubating virus particles with [alpha-32P]GTP followed by proteolytic cleavage and analysis of the resulting fragments using sequence-directed antibodies as probes. The 213-269 region contains as potential GMP acceptors a single lysine, 1 arginine, and 4 histidine residues, as deduced from the nucleotide sequence of the L2 gene encoding lambda 2. Digestion of 32P-labeled capping intermediate with alkali after oxidation and beta-elimination yielded phospholysine as the only phosphoamino acid, localizing the active site to a region in lambda 2 that includes the lysine at position 226.  相似文献   

3.
The amino-terminal 42-kDa region of the 144-kDa mammalian reovirus lambda 2 protein is a guanylyltransferase. It catalyzes the transfer of GMP from GTP to the 5' end of 5' -diphosphorylated mRNA via a phosphoamide with Lys-190. This amino acid is located at the base of a deep cleft. Based on sequence comparisons, the Kx[V/L/I]S motif is present in all known and proposed guanylyltransferases of the family Reoviridae. The requirement for this conserved sequence and other regions of the enzyme was analyzed by site-directed mutagenesis. Based on the enzymatic activity of the mutants, Lys-190 and Asp-191 are the only amino acids of the (190)KDLS sequence that are necessary for enzymatic activity. Since Asp-191 has its side chain oriented away from the cleft, most likely it plays an indirect role in forming a functional guanylyltransferase.  相似文献   

4.
Transcription by Infectious Subviral Particles of Reovirus   总被引:34,自引:20,他引:14  
  相似文献   

5.
Physical and chemical characterization of an avian reovirus.   总被引:12,自引:8,他引:4       下载免费PDF全文
  相似文献   

6.
Reovirus guanylyltransferase is L2 gene product lambda 2.   总被引:21,自引:14,他引:7  
Reovirus guanylyltransferase, studied as a covalent enzyme-GMP intermediate, was used to guanylate appropriate acceptor molecules in vitro to produce authentic cap structures. Guanylyltransferase activity was associated with lambda 2, the 140-kilodalton product of the L2 gene segment of reovirus serotypes 1 and 3.  相似文献   

7.
The 144-kDa lambda2 protein is a structural component of mammalian reovirus particles and contains the guanylyltransferase activity involved in adding 5' caps to reovirus mRNAs. After incubation of reovirus T3D core particles at 52 degrees C, the lambda2 protein became sensitive to partial protease degradation. Sequential treatments with heat and chymotrypsin caused degradation of a C-terminal portion of lambda2, leaving a 120K core-associated fragment. The four other proteins in cores--lambda1, lambda3, mu2, and sigma2--were not affected by the treatment. Purified cores with cleaved lambda2 were subjected to transmission cryoelectron microscopy and image reconstruction. Reconstruction analysis demonstrated that a distinctive outer region of lambda2 was missing from the modified cores. The degraded region of lambda2 corresponded to the one that contacts the base of the sigma1 protein fiber in reovirus virions and infectious subvirion particles, suggesting that the sigma1-binding region of lambda2 is near its C terminus. Cores with cleaved lambda2 were shown to retain all activities required to transcribe and cap reovirus mRNAs, indicating that the C-terminal region of lambda2 is dispensable for those functions.  相似文献   

8.
The highly purified yeast mRNA capping enzyme is composed of two separate chains of 52 (alpha) and 80 kDa (beta), responsible for the activities of mRNA guanylyltransferase and RNA 5'-triphosphatase, respectively (Itoh, N., Yamada, H., Kaziro, Y., and Mizumoto, K. (1987) J. Biol. Chem. 262, 1989-1995). The gene encoding the mRNA guanylyltransferase subunit (alpha subunit), CEG1, has been isolated by immunological screening of a yeast genomic expression library in lambda gt11 with polyclonal antibodies directed against purified yeast capping enzyme. The identity of CEG1 was confirmed by epitope selection and by expressing the gene in Escherichia coli to give a catalytically active mRNA guanylyltransferase. The gene is present in one copy per haploid genome, and encodes a polypeptide of 459 amino acid residues. From its primary structure as well as its mRNA size, it was concluded that the alpha and the beta subunits of yeast mRNA capping enzyme are encoded by two separate genes, not as a fused protein. CEG1 is located on the chromosome VII by a pulse-field gel electrophoresis. Gene disruption experiment indicated that CEG1 is essential for the growth of yeast. We have also found another open reading frame (ORF2) which lies in close proximity to CEG1 in our clones and encodes a 450 amino acid-polypeptide of yet unknown function.  相似文献   

