首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The adrenergic innervation of major arteries and veins was examined in DOCA-NaCl hypertensive rats using a histochemical fluorescent technique to detect the intraneuronal catecholamine content. The possible role of sodium and chloride ions was studied in DOCA-treated rats which were fed a low-salt diet which was supplemented with sodium bicarbonate instead of sodium chloride. Focal defects of adrenergic innervation were observed in blood vessels of DOCA-NaCl hypertensive rats. Nevertheless, the degree of these changes differed according to the vascular bed examined. A maximum decrease of the catecholamine content in varicosities of adrenergic terminals was found in the femoral vessels while there were nearly no changes in tail arteries and veins. Adrenergic innervation was usually more impaired in veins than in corresponding arteries of hypertensive animals. Pronounced changes in blood vessels of rats with DOCA-NaCl hypertension contrasted with the maximum alterations observed in those hypertensive DOCA-treated animals which were fed a NaHCO3-supplemented diet. Thus a chloride overload seems to be more important for alteration of adrenergic innervation than the degree of blood pressure elevation or the sodium overload per se.  相似文献   

2.
To study arterial remodeling in response to hypertension, Deoxycortico-sterone acetate (DOCA)-salt hypertension was induced in immature (aged 16 weeks) and middle-aged (48 weeks) rats, and biomechanical properties and wall dimensions of common carotid arteries were determined. Arterial segments were excised at 10 or 16 weeks postoperatively from the immature rats and at 16 weeks from the middle-aged ones. In vitro pressure-diameter tests were performed under normal (in Krebs-Ringer solution), active (norepinephrine), and passive (papaverine) conditions. Non-treated, age-matched rats (26, 32, and 64 weeks) were used to obtain control data. Wall thickness at in vivo blood pressure level was increased by hypertension at all ages; however, there were no significant changes in inner diameter. In hypertensive rats, arterial outer diameter was smaller under normal condition than under passive condition, indicating the increase of smooth muscle tone by hypertension. Diameter reduction developed by norepinephrine was increased by hypertension, which was significant above 100 mmHg; however, there were no significant differences between hypertensive and normotensive arteries, if compared at respective in vivo blood pressures. No significant differences were observed in wall stiffness at in vivo pressure. Wall hoop stress at in vivo blood pressure had a significant positive correlation with the pressure in 26-week old arteries. However, there were no differences in the stress between hypertension and normotension in 32- and 64-week old arteries. These results were essentially similar to previous ones observed in Goldblatt hypertension and in younger animals. Age-related differences in arterial wall remodeling were not clearly observed.  相似文献   

3.
以还原型辅酶Ⅱ黄递酶(NADPHd)组织化学技术及扫描电镜(SEM),对正常组与高血压组大鼠肾动脉内皮的一氧化氮合酶(NOS)及表面结构进行了观察。结果表现:正常组肾动脉内皮细胞胞浆中可见蓝黑色斑块状的NOS阳性反应产物,但在高血压组肾动脉内皮细胞胞浆中的NOS反应明显减弱。扫描电镜显示高血压组肾动脉的部分内皮轮廓不清且凸凹不平,可见指压样印迹以及红细胞和单核细胞粘附。由此我们认为,高血压大鼠肾动脉内皮的结构和功能均发生了改变。  相似文献   

4.
We studied the changes in calcium-induced vasoconstriction in isolated tail arteries from young (2 months) and old (12 months) normotensive, and young renovascular hypertensive rats (3 months old, with unilateral renal artery clipping at 6 weeks), pretreated with reserpine. The tail artery was removed and perfused/superfused with either a high potassium Krebs depolarizing solution or Krebs solution plus phenylephrine. Concentration-response curves to calcium were produced. Old rats had a low plasma renin activity and their depolarized tail arteries showed a weak vasoconstrictor response to calcium. Renovascular hypertensive rats had a high mean blood pressure and plasma renin activity. Responses of their depolarized tail arteries to calcium were greater. Responses to calcium in tail arteries perfused with phenylephrine were similar in all groups. We conclude that age and renovascular hypertension produce opposite changes in vasoconstriction induced by calcium in depolarized tail arteries.  相似文献   

