首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Adhesion in Candida spp   总被引:11,自引:1,他引:10  
Microbial adherence is one of the most important determinants of pathogenesis, yet very few adhesins have been identified from fungal pathogens. Four structurally related adhesins, Hwp1, Ala1p/Als5p, Als1p, from Candida albicans and Epa1p from Candida glabrata, are members of a class of proteins termed glycosylphosphatidylinositol-dependent cell wall proteins (GPI-CWP). These proteins have N-terminal signal peptides and C-terminal features that mediate glycosylphosphatidylinositol (GPI) membrane anchor addition, as well as other determinants leading to attachment to cell wall glucan. While common signalP/GPI motifs facilitate cell surface expression, unique features mediate ligand binding specificities of adhesins. The first glimpse of structural features of putative adhesins has come from biophysical characterizations of the N-terminal domain of Als5p. One protein not in the GPI-CWP class that was initially described as an adhesin, Int1p, has recently been shown to be similar to Bud4p of Saccharomyces cerevisiae in primary amino acid sequence, in co-localizing with septins and in functioning in bud site selection. Progress in understanding the role of adhesins in oroesophageal candidiasis has been made for Hwp1 in a study using beige athymic and transgenic epsilon 26 mice that have combined defects in innate and acquired immune responses. Searches of the C. albicans genome for proteins in the GPI-CWP class has led to the identification of a subset of genes that will be the focus of future efforts to identify new Candida adhesins.  相似文献   

3.
Liu Y  Filler SG 《Eukaryotic cell》2011,10(2):168-173
Candida albicans is part of the normal human flora, and it grows on mucosal surfaces in healthy individuals. In susceptible hosts, this organism can cause both mucosal and hematogenously disseminated disease. For C. albicans to persist in the host and induce disease, it must be able to adhere to biotic and abiotic surfaces, invade host cells, and obtain iron. The C. albicans hypha-specific surface protein Als3 is a member of the agglutinin-like sequence (Als) family of proteins and is important in all of these processes. Functioning as an adhesin, Als3 mediates attachment to epithelial cells, endothelial cells, and extracellular matrix proteins. It also plays an important role in biofilm formation on prosthetic surfaces, both alone and in mixed infection with Streptococcus gordonii. Als3 is one of two known C. albicans invasins. It binds to host cell receptors such as E-cadherin and N-cadherin and thereby induces host cells to endocytose the organism. Als3 also binds to host cell ferritin and enables C. albicans to utilize this protein as a source of iron. Because of its multiple functions and its high expression level in vivo, Als3 is a promising target for vaccines that induce protective cell-mediated and antibody responses. This review will summarize the multiple functions of this interesting and multifunctional protein.  相似文献   

4.
Complementary adhesin function in C. albicans biofilm formation   总被引:2,自引:1,他引:1  
BACKGROUND: Biofilms are surface-associated microbial communities with significant environmental and medical impact. Here, we focus on an adherence mechanism that permits biofilm formation by Candida albicans, the major invasive fungal pathogen of humans. RESULTS: The Als surface-protein family has been implicated in biofilm formation, and we show that Als1 and Als3 have critical but redundant roles. Overexpression of several other Als proteins permits biofilm formation in a biofilm-defective als1/als1 als3/als3 strain, thus arguing that the function of Als proteins in this process is governed by their respective expression levels. The surface protein Hwp1 is also required for biofilm formation, and we find that a mixture of biofilm-defective hwp1/hwp1 and als1/als1 als3/als3 strains can form a hybrid biofilm both in vitro and in vivo in a catheter infection model. Complementary function of Hwp1 and Als1 and 3 seems to reflect their interaction because expression of Hwp1 in the heterologous host S. cerevisiae permits adherence to wild-type C. albicans, but not to an als1/als1 als3/als3 strain. CONCLUSIONS: The complementary roles of Hwp1 and Als1 and Als3 in biofilm formation are analogous to the roles of sexual agglutinins in mating reactions. This analogy suggests that biofilm-adhesin complementarity may promote formation of monospecies biofilms.  相似文献   

