首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Salicylic acid (SA) induces resistance to all plant pathogens, including bacteria, fungi, and viruses, but the mechanism by which SA engenders resistance to viruses is not known. Pretreatment of tobacco mosaic virus (TMV)-susceptible (nn genotype) tobacco tissue with SA reduced the levels of viral RNAs and viral coat protein accumulating after inoculation with TMV. Viral RNAs were not affected equally, suggesting that SA treatment interferes with TMV replication. Salicylhydroxamic acid (SHAM), an inhibitor of the mitochondrial alternative oxidase, antagonized both SA-induced resistance to TMV in nn genotype plants and SA-induced acquired resistance in resistant (NN genotype) tobacco. SHAM did not inhibit induction of the PR-1 pathogenesis-related protein or induction of resistance to Erwinia carotovora or Botrytis cinerea by SA. This indicates that SA induces resistance to TMV via a novel SHAM-sensitive signal transduction pathway (potentially involving alternative oxidase), which is distinct from that leading to resistance to bacteria and fungi.  相似文献   

2.
The roles of salicylic acid (SA) and H2O2 in the induction of PR proteins in tobacco have been examined. Studies were conducted on wild-type tobacco and plants engineered to express a bacterial salicylate hydroxylase capable of metabolizing SA to catechol (SH-L plants). Wild-type and PR-1a—GUS-transformed plants express PR-1a following challenge with Pseudomonas syringae pathovar syringae , SA or 2,6-dichloro-isonicotinic acid (INA). In contrast, SH-L plants failed to respond to SA but did express PR-1a following INA treatment. H2O2 and the irreversible catalase inhibitor 3-amino-1,2,4-triazole (3-AT) were found to be weak inducers of PR-1a expression (relative to SA) in wild-type tobacco but were unable to induce PR-1a in SH-L plants, suggesting that the action of these compounds depends upon the accumulation of SA. A model has been proposed suggesting that SA binds to and inhibits a catalase inducing an increase in H2O2 leading to PR protein expression. Catalase activity has been measured in tobacco and no significant changes in activity following infection with P. syringae pv. syringae were detected. Furthermore, inhibition of catalase activity in vitro in plant extracts requires pre-incubation and only occurs at SA concentrations above 250 µM. Leaf disks pre-incubated with 1 mM SA do accumulate SA to these levels and PR-1a is efficiently induced but there is no apparent inhibition of catalase activity. It is also shown that a SA-responsive gene, PR-1a, and a H2O2-sensitive gene, AoPR-1, are both relatively insensitive to 3-AT suggesting that induction of these genes is unlikely to be due entirely to inhibition of an endogenous catalase.  相似文献   

3.
Interconversion of the salicylic acid signal and its glucoside in tobacco   总被引:21,自引:3,他引:18  
Salicylic acid (SA) has been proposed to play a role in the induction of pathogenesis-related (PR) proteins and systemic acquired resistance (SAR) in tobacco. Since SA is rapidly converted to salicylic acid β-glucoside (SAG) in tobacco, we have attempted to assess the role of SAG in pathogenesis by application of chemically synthesized SAG to tobacco leaves. SAG was as active as SA in induction of PR-1 gene expression. This induction was preceded by a transient release of SA, which occurred in the extracellular spaces. The existence of a mechanism that releases SA from SAG suggests a possible role for SAG in SAR.  相似文献   

4.
5.
Shang J  Xi DH  Xu F  Wang SD  Cao S  Xu MY  Zhao PP  Wang JH  Jia SD  Zhang ZW  Yuan S  Lin HH 《Planta》2011,233(2):299-308
Plant viruses cause many diseases that lead to significant economic losses. However, most of the approaches to control plant viruses, including transgenic processes or drugs are plant-species-limited or virus-species-limited, and not very effective. We introduce an application of jasmonic acid (JA) and salicylic acid (SA), a broad-spectrum, efficient and nontransgenic method, to improve plant resistance to RNA viruses. Applying 0.06?mM JA and then 0.1?mM SA 24?h later, enhanced resistance to Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV) and Turnip crinkle virus (TCV) in Arabidopsis, tobacco, tomato and hot pepper. The inhibition efficiency to virus replication usually achieved up to 80-90%. The putative molecular mechanism was investigated. Some possible factors affecting the synergism of JA and SA have been defined, including WRKY53, WRKY70, PDF1.2, MPK4, MPK2, MPK3, MPK5, MPK12, MPK14, MKK1, MKK2, and MKK6. All genes involving in the synergism of JA and SA were investigated. This approach is safe to human beings and environmentally friendly and shows potential as a strong tool for crop protection against plant viruses.  相似文献   