5.
The release of prostaglandin-like (PG-like) material by aorta strips of normotensive and hypertensive rats has been studied in vitro. When incubated in an oxygenated Krebs solution kept at 37 degrees C, aorta strips removed from 8- and 12-week-old spontaneously hypertensive (SH) rats generate 1.2-2.5 times more PG-like material than aorta strips from age-matched normotensive Wistar (NW) rats. The overproduction of PG-like material by aorta strips of SH rats did not precede the development of hypertension in SH rats. Aorta strips derived from renal and DOCA-salt hypertensive rats produced 1.5-3 times more PG-like material than aorta strips from NW rats. The production of PG-like material by aorta strips of renal and DOCA-salt hypertensive rats was largely reduced when hypertension was interrupted in these animals, thus suggesting that the alteration taking place in the arteries of hypertensive rats (namely increased production of PGs) during the development of hypertension was reversible. The production of PG-like material by aorta strips of hypertensive rats was inhibited by indomethacin. Analysis of the PG-like material by bioassays and thin-layer chromatography suggests the presence of PGE2 and PGE1. The possible involvement of these PGs in the pathogenesis of hypertension in rats is discussed.  相似文献   

6.
The relationship between sympathetic innervation and arterial medial development has been examined in normotensive, hypertensive, and diabetic rats. Using the jejunal artery as a model, the number of nerve fibres innervating the artery as determined from fluorescent preparations, and the medial thickness and lumen diameter as measured from resin embedded specimens were correlated from animals prepared in various ways. The rats used were normal Sprague-Dawley (SD), SD with induced hypertension, SD with diabetes induced with streptozotocin, SD sympathectomized with 6-hydroxydopamine, spontaneously hypertensive rats (SHR), SHR treated with capsaicin to prevent hypertension development, Wistar Kyoto rats (WKY), and WKY treated with capsaicin. Examination of the jejunal arteries from these rats at 12 weeks of age following normal development, or 8 weeks of hypertension development, or 8 and 12 weeks of diabetes, showed that increased innervation occurred in the SHR under all conditions, and in the diabetic rats after 8 weeks of diabetes. Medial hypertrophy occurred in the SHR and in the SD hypertensive only. It is concluded that the special relationship which exists between the sympathetic innervation and arterial media in the SHR does not occur during hypertension development in the SD rat, nor is it necessary for normal medial development in the SD rat. The sympathetic innervation does appear to have a trophic influence on vascular smooth muscle of diabetic rats, at least in the early stages of the disease.  相似文献   

7.
When suspended in oxygenated Krebs solution at 37 degrees C, strips derived from thoracic aortae of spontaneously hypertensive rats maintain their initial intrinsic tone and release prostaglandin-like material in the suspending medium, while similar preparations from normal Wistar rats relax progressively and produce significantly smaller amounts of prostaglandins. Indomethacin, a potent antagonist of prostaglandin synthesis, has two major effects: it favors the relaxation of both strips of hypertensive rats and of normal rats; and it inhibits the accumulation of prostaglandin-like material in the suspending medium, as evaluated with a specific and sensitive biological assay (rat stomach strip or chick rectum). Carotid and femoral arteries taken from the same animals show similar differences as the aorta strips, with regard to the production of prostaglandin-like material. The generation of prostaglandin is markedly decreased by the absence of O2, while it is unaffected by the absence of the extracellular Ca2+. It is proposed that the absence of relaxation of aorta strips taken from hypertensive, compared to normal rats, is due to increased intramural synthesis and release of prostaglandins.  相似文献   

8.
Excessive salt intake is a major risk factor for hypertension. Here we identify the role of Na(+)/Ca(2+) exchanger type 1 (NCX1) in salt-sensitive hypertension using SEA0400, a specific inhibitor of Ca(2+) entry through NCX1, and genetically engineered mice. SEA0400 lowers arterial blood pressure in salt-dependent hypertensive rat models, but not in other types of hypertensive rats or in normotensive rats. Infusion of SEA0400 into the femoral artery in salt-dependent hypertensive rats increases arterial blood flow, indicating peripheral vasodilation. SEA0400 reverses ouabain-induced cytosolic Ca(2+) elevation and vasoconstriction in arteries. Furthermore, heterozygous NCX1-deficient mice have low salt sensitivity, whereas transgenic mice that specifically express NCX1.3 in smooth muscle are hypersensitive to salt. SEA0400 lowers the blood pressure in salt-dependent hypertensive mice expressing NCX1.3, but not in SEA0400-insensitive NCX1.3 mutants. These findings indicate that salt-sensitive hypertension is triggered by Ca(2+) entry through NCX1 in arterial smooth muscle and suggest that NCX1 inhibitors might be useful therapeutically.  相似文献   