5.
In this work, we identify a family of putative adhesins in the fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus. The members of this family share a conserved tandem repeat related to those found in the Candida albicans Als family of adhesins. Unlike previously characterised adhesins that possess conserved ligand-binding domains at the N-terminus, this group of proteins carry ligand-binding domains at their C-termini. We demonstrate that one such domain--the uncharacterised GLEYA domain, is related to the lectin-like ligand-binding domain found in the Saccharomyces cerevisiae Flo proteins. Unlike the Flo and Als proteins, the fission yeast adhesins do not contain detectable glycosyl phosphatidyl inositol (GPI) membrane anchor signals to mediate their attachment to the cell wall, which may suggest a novel cell wall attachment mechanism. Further sequence analysis identified several putative adhesins in the sub-phylum of Pezizomycotina, where only a few adhesins have been described to date.  相似文献   

6.
In this work, we identify a family of putative adhesins in the fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus. The members of this family share a conserved tandem repeat related to those found in the Candida albicans Als family of adhesins. Unlike previously characterised adhesins that possess conserved ligand-binding domains at the N-terminus, this group of proteins carry ligand-binding domains at their C-termini. We demonstrate that one such domain--the uncharacterised GLEYA domain, is related to the lectin-like ligand-binding domain found in the Saccharomyces cerevisiae Flo proteins. Unlike the Flo and Als proteins, the fission yeast adhesins do not contain detectable glycosyl phosphatidyl inositol (GPI) membrane anchor signals to mediate their attachment to the cell wall, which may suggest a novel cell wall attachment mechanism. Further sequence analysis identified several putative adhesins in the sub-phylum of Pezizomycotina, where only a few adhesins have been described to date.  相似文献   

7.
The GATA family of vertebrate DNA binding regulatory proteins are expressed in diverse tissues and at different times of development. However, the DNA binding regions of these proteins possess considerable homology and recognize a rather similar range of DNA sequence motifs. DNA binding is mediated through two domains, each containing a zinc finger. Previous results have led to the conclusion that although in some cases the N-terminal finger can contribute to specificity and strength of binding, it does not bind independently, whereas the C-terminal finger is both necessary and sufficient for binding. Here we show that although this is true for the N-terminal finger of GATA-1, those of GATA-2 and GATA-3 are capable of strong independent binding with a preference for the motif GATC. Binding requires the presence of two basic regions located on either side of the N-terminal finger. The absence of one of these near the GATA-1 N-terminal finger probably accounts for its inability to bind. The combination of a single finger and two basic regions is a new variant of a motif that has been previously found in the binding domains of other finger proteins. Our results suggest that the DNA binding properties of the N-terminal finger may help distinguish GATA-2 and GATA-3 from GATA-1 and the other GATA family members in their selective regulatory roles in vivo.  相似文献   

8.
Infections by Candida albicans in immune compromised patients cause significant morbidity and mortality. In the search for potential molecular targets for drug development, the family of agglutinin-like proteins (Als) in C. albicans have been identified due to numerous attributes associated with high virulence, most prominently due to their role in adherence. Here, molecular models of individual members of the Als family illustrated common and unique structure features. Additionally, dynamic simulations were performed to display regions of high mobility. The results showed variations between Als members in the fluctuation of the A1B1 protein loop, which is located at the entrance to the peptide binding cavity, suggesting that this feature may be a factor contributing to observed differences in affinities to ligands and adhesion properties. Molecular docking results further suggested that ligand affinity could be influenced by movements in the A1B1 loop. In addition, a new site was identified in Als in an area adjacent to the peptide binding cavity that could serve as a new binding site for the design of future anti-adhesion ligands that provide increased specificity inhibiting Als proteins from C. albicans.  相似文献   