6.
Systemic induction of pathogenesis-related (PR) proteins in tobacco, which occurs during the hypersensitive response to tobacco mosaic virus (TMV), may be caused by a minimum 10-fold systemic increase in endogenous levels of salicylic acid (SA). This rise in SA parallels PR-1 protein induction and occurs in TMV-resistant Xanthi-nc tobacco carrying the N gene, but not in TMV-susceptible (nn) tobacco. By feeding SA to excised leaves of Xanthi-nc (NN) tobacco, we have shown that the observed increase in endogenous SA levels is sufficient for the systemic induction of PR-1 proteins. TMV infection became systemic and Xanthi-nc plants failed to accumulate PR-1 proteins at 32 degrees C. This loss of hypersensitive response at high temperature was associated with an inability to accumulate SA. However, spraying leaves with SA induced PR-1 proteins at both 24 and 32 degrees C. SA is most likely exported from the primary site of infection to the uninfected tissues. A computer model predicts that SA should move rapidly in phloem. When leaves of Xanthi-nc tobacco were excised 24 hr after TMV inoculation and exudates from the cut petioles were collected, the increase in endogenous SA in TMV-inoculated leaves paralleled SA levels in exudates. Exudation and leaf accumulation of SA were proportional to TMV concentration and were higher in light than in darkness. Different components of TMV were compared for their ability to induce SA accumulation and exudation: three different aggregation states of coat protein failed to induce SA, but unencapsidated viral RNA elicited SA accumulation in leaves and phloem. These results further support the hypothesis that SA acts as an endogenous signal that triggers local and systemic induction of PR-1 proteins and, possibly, some components of systemic acquired resistance in NN tobacco.  相似文献   

7.
8.
9.
Several lines of evidence suggest that salicylic acid (SA) is an endogenous signal for the activation of several plant defense responses, including the expression of genes encoding pathogenesis-related (PR) proteins such as the acidic PR-1 proteins. During recent years, studies have suggested that interaction of SA with catalase and ascorbate peroxidase leads to two signals in tobacco - elevated H2O2 levels and lipid peroxides. However, to date, relatively little is known about the molecular and biochemical mechanisms that mediate transduction beyond these signals or through other SA-effector proteins. Using protein kinase and phosphatase inhibitors, this study demonstrates that PR-1 gene induction can be mediated by dephosphorylation of serine/threonine residue(s) of two or more unidentified phosphoproteins. The protein phosphatase inhibitors, okadaic acid and calyculin A blocked SA-mediated induction of PR-1 genes, implying the involvement of a phosphoprotein downstream of SA. The protein kinase inhibitors K-252a and staurosporine induced PR-1 gene expression. PR-1 gene induction by K-252a was suppressed by okadaic acid. Surprisingly, this induction was also suppressed in NahG transgenic tobacco plants which convert SA to catechol. Moreover, K-252a stimulated production of SA and its glucoside, suggesting that another phosphoprotein acts upstream of SA. Taken together, these results suggest that there are two (or more) phosphoproteins which function in the same signal transduction pathway leading to PR-1 gene induction. The SA-inducible acidic PR-2 genes were similarly affected by the inhibitors, while the genes for actin and phenylalanine ammonia lyase were not.  相似文献   

10.
Increases in endogenous salicylic acid (SA) levels and induction of several families of pathogenesis-related genes (PR-1 through PR-5) occur during the resistance response of tobacco to tobacco mosaic virus infection. We found that at temperatures that prevent the induction of PR genes and resistance, the increases in SA levels were eliminated. The addition of exogenous SA to infected plants at these temperatures was sufficient to induce the PR genes but not the hypersensitive response. However, when the resistance response was restored by shifting infected plants to permissive temperatures, SA levels increased dramatically and preceded PR-1 gene expression and necrotic lesion formation associated with resistance. SA was also found in a conjugated form whose levels increased in parallel with the free SA levels. The majority of the conjugates appeared to be SA glucosides. The same glucoside was formed when plants were supplied with exogenous SA. These results provide further evidence that endogenous SA signals the induction of certain defense responses and suggests additional complexity in the modulation of this signal.  相似文献   