9.
《Life sciences》1997,62(4):PL55-PL62
We demonstrated that the fructose-induced hypertensive rat, representative of the principal metabolic abnormalities found in a majority of hypertensive patients, i.e. hypertriglyceridemia, hyperinsulinemia and insulin resistance (Syndrome X), is associated with an impaired response to endothelium-dependent vasodilators and that fructose may directly contribute to this impairment. Twelve male Wistar rats were divided into two groups, one given 10% fructose (n=6); the other no fructose (n=6) for 40 days in the drinking water. Systolic blood pressure was measured via the tail cuff method. Perfusion pressure responses to acetylcholine, were measured in the isolated perfused mesenteric vascular bed. Constrictor or dilator responses were measured as increases or decreases, respectively, of the perfusion pressure at a constant flow (4 ml/min). Fructose-fed rats had significantly higher blood pressure, insulin and triglyceride levels than control animals. In phenylephrine constricted beds, the endothelium-dependent dilatation to acetylcholine (0.001 to 1 μmol) was attenuated in the fructose-fed group compared to control animals. Whether this abnormality results from the syndromes (hyperinsulinemia, hypertension and hypertriglyceridemia) associated with the fructose-fed animal model is unknown. We therefore hypothesized that fructose can impair the endothelium-dependent vasodilator response. This was evaluated by perfusing mesenteric arteries from normal rats with control mannitol (40 mM) or fructose (40 mM). Endothelium-dependent dilation to acetylcholine was impaired in fructose-perfused mesenteric arteries. Indomethacin restored the vasodilator response to acetylcholine, suggesting that a cyclooxygenase derivative mediates the impaired response. Thus, we conclude that fructose can contribute to the impaired endothelium-dependent response in the fructose-induced hypertensive rat model. Published by Elsevier Science Inc.  相似文献   

10.
Bromolasalocid (Ro 20-0006) is a calcium ionophore with antihypertensive activity that does not belong to any known class of antihypertensive agents. Bromolasalocid produces a relatively flat systolic blood pressure dose-response effect in the spontaneously hypertensive rat. An intensive cardiovascular evaluation of bromolasalocid at the highest dose used in the dose-response study showed full hemodynamic compensation; there was a significant decrease in both mean arterial blood pressure and peripheral resistance without a significant decrease in cardiac index. The antihypertensive action of bromolasalocid lasts many days after termination of dosing. Bromolasalocid is specifically antihypertensive and does not decrease arterial blood pressure in normotensive animals or in animal models of hypertensive cardiovascular disease with normal pulse pressures. Bromolasalocid is not a vasodilator and appears to mediate its antihypertensive action by restoring compliance of the large conduit arteries. Both the derived arterial compliance index and the blood pressure-pressor response to the carotid occlusion reflex are enhanced in the dog perinephritis model of hypertensive cardiovascular disease treated with bromolasalocid. Bromolasalocid appears to reverse the damage to cardiovascular tissue caused by prolonged hypertension via an action on calcium perturbations in large artery smooth muscle cells.  相似文献   