9.
The opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells. We have used glycan array screening to identify possible glycan receptors for the binding domain of Als1p-N. Under those conditions, Als1p-N binds specifically to fucose-containing glycans, which adds a lectin function to the functional diversity of the Als1 protein. The binding between Als1p-N and BSA-fucose glycoconjugate was quantitatively characterized using surface plasmon resonance, which demonstrated a weak millimolar affinity between Als1p-N and fucose. Furthermore, we have also quantified the affinity of Als1p-N to the extracellular matrix proteins proteins fibronectin and laminin, which is situated in the micromolar range. Surface plasmon resonance characterization of Als1p-N-Als1p-N interaction was in the micromolar affinity range.  相似文献   

10.
The MNT1 gene of the human fungal pathogen Candida albicans is involved in O-glycosylation of cell wall and secreted proteins and is important for adherence of C. albicans to host surfaces and for virulence. Here we describe the molecular analysis of CaMNT2, a second member of the MNT1-like gene family in C. albicans. Mnt2p also functions in O-glycosylation. Mnt1p and Mnt2p encode partially redundant alpha-1,2-mannosyltransferases that catalyze the addition of the second and third mannose residues in an O-linked mannose pentamer. Deletion of both copies of MNT1 and MNT2 resulted in reduction in the level of in vitro mannosyltransferase activity and truncation of O-mannan. Both the mnt2Delta and mnt1Delta single mutants were significantly reduced in adherence to human buccal epithelial cells and Matrigel-coated surfaces, indicating a role for O-glycosylated cell wall proteins or O-mannan itself in adhesion to host surfaces. The double mnt1Deltamnt2Delta mutant formed aggregates of cells that appeared to be the result of abnormal cell separation. The double mutant was attenuated in virulence, underlining the importance of O-glycosylation in pathogenesis of C. albicans infections.  相似文献   

11.
Candida glabrata owes its success as a pathogen, in part, to a large repertoire of adhesins present on the cell surface. Our current knowledge of C. glabrata adhesins and their role in the interaction between host and pathogen is limited to work with only a single family of epithelial adhesins (Epa proteins). Here, we report on the identification and characterization of a family of glycosylphosphatidylinositol-anchored cell wall proteins in C. glabrata. These proteins are absent in both Saccharomyces cerevisiae and Candida albicans, suggesting that C. glabrata has evolved different mechanism(s) for interaction with host cells. In the current study, we present data on the characterization of Pwp7p (PA14 domain containing Wall Protein) and Aed1p (Adherence to Endothelial cells) of this family in the interaction of C. glabrata with human umbilical vein endothelial cells. The deletion of C. glabrata genes PWP7 and AED1 results in a significant reduction in adherence to endothelial cells compared with the wild-type parent. These data indicate that C. glabrata utilizes these proteins for adherence to endothelial cells in vitro.  相似文献   

12.
Otoo HN  Lee KG  Qiu W  Lipke PN 《Eukaryotic cell》2008,7(5):776-782
The cell wall-bound Als adhesins of Candida albicans mediate both yeast-to-host tissue adherence and yeast aggregation. This aggregation is amyloid-like, with self-propagating secondary-structure changes, amyloid-characteristic dye binding, and induced birefringence (J. M. Rauceo, N. K. Gaur, K. G. Lee, J. E. Edwards, S. A. Klotz, and P. N. Lipke, Infect. Immun. 72:4948-4955, 2004). Therefore, we determined whether Als proteins could form amyloid fibers with properties like those in cellular aggregation. The beta-aggregation predictor TANGO identified a heptapeptide sequence present in a highly conserved sequence with amyloid-forming potential in Als1p, Als3p, and Als5p. A tridecapeptide containing this sequence formed fibers that bound Congo red and thioflavin T and had characteristic amyloid morphology. Als5p(20-431) and Als5p(20-664), large fragments of Als5p containing the amyloid sequence, also formed amyloid-like fibers and bound Congo red under native conditions. K(a)/K(s) analysis showed that the amyloid-forming sequences are highly conserved in Als proteins and evolve more slowly than other regions of the proteins. Therefore, amyloid-forming ability itself is conserved in these proteins.  相似文献   