9.
Poly(A)+ mRNA isolated from Nicotiana tabacum (cv. Petite Havana) leaves was used to prepare a cDNA library in the expression vector lambda gt11. Recombinant phage containing cDNAs coding for chloroplast ribosomal protein L12 were identified and sequenced. Mature tobacco L12 protein has 44% amino acid identity with ribosomal protein L7/L12 of Escherichia coli. The longest L12 cDNA (733 nucleotides) codes for a 13,823 molecular weight polypeptide with a transit peptide of 53 amino acids and a mature protein of 133 amino acids. The transit peptide and mature protein share 43% and 79% amino acid identity, respectively, with corresponding regions of spinach chloroplast ribosomal protein L12. The predicted amino terminus of the mature protein was confirmed by partial sequence analysis of HPLC-purified tobacco chloroplast ribosomal protein L12. A single L12 mRNA of about 0.8 kb was detected by hybridization of L12 cDNA to poly(A)+ and total leaf RNA. Hybridization patterns of restriction fragments of tobacco genomic DNA probed with the L12 cDNA suggested the existence of more than one gene for ribosomal protein L12. Characterization of a second cDNA with an identical L12 coding sequence but a different 3'-noncoding sequence provided evidence that at least two L12 genes are expressed in tobacco.  相似文献   

10.
cDNA complementary to mRNA coding for the beta subunit of dog renal (Na+ + K+)-ATPase has been cloned into lambda gt11 and the nucleotide sequence of the DNA has been determined. The amino acid sequence of the beta subunit polypeptide has also been deduced from the DNA. The mature form of the dog kidney beta subunit contains 302 amino acids with three potential asparagine-linked attachment sites for carbohydrate. The initiation methionine is removed during processing of the polypeptide to its mature form. Although the beta subunit is an integral membrane protein there is no signal sequence for the polypeptide, and hydropathy analysis predicts that the beta subunit polypeptide spans the cell membrane only once. Secondary structure predictions and a model for the structure of the beta subunit are proposed. DNA sequencing of the 5' non-coding region of the mRNA revealed a 200 bp inverted repeat from the coding region. Blot hybridization of a fragment of the beta subunit cDNA identified a single mRNA species of 2.7 kb in dog kidney and several rat tissues. RNA from rat liver was deficient in mRNA that hybridized to the dog kidney beta subunit cDNA, although mRNA that hybridized to an alpha subunit cDNA was detected. RNA from a human hepatoma cell line, HepG2, however, contained comparable levels of mRNA for both the alpha and the beta subunits.  相似文献   

11.
Malonyl-CoA decarboxylase was purified from goose uropygial gland, reduced, carboxymethylated, and digested with trypsin. Several peptides were purified by high performance liquid chromatography and their amino acid sequences determined. Oligonucleotide probes were prepared based on their amino acid sequences. Size-selected RNA from the goose uropygial gland was used to construct cDNA libraries in lambda gt11 and pUC9 vectors. Immunological screening of the lambda gt11 cDNA library yielded one clone, lambda DC1, which contained a 2.2-kilobase pair insert; hybridization with the synthetic oligonucleotide probes confirmed its identity as malonyl decarboxylase. Screening of the pUC9 cDNA library with the insert of lambda DC1 as a probe detected one clone, pDC2, with an insert of 2.9 kilobase pairs. The nucleotide sequences of the two cDNAs revealed an open reading frame encoding a polypeptide of 462 amino acids. The deduced amino acid sequence was confirmed as malonyl-CoA decarboxylase by matching it to the amino acid sequences of three tryptic peptides derived from mature enzyme. Northern blot analysis of mRNA from goose brain, kidney, liver, lung, and gland revealed malonyl-decarboxylase mRNA of 3000 nucleotides. Since clone pDC2 contains a 2928-nucleotide insert, it represents nearly the full length of mRNA. Brain, kidney, lung, and liver contained less than 1% of the malonyl-CoA decarboxylase mRNA in the gland. Southern blot analysis of genomic DNA showed a single band in both liver and gland, suggesting that malonyl-CoA decarboxylase is a single copy gene.  相似文献   

12.
A cDNA library was constructed from the mRNA of bovine mammary gland which contained Ig lambda producing plasmacytes. Overlapping clones encompassing the major portion of the coding sequence of the Ig lambda mRNA were isolated and sequenced. Predicted amino acid sequence shows a mature polypeptide of 217 residues in which V, J and C regions can be distinguished. The constant region has greatest homology with human Ig lambda mRNA constant region. The area of the V region between CDR3 and CDR2 has also great homology with the same area of human lambda chain.  相似文献   

13.
Human reovirus serotype 1 Lang strain s2 mRNA, which encodes the virion inner capsid core polypeptide sigma 2, was cloned as a cDNA:mRNA heteroduplex in Escherichia coli using phage M13. A complete consensus nucleotide sequence was determined. The Lang strain s2 mRNA is 1331 nucleotides in length and possesses an open reading frame with a coding capacity of 335 amino acids, sufficient to account for a sigma 2 polypeptide of 37,682 daltons. Comparison of the serotype 1 Lang s2 sequence derived from cDNA clones of s2 mRNA with the serotype 3 Dearing S2 sequence derived from cDNA clones of the S2 dsRNA genome segment reveals 86 percent homology at the nucleotide level. The predicted sigma 2 polypeptides of the Lang and Dearing strains display 98 percent homology at the amino acid level. Of 147 silent nt differences in the translated region, 136 were in the third base position of codons.  相似文献   