11.
The finding of elevated circulating catecholamine levels in experimental and human hypertension suggests an active sympathoadrenal participation in the pathogenesis of hypertension. In deoxycorticosterone acetate (DOCA)-salt hypertensive rats and in spontaneously hypertensive rats (SHR) the sympathoadrenal reactivity was found to be potentiated in response to various stimuli suggesting alterations in baroreflex functions or in local modulatory mechanisms. Several studies have suggested an attenuation of the alpha 2-presynaptic or local inhibitory mechanism and a potentiation of the beta 2-facilitatory presynaptic mechanism in the peripheral sympathetic system, thus possibly explaining the potentiated sympathoadrenal reactivity in those hypertensive animals. At postsynaptic adrenergic sites, beta-adrenoceptor numbers were reported to be decreased, whereas alpha 1-adrenoceptor numbers were unchanged in the cardiovascular system of DOCA hypertensive rats, thus favoring a dominance of alpha 1-postsynaptic responses in those animals. In support of this concept, the production of inositol monophosphate, used as an index of inositol triphosphate production, was found to be markedly enhanced following norepinephrine-induced alpha 1-stimulation in atria and ventricles as well as in mesenteric and femoral arteries of DOCA-salt hypertensive rats thus suggesting an increased reactivity of the second messenger system linked to alpha 1-adrenoceptors. Since similar abnormalities were also observed in SHR and in human hypertension, it thus appears that an imbalance between alpha- and beta-postsynaptic receptors may exist in various forms of hypertension. These studies therefore suggest the existence of multiple abnormalities in pre- and post-synaptic adrenergic mechanisms in experimental and human hypertension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Nitric oxide has been shown to be involved in the regulation of cerebral blood flow and the consequences of cerebral ischemia. Short-term inhibition of its synthesis induces hypertension and increases the cortical infarct volume in focal ischemia. Our purpose was to investigate the influence of the long-term inhibition of nitric oxide synthase on infarct volume due to middle cerebral artery (MCA) occlusion and on the reactivity of cerebral arteries. Sprague Dawley rats were given N(omega)-nitro-L-arginine methyl ester (L-NAME) for 2 or 6 weeks and compared to untreated normotensive rats and untreated spontaneously hypertensive rats (SHRs). Brain nitric oxide synthase activity was measured by the 14C-L-arginine assay. Arterial blood pressure was measured in each group. Independently, the reactivity of MCA trees was studied in vitro by a perfusion technique. Cortical infarct volume was not significantly modified by either 2-week or 6-week L-NAME treatment, despite induced hypertension, whereas it was significantly higher in SHRs than in normotensive rats. The reactivity of the MCA tree was significantly affected by the treatment with a clearcut time-dependency. Compared to normotensive controls, contractility to noradrenaline and serotonin was reduced, more severely at 6 weeks, and while dilatation to acetylcholine and nitroprusside was moderately reduced at 6 weeks, dilatation to papaverine was then increased. A major difference of treated animals compared to SHRs was the decreased response to 5-hydroxytryptamine. We conclude that infarct expansion may be limited in treated animals by a progressive reduction in cerebral artery response to vasoconstrictory neurotransmitters, concomitant with augmented non-guanylate cyclase dilator responses (cf. papaverine) and some recovery of dilatation to acetylcholine.  相似文献   

13.
Hypertension is associated with an increase in coronary artery disease, but little is known about the regulation of coronary vascular tone by endothelin-1 (ET-1) in hypertension. The present study evaluated the mechanisms mediating altered contraction to ET-1 in coronary small arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats. DOCA-salt rats exhibited an increase in systolic blood pressure and plasma ET-1 levels compared with placebo rats. Contraction to ET-1 (1 x 10(-11) to 3 x 10(-8) M), measured in isolated coronary small arteries maintained at a constant intraluminal pressure of 40 mmHg, was largely reduced in vessels from DOCA-salt rats compared with placebo rats. To determine the role of endothelin receptor binding in the impaired contraction to ET-1, (125)I-labeled ET-1 receptor binding was measured in membranes isolated from coronary small arteries. Maximum binding (fmol/mg protein) and binding affinity were similar in coronary membranes from DOCA-salt rats compared with placebo rats. Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in freshly dissociated coronary small artery smooth muscle cells loaded with fura 2. ET-1 (10(-9) M) produced a 30 +/- 9% increase in [Ca(2+)](i) in smooth muscle cells from placebo rats, but had no effect on cells from DOCA-salt rats (2 +/- 2%). In summary, the ET-1-induced coronary artery contraction and increase in [Ca(2+)](i) are impaired in DOCA-salt hypertensive rats, whereas endothelin receptor binding is not altered. These results suggest endothelin receptor uncoupling from signaling mechanisms and indicate that impaired [Ca(2+)](i) signaling contributes to the decrease in ET-1-induced contraction of coronary small arteries in DOCA-salt hypertensive rats.  相似文献   