13.
Tordai H  Bányai L  Patthy L 《FEBS letters》1999,461(1-2):63-67
Based on homology search and structure prediction methods we show that (1) the N-terminal N domains of members of the plasminogen/hepatocyte growth factor family, (2) the apple domains of the plasma prekallikrein/coagulation factor XI family, and (3) domains of various nematode proteins belong to the same module superfamily, hereafter referred to as the PAN module. The patterns of conserved residues correspond to secondary structural elements of the known three-dimensional structure of hepatocyte growth factor N domain, therefore we predict a similar fold for all members of this superfamily. Based on available functional informations on apple domains and N domains, it is clear that PAN modules have significant functional versatility, they fulfill diverse biological functions by mediating protein-protein or protein-carbohydrate interactions.  相似文献   

14.
Candida albicans causes diverse mucosal and systemic diseases. Although this versatility likely depends upon carefully co-ordinated gene expression, epigenetic regulation in C. albicans remains poorly characterized. Screening a genomic expression library, we identified C. albicans Set1p as an immunogenic protein with homology to a lysine histone methyltransferase of Saccharomyces cerevisiae. In this study, we demonstrated that total immunoglobulin, IgG and IgM titers against a unique Set1p N-terminal fragment were significantly higher among patients with disseminated candidiasis (DC) or oropharyngeal candidiasis than controls. Disruption of SET1 resulted in complete loss of methylation of histone 3 at lysine residue 4, hyperfilamentous growth under embedded conditions, less negative cell surface charges and diminished adherence to epithelial cells, effects that were reversed upon gene re-insertion at a disrupted locus. During murine DC, the null mutant was associated with prolonged survival and lower tissue burdens. Taken together, our findings suggest that SET1 regulates multiple processes important to the pathogenesis of candidiasis. The Set1p N-terminal fragment does not exhibit significant homology to eukaryotic or microbial proteins, and might represent a novel therapeutic, preventive or diagnostic target.  相似文献   

15.
Saccharomyces cerevisiae transformed with Candida albicans ALA1/ALS5 exhibits adherence properties similar to C. albicans. Adherence of the fungi to immobilized proteins involves hydrogen bonds, is stable to shear forces, and is resistant to competition from various biological molecules. The specificity determinants of target recognition in Ala1/Als5p-mediated adherence are not known. To determine features of target recognition, proteins and small peptides were covalently coupled at the N-terminus to the surface of carboxylate-modified magnetic beads. C. albicans yeast cells, germ tubes and pseudohyphae and S. cerevisiae expressing the adhesin, Ala1/Als5p, adhered to beads coated with fibronectin, laminin, type IV collagen, bovine serum albumin, and casein. No adherence to beads was observed if a single amino acid was coupled to the beads. However, 10-mer homopolymers of threonine, serine, and alanine served as ligands for adherence. The presence of a minimum of four contiguous threonine residues in a peptide was required for maximal adherence. Coupling of 10-mer peptides from fibronectin and Ala1/Als5p each possessing 5-7 threonine or serine residues also initiated adherence. On the other hand, a collagen and a fibronectin 10-mer peptide with few threonine and serine residues and lysine at the C-terminus did not serve as adherence ligands. Both of them are converted to adherence ligands by adding threonine or serine residues at the C-terminus or removing the lysine residue and adding threonine residues anywhere in the peptide. The presence of lysine at the C-terminus may have resulted in coupling of the peptides at both the N- and C-termini, thus making the threonine residues inaccessible for adherence. Thus, Ala1/Als5p recognizes patches of certain amino acids, which must be accessible before adherence will occur.  相似文献   