14.
A cDNA library was constructed from the mRNA of the Ig lambda producing Burkitt's lymphoma cell line, EB4. Overlapping clones encompassing the coding sequence of the Ig lambda mRNA were isolated and sequenced. The predicted amino acid sequence shows a short hydrophobic leader peptide and a mature polypeptide of 217 residues in which V, J and C regions can be distinguished. The V region belongs to subgroup VI and has greatest homology (80%) with the Amyloid-AR protein. The constant region is the Kern- Oz+ isotype. Probing normal human DNA with the subcloned V lambda coding sequence detects one gene at high stringency and a family of 11 members at low stringency. To date, no restriction enzyme site polymorphisms have been detected. The V lambda VI gene is rearranged on both chromosomes of EB4 and is deleted on both chromosomes in the Burkitt's lymphoma cell line BL2.  相似文献   

15.
Complementary DNA sequences were isolated from a library of cloned Arabidopsis leaf mRNA sequences in gt10 that encoded a 21.7 kDa polypeptide (CaBP-22), which shared 66% amino acid sequence identity with Arabidopsis calmodulin. The putative Ca2+-binding domains of CaBP-22 and calmodulin, however, were more conserved and shared 79% sequence identity. Ca2+ binding by CaBP-22, which was inferred from its amino acid sequence similarity with calmodulin, was demonstrated indirectly by Ca2+-induced mobility shifting of in vitro translated CaBP-22 during SDS-polyacrylamide gel electrophoresis. CaBP-22 is encoded by a ca. 0.9 kb mRNA that was detected by northern blotting of leaf poly(A)+ RNA; this mRNA was slightly larger than the 809 bp CaBP-22 cDNA insert, indicating that the deduced amino acid sequence of CaBP-22 is near full-length. CaBP-22 mRNA was detected in RNA fractions isolated from leaves of both soil-grown and hydroponically grown Arabidopsis, but below the limits of detection in RNA isolated from roots, and developing siliques. Thus, CaBP-22 represents a new member of the EF-hand family of Ca2+-binding proteins with no known animal homologue and may participate in transducing Ca2+ signals to a specific subset of response elements.  相似文献   

16.
A lambda gt 11 library prepared from human umbilical vein endothelial cell RNA was screened for cDNAs encoding thrombospondin. Reagents included a monospecific antibody to human thrombospondin and a mixture of four synthetic oligodeoxyribonucleotides derived from an amino acid sequence near the NH2 terminus of mature human thrombospondin. Two series of cDNA clones coding for sequences at the 5' and 3' ends of thrombospondin mRNA, respectively, were isolated. The nucleotide sequence of a 1.3-kilobase (kb) 5' clone (lambda TS-33) coded for 99 bases of 5' untranslated RNA, a signal peptide of 18 amino acids, and the first 379 amino acids of thrombospondin. Northern blot analysis with lambda TS-33 detected a single mRNA species of approximately 6.0 kb in rat aortic smooth muscle cell RNA. Thrombospondin mRNA levels increased rapidly, but transiently, in quiescent smooth muscle cells treated with platelet-derived growth factor. The kinetics of this response were very similar to those of the thrombospondin protein to this growth factor. There was significant homology in amino acid sequence between thrombospondin and a conserved region in the circumsporozoite protein of two malarial sporozoites. This region of thrombospondin may therefore represent a potential recognition site for a cell surface thrombospondin receptor.  相似文献   

17.
This report describes the complete nucleotide sequence of human reovirus (Dearing strain) genome segment S3. Previous studies indicated that this RNA encodes the major non-structural viral polypeptide sigma NS, a protein that binds ssRNAs (Huisman & Joklik, Virology 70, 411-424, 1976) and has a poly(C)-dependent poly(G) polymerase activity (Gomatos et al., J. Virol. 39, 115-124, 1981). The genome segment consists of 1,198 nucleotides and possesses an open reading frame that extends 366 codons from the first AUG triplet (residues 28-30). There is no significant sequence homology between the plus strand of genome segment S3 and that of genome segment S2 determined previously (Cashdollar et al., PNAS 79, 7644-7648, 1982). However, S3 RNA has significant dyad symmetry and regions that can potentially hybridize (delta G = -26 KCal/mole) with S2 RNA. From the predicted amino acid sequence a possible secondary structure for sigma NS protein was determined. Structural features of reovirus RNA and sigma NS are discussed in relation to their role(s) in viral genome assembly.  相似文献   

18.
19.
20.
Several cDNA clones for the mouse lactate dehydrogenase-X (LDH-X), a sperm-specific glycolytic enzyme, were isolated from mouse testicular cDNA libraries constructed in the bacteriophage vectors, lambda gt11 and gt10. The largest cDNA clone contains an insert of 1135 base pairs in length and an open reading frame that encodes a 332 amino acid polypeptide with a molecular weight of 35.89 kD. The deduced amino acid sequence of this protein is in close agreement with the published sequence of mouse LDH-X obtained by direct protein sequencing. Northern analysis of RNA isolated from different tissues detected a single size mRNA of 1.5 kilobases in mouse testis but not in brain or liver. The Ldh-x structural gene was estimated to be about 12 kb in size as demonstrated by Southern hybridization analysis of mouse genomic DNA using the full-length cDNA as a probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号