14.
Structural alterations of blood vessels in hypertensive rats   总被引:2,自引:0,他引:2  
Vascular changes in the mesenteric arteries were examined in three animals models for human essential hypertension. These models are: spontaneously hypertensive rats, which develop hypertension with age; Dahl model of genetic, salt-dependent hypertensive rats; and deoxycorticosterone-salt hypertensive rats. Morphometric measurements of the arterial wall components (e.g., endothelium, media) were carried out in the elastic arteries, muscular arteries, and arteriolar vessels from the mesenteric bed. The observed changes were correlated with the stages of hypertension development and the effect of antihypertension therapy, including sympathectomy. Specific emphasis was made to determine whether the changes observed were primary in nature, and related to the causes of hypertension, or they were secondary adaptive changes. A comparison of the three models showed that common changes in the intima, media, and adventitia were present in the three models. Alterations in the endothelium (e.g., enlargement of subendothelial space, necrotic changes), adventitia (collagen increase), and hypertrophy of the smooth muscle cells are secondary adaptive changes, because these changes occur subsequent to the development of hypertension, and antihypertensive therapy also prevent these changes from taking place. In contrast, hyperplasia of the smooth muscle cells is a primary change, because it occurs prior to the onset of hypertension. Functionally, alteration in the media is probably the most important change, because it can cause hyperreactivity of the arteries in response to stimulation. Damage to the endothelial cells may play a role in the maintenance of hypertension during the later phase. Alteration in adventitia is a passive change, which does not appear to have a major role in hypertension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have recently concentrated our efforts on bioassay of plasma supernatant from animals with experimental low-renin hypertension (one-kidney, one-wrapped in dogs, and one-kidney, one-clip, and reduced renal mass in rats) for sodium-potassium pump inhibiting activity. We have observed changes compatible with inhibitory activity by using three different in vitro bioassays: 1) ouabain-sensitive 86Rb uptake by the normal rat tail artery, 2) short-circuit current in the toad bladder, and 3) membrane potential in the rat tail artery. We have also generated evidence suggesting that the humoral pump inhibitor(s) comes from or is influenced by the anteroventral third ventricle area of the brain and that it acts on the vascular smooth muscle cell at least in part by depolarizing the membrane. These findings are compatible with our 1976 hypothesis in which we proposed that in volume-expanded hypertension there is a circulating agent that suppresses cardiovascular membrane Na+,K+-ATPase, which results in reduced activity of the Na+-K+ pump and hence increased contractility of heart, arteries, and veins and that in blood vessels the increased contractility may be secondary to depolarization. We attempt to relate these findings to those in the literature on monovalent ion transport in blood cells of hypertensive subjects.  相似文献   

16.
Vascular capacitance is reduced by endothelin-1 (ET-1) in deoxycorticosterone (DOCA)-salt hypertensive rats. This may contribute to hypertension development. Because the splanchnic blood vessels (especially veins) are important in determining vascular capacitance, we tested the hypothesis that ET-1 levels in the splanchnic vasculature are elevated in hypertensive DOCA-salt compared with normotensive rats. Tissue ET-1 content was measured by ELISA in aorta, vena cava, superior mesenteric artery and vein, and small mesenteric arteries and veins from normotensive sham-operated (sham) and 4-wk DOCA-salt rats. We also determined ET-1 concentration in aortic and portal venous blood (draining the nonhepatic splanchnic organs) in anesthetized and conscious sham and DOCA-salt rats before and after acute blockade of ETB receptor-mediated plasma clearance of ET-1. Results showed a higher ET-1 content in veins than in arteries of similar size. However, ET-1 content was similar in vessels from sham and DOCA-salt rats, except in aorta and superior mesenteric artery, where ET-1 content was greater in DOCA-salt rats. ET-1 concentration was significantly higher in portal venous than in aortic blood, indicating net nonhepatic splanchnic release (nNHSR) of ET-1. However, nNHSR of ET-1 was similar in sham and DOCA-salt rats. Although nNHSR of ET-1 increased significantly after ETB receptor blockade in sham rats, it was completely unchanged in DOCA-salt rats. These data suggest that, despite the absence of ETB receptor-mediated plasma clearance of ET-1, neither the venous peptide content nor the net release of ET-1 is increased in the splanchnic vasculature of DOCA-salt rats. These results argue against the hypothesis that increased venomotor tone in DOCA-salt hypertension is caused by increased ET-1 concentration around splanchnic venous smooth muscle cells.  相似文献   