16.
17.
Regulation of G protein-mediated signal transduction by RGS proteins   总被引:2,自引:0,他引:2  
Kozasa T 《Life sciences》2001,68(19-20):2309-2317
RGS proteins form a new family of regulatory proteins of G protein signaling. They contain homologous core domains (RGS domains) of about 120 amino acids. RGS domains interact with activated Galpha subunits. Several RGS proteins have been shown biochemically to act as GTPase activating proteins (GAPs) for their interacting Galpha subunits. Other than RGS domains, RGS proteins differ significantly in size, amino acid sequences, and tissue distribution. In addition, many RGS proteins have other protein-protein interaction motifs involved in cell signaling. We have shown that p115RhoGEF, a newly identified GEF(guanine nucleotide exchange factor) for RhoGTPase, has a RGS domain at its N-terminal region and this domain acts as a specific GAP for Galpha12 and Galpha13. Furthermore, binding of activated Galpha13 to this RGS domain stimulated GEF activity of p115RhoGEF. Activated Galpha12 inhibited Galpha13-stimulated GEF activity. Thus p115RhoGEF is a direct link between heterotrimeric G protein and RhoGTPase and it functions as an effector for Galpha12 and Galpha13 in addition to acting as their GAP. We also found that RGS domain at N-terminal regions of G protein receptor kinase 2 (GRK2) specifically interacts with Galphaq/11 and inhibits Galphaq-mediated activation of PLC-beta, apparently through sequestration of activated Galphaq. However, unlike other RGS proteins, this RGS domain did not show significant GAP activity to Galphaq. These results indicate that RGS proteins have far more diverse functions than acting simply as GAPs and the characterization of function of each RGS protein is crucial to understand the G protein signaling network in cells.  相似文献   

18.
19.
Commensal and pathogenic states of Candida albicans depend on cell surface-expressed adhesins, including those of the Als family. Mature Als proteins consist of a 300-residue N-terminal region predicted to have an immunoglobulin (Ig)-like fold, a 104-residue conserved Thr-rich region (T), a central domain of a variable number of tandem repeats (TR) of a 36-residue Thr-rich sequence, and a heavily glycosylated C-terminal Ser/Thr-rich stalk region, also of variable length (N. K. Gaur and S. A. Klotz, Infect. Immun. 65: 5289-5294, 1997). Domain deletions in ALS5 were expressed in Saccharomyces cerevisiae to excrete soluble protein and for surface display. Far UV circular dichroism indicated that soluble Ig-T showed a single negative peak at 212 nm, consistent with previous data indicating that this region has high beta-sheet content with very little alpha-helix. A truncation of Als5p with six tandem repeats (Ig-T-TR(6)) gave spectra with additional negative ellipticity at 200 nm and, at 227 to 240 nm, spectra characteristic of a structure with a similar fraction of beta-sheet but with additional structural elements as well. Soluble Als5p Ig-T and Ig-T-TR(6) fragments bound to fibronectin in vitro, but the inclusion of the TR region substantially increased affinity. Cellular adhesion assays with S. cerevisiae showed that the Ig-T domain mediated adherence to fibronectin and that TR repeats greatly increased cell-to-cell aggregation. Thus, the TR region of Als5p modulated the structure of the Ig-T region, augmented cell adhesion activity through increased binding to mammalian ligands, and simultaneously promoted fungal cell-cell interactions.  相似文献   

20.
Glycan microarray analysis of Candida glabrata adhesin ligand specificity   总被引:1,自引:0,他引:1  
The Candida glabrata genome encodes at least 23 members of the EPA ( ep ithelial a dhesin) family responsible for mediating adherence to host cells. To better understand the mechanism by which the Epa proteins contribute to pathogenesis, we have used glycan microarray analysis to characterize their carbohydrate-binding specificities. Using Saccharomyces cerevisiae strains surface-expressing the N-terminal ligand-binding domain of the Epa proteins, we found that the three Epa family members functionally identified as adhesins in Candida glabrata (Epa1, Epa6 and Epa7) bind to ligands containing a terminal galactose residue. However, the specificity of the three proteins for glycans within this class varies, with Epa6 having a broader specificity range than Epa1 or Epa7. This result is intriguing given the close homology between Epa6 and Epa7, which are 92% identical at the amino acid level. We have mapped a five-amino-acid region within the N-terminal ligand-binding domain that accounts for the difference in specificity of Epa6 and Epa7 and show that these residues contribute to adherence to both epithelial and endothelial cell lines in vitro .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号