11.
Arabidopsis thaliana grown in soil amended with barley grain inocula of Penicillium simplicissimum GP17-2 or receiving root treatment with its culture filtrate (CF) exhibited clear resistance to Pseudomonas syringae pv. tomato DC3000 (Pst). To assess the contribution of different defense pathways, Arabidopsis genotypes implicated in salicylic acid (SA) signaling expressing the NahG transgene or carrying disruption in NPR1 (npr1), jasmonic acid (JA) signaling (jar1) and ethylene (ET) signaling (ein2) were tested. All genotypes screened were protected by GP17-2 or its CF. However, the level of protection was significantly lower in NahG and npr1 plants than it was in similarly treated wild-type plants, indicating that the SA signaling pathway makes a minor contribution to the GP17-2-mediated resistance and is insufficient for a full response. Examination of local and systemic gene expression revealed that GP17-2 and its CF modulate the expression of genes involved in both the SA and JA/ET signaling pathways. Subsequent challenge of GP17-2-colonized plants with Pst was accompanied by direct activation of SA-inducible PR-2 and PR-5 genes as well as potentiated expression of the JA-inducible Vsp gene. In contrast, CF-treated plants infected with Pst exhibited elevated expression of most defense-related genes (PR-1, PR-2, PR-5, PDF1.2 and Hel) studied. Moreover, an initial elevation of SA responses was followed by late induction of JA responses during Pst infection of induced systemic resistance (ISR)-expressing plants. In conclusion, we hypothesize the involvement of multiple defense mechanisms leading to an ISR of Arabidopsis by GP17-2.  相似文献   

12.
Because of their marked responsiveness to induction signals, genes encoding pathogenesis-related proteins are used as markers to monitor defense gene expression in plants. To develop a non-invasive bioluminescence reporter assay system, we tested acidic PR-1 gene promoters from tobacco and Arabidopsis. These two promoters share common regulatory elements and are believed to show similar responsiveness to various stimuli but the results of transient expression assays by microprojectile bombardment of various plant cells and npr1 mutant Arabidopsis suggest that the tobacco PR-1a promoter is superior to its Arabidopsis counterpart in terms of responsiveness to salicylic acid treatment. Transgenic Arabidopsis seedlings harboring the tobacco PR-1a promoter fused to firefly luciferase showed marked induction in response to treatment with chemicals that induce defense gene expression in plants. These results suggest that the tobacco PR-1a promoter is applicable in monitoring defense-gene expression in various plant species.  相似文献   

13.
14.
Combinations of ethylene and methyl jasmonate (E/MeJA) synergistically induced members of both groups 1 and 5 of the pathogenesis-related (PR) superfamily of defense genes. E/MeJA caused a synergistic induction of PR-1b and osmotin (PR-5) mRNA accumulation in tobacco seedlings. E/MeJA also synergistically activated the osmotin promoter fused to a [beta]-glucuronidase marker gene in a tissue-specific manner. The E/MeJA responsiveness of the osmotin promoter was localized on a -248 to +45 fragment that exhibited responsiveness to several other inducers. E/MeJA induction also resulted in osmotin protein accumulation to levels similar to those induced by osmotic stress. Of the several known inducers of the osmotin gene, including salicylic acid (SA), fungal infection is the only other condition known to cause substantial osmotin protein accumulation in Wisconsin 38, a tobacco cultivar that does not respond hypersensitively to tobacco mosaic virus. Based on the ability of the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine to block ethylene induction of PR-1b mRNA accumulation and its inability to block osmotin mRNA induction by ethylene, these two PR gene groups appeared to have at least partially separate signal transduction pathways. Stimulation of osmotin mRNA accumulation by okadaic acid indicated that another protein kinase system is involved in regulation of the osmotin gene. SA, which is known to induce pathogen resistance in tobacco, could not induce the osmotin gene as much as E/MeJA and neither could it induce PR-1b as much as SA and MeJA combined.  相似文献   