17.
The distribution and concentrations of neuropeptide Y (NPY) in kidneys, renal arteries, heart, aorta, mesenteric artery and adrenal glands from aorta-ligated hypertensive rats were studied by immunocytochemistry and radioimmunoassay. Immunocytochemistry showed that in the hypertensive animals NPY-immunoreactive fibres were decreased in both kidney and renal artery, above and below the ligation, and in mesenteric arteries. The depletion of NPY-containing nerves in the kidney was more pronounced around the juxtaglomerular apparatus than in other areas of the organ. By radioimmunoassay, the concentrations of NPY immunoreactivity were significantly lower in the hypertensive animals when compared with the controls, (kidney: hypertensive 1.0 +/- 0.1; controls 2.0 +/- 0.2 pmol/g, mean +/- SEM; p less than 0.05 renal artery: hypertensive 5.0 +/- 0.8; controls 12.1 +/- 2.0; p less than 0.05 and mesenteric artery: hypertensive 8.6 +/- 1.9; 17.6 +/- 3.0; p less than 0.01). While there were no statistically significant changes in the levels of NPY immunoreactivity in the other areas studied, there was a general trend for the level to fall in the renal artery below the ligation (hypertensive 10.6 +/- 1.5; control 15.3 +/- 2.4; p greater than 0.05). It is of interest that changes were observed in the vasoconstrictor peptide NPY in this commonly used model of hypertension.  相似文献   

18.
The present experiments were designed to evaluate vascular reactivity to angiotensin II in rats with experimental cirrhosis of the liver (induced with CCl4 and phenobarbital) before ascites appearance. The systemic pressor response to angiotensin II in conscious animals and the contractile effect of angiotensin II in isolated femoral arteries were studied. In addition, the effect of high sodium intake on these parameters was also analyzed. Both renin and aldosterone plasma concentrations were similar in control and cirrhotic rats on the normal or on the high sodium diet. Basal mean arterial pressure was higher in control rats than in cirrhotic rats on the normal sodium (116 +/- 4 vs. 101 +/- 4 mmHg (1 mmHg = 133.3 Pa), p less than 0.05) or on the high sodium diet (118 +/- 7 vs. 98 +/- 6 mmHg). No differences in plasma renin activity or plasma aldosterone were found between control and cirrhotic rats. Upon injection of angiotensin II, control rats show a dose-dependent increase in mean arterial pressure which is higher in high sodium than in normal sodium rats. Cirrhotic rats showed a lower hypertensive response to angiotensin II than their corresponding control rats. In addition, no difference between pressor responses to angiotensin II was observed when normal sodium and high sodium cirrhotic rats were compared. On application of angiotensin II, femoral arteries of control and cirrhotic rats exhibited a dose-dependent contraction. However, maximal contraction was higher in high sodium control rats (145 +/- 12 mg) than in normal sodium control rats (99 +/- 6 mg, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Venous diseases like iliofemoral deep vein thrombosis and valvular dysfunction induce venous hypertension. To know the effects of the hypertension on venous mechanics, blood pressure in the left femoral vein in the rabbit was chronically elevated by the constriction of the left external iliac vein. Wall dimensions and biomechanical properties of the femoral vein were studied in vitro at 1, 2, or 4 wk after surgery. Blood pressure measured immediately before the animal was killed was significantly higher in the left femoral vein than in the sham-operated, contralateral vein. Wall thickness was increased by blood pressure elevation even at 1 wk, which restored circumferential wall stress to a control level. The stress was kept at normal up to 4 wk. Vascular tone and vascular contractility were increased by the elevation of blood pressure; however, wall elasticity and compliance were kept at a normal level. These results are very similar to those observed in hypertensive arteries, indicating that not only arteries but veins optimally operate against blood pressure elevation.  相似文献   

20.
The total norepinephrine (NE) content, the uptake of [3H]NE, the turnover rate and the synthesis rate of the neurotransmitter at the heart and blood vessels have been studied during the development of hypertension in rats subjected to bilateral renal infarction. Normal and sham-operated rats were used as controls. Fifty percent of the rats with renal infarction became hypertensive. The weight of the hearts and blood vessels of the experimental animals was significantly increased 15 days after renal infarction. Changes were greater in hypertensive animals. NE concentration in the heart was slightly decreased without achieving statistical significance, while total NE content was unchanged. In the artery wall NE concentration was significantly decreased in normotensive and hypertensive operated rats. [3H]NE uptake in the heart and blood vessels was similar in experimental and control animals. In relation to NE turnover, in both the heart and blood vessels, normal and sham-operated animals behaved as one population while normotensive and hypertensive rats behaved as another population. The rate constant of NE turnover was increased in both tissues of operated experimental animals without achieving statistical significance in the case of the heart. NE synthesis rate was unchanged in the cardiac muscle but was significantly increased in the blood vessels of operated animals. Present data indicate that results describing NE dynamics in the heart cannot be extrapolated for the blood vessels level; on the other hand changes in the neurotransmitter do not seem to be related to the development of high blood pressure after renal infarction in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号