15.
Because of their marked responsiveness to induction signals, genes encoding pathogenesis-related proteins are used as markers to monitor defense gene expression in plants. To develop a non-invasive bioluminescence reporter assay system, we tested acidic PR-1 gene promoters from tobacco and Arabidopsis. These two promoters share common regulatory elements and are believed to show similar responsiveness to various stimuli but the results of transient expression assays by microprojectile bombardment of various plant cells and npr1 mutant Arabidopsis suggest that the tobacco PR-1a promoter is superior to its Arabidopsis counterpart in terms of responsiveness to salicylic acid treatment. Transgenic Arabidopsis seedlings harboring the tobacco PR-1a promoter fused to firefly luciferase showed marked induction in response to treatment with chemicals that induce defense gene expression in plants. These results suggest that the tobacco PR-1a promoter is applicable in monitoring defense-gene expression in various plant species.  相似文献   

16.
17.
Intercellular spaces are often the first sites invaded by pathogens. In the spaces of tobacco mosaic virus (TMV)-infected and necrotic lesion-forming tobacco (Nicotiana tabacum L.) leaves, we found that an inducer for acidic pathogenesis-related (PR) proteins was accumulated. The induction activity was recovered in gel-filtrated fractions of low molecular mass with a basic nature, into which authentic spermine (Spm) was eluted. We quantified polyamines in the intercellular spaces of the necrotic lesion-forming leaves and found 20-fold higher levels of free Spm than in healthy leaves. Among several polyamines tested, exogenously supplied Spm induced acidic PR-1 gene expression. Immunoblot analysis showed that Spm treatment increased not only acidic PR-1 but also acidic PR-2, PR-3, and PR-5 protein accumulation. Treatment of healthy tobacco leaves with salicylic acid (SA) caused no significant increase in the level of endogenous Spm, and Spm did not increase the level of endogenous SA, suggesting that induction of acidic PR proteins by Spm is independent of SA. The size of TMV-induced local lesions was reduced by Spm treatment. These results indicate that Spm accumulates outside of cells after lesion formation and induces both acidic PR proteins and resistance against TMV via a SA-independent signaling pathway.  相似文献   

18.
Infection of Nicotiana tabacum Samsun NN with tobacco mosaic virus (TMV) results in a hypersensitive plant response and leads to systemic acquired resistance (SAR). The induction of SAR is mediated by the plant hormone salicylic acid (SA) and is accompanied by the induced expression of a number of genes including the pathogenesis-related (PR) gene 1a. Previously, it has been found that TMV infection and SA treatment resulted in a reduction of binding of nuclear protein GT-1 to far-upstream regions (–902 to –656) of the PR-1a gene. To test if GT-1 is a negative regulator of PR-1a gene expression, the effects of mutations in the seven putative GT-1 binding sites in this region were studied in vitro using dimethyl sulfate interference footprinting and band shift assays. This showed that at least one of the seven sites is indeed a GT-1 binding site. However, when tested in transgenic plants, the mutations did not result in constitutive expression of the chimeric PR-1a/GUS transgene, while inducible expression after SA treatment was decreased. The results suggest that binding of GT-1-like proteins to far-upstream PR-1a promoter regions indeed influences gene expression. A possible model for GT-1's mode of action in PR-1a gene expression is discussed.  相似文献   

19.
20.
J D Clarke  Y Liu  D F Klessig    X Dong 《The Plant cell》1998,10(4):557-569
In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistance to Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2 in the absence of SAR induction. cpr 6-1-induced PR gene expression is not suppressed in the cpr 6-1 npr1-1 double mutant but is suppressed when SA is removed by salicylate hydroxylase. Thus, constitutive PR gene expression in cpr 6-1 requires SA but not NPR1. In addition, resistance to P. s. maculicola ES4326 is suppressed in the cpr 6-1 npr1-1 double mutant, despite expression of PR-1, BGL 2, and PR-5. Resistance to P. s. maculicola ES4326 must therefore be accomplished through unidentified antibacterial gene products that are regulated through NPR1. These results show that CPR 6 is an important regulator of multiple signal transduction pathways involved in plant defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号