首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Salmon calcitonin S-sulfonated analog (abbreviated as [S-SO(3)(-)]rsCT) was prepared by introducing two sulfonic groups into the side chains of Cys1 and Cys7 of recombinant salmon calcitonin. The hypocalcemic potency of this open-chain analog is 5500IU/mg, which is about 30% higher than that (4500IU/mg) of the wild type. The solution conformation of [S-SO(3)(-)]rsCT was studied in aqueous trifluoroethanol solution by CD, 2D-NMR spectroscopy, and distance geometry calculations. In the mixture of 60% TFE and 40% water, the peptide assumes an amphipathic alpha-helix in the region of residues 4-22, which is one turn longer than that of the native sCT. The structural feature analysis of the peptide revealed the presence of hydrophobic surface composed of five hydrophobic side chains of residues Leu4, Leu9, Leu12, Leu16, and Leu19, and a network of salt-bridges that consisted of a tetrad of oppositely charged side chains (Cys7-SO(3)(-)-Lys11(+)-Glu15(-)-Lys18(+)). The multiple salt bridges resulted in the stabilization of the longer amphipathic alpha-helix. Meanwhile, the higher hypocalcemic potency of the peptide could be attributed to the array of hydrophobic side chains of five leucine residues of the amphipathic alpha-helix.  相似文献   

2.
Two families of actin regulatory proteins are the tropomodulins and tropomyosins. Tropomodulin binds to tropomyosin (TM) and to the pointed end of actin filaments and "caps" the pointed end (i.e., inhibits its polymerization and depolymerization). Tropomodulin 1 has two distinct actin-capping regions: a folded C-terminal domain (residues 160-359), which does not bind to TM, and a conserved, N-terminal region, within residues 1-92 that binds TM and requires TM for capping activity. NMR and circular dichroism were used to determine the structure of a peptide containing residues 1-92 of tropomodulin (Tmod1(1-92)) and to define its TM binding site. Tmod1(1-92) is mainly disordered with only one helical region, residues 24-35. This helix forms part of the TM binding domain, residues 1-35, which become more ordered upon binding a peptide containing the N-terminus of an alpha-TM. Mutation of L27 to E or G in the Tmod helix reduces TM affinity. Residues 49-92 are required for capping but do not bind TM. Of these, residues 67-75 have the sequence of an amphipathic helix, but are not helical. Residues 55-62 and 76-92 display negative 1H-15N heteronuclear Overhauser enhancements showing they are flexible. The conformational dynamics of these residues may be important for actin capping activity.  相似文献   

3.
A Motta  M A Morelli  N Goud  P A Temussi 《Biochemistry》1989,28(20):7996-8002
Salmon calcitonin (sCT) has been investigated by NMR at 500 MHz in a 90% DMSOd6-10% 1H2O (v/v) mixture at 278 K. All backbone and side-chain resonances of the hormone have been assigned by using high-resolution phase-sensitive two-dimensional techniques. Analysis of the type and magnitude of the observed sequential nuclear Overhauser effects, the NH-alpha CH spin-spin coupling constants, and the 1H/2H exchange kinetics measured in 80% DMSOd6-20% 2H2O (v/v) at 278 K enabled prediction of the secondary structure. Overall, an extended conformation is the dominant feature of the solution, but there are clear indications for a short double-stranded antiparallel beta sheet in the central region comprising residues 12-18, connected by a three-residue hairpin loop formed by residues 14-16. Two tight turns, made by residues 6-9 and 25-28, were also identified, but no evidence was found for the presence of a regular helical segment. The beta sheet favors an amphipathic distribution of the residues, orienting the predominantly hydrophilic Ser13, Glu15, and His17 side chains above the plane of the sheet, and the predominantly hydrophobic Leu12, Gln14, and Leu16 below it. This is interpreted as the "seed" of the amphipathic alpha helix postulated to be responsible for the interaction of sCT with lipids, a situation reminiscent of the folding mechanism of signal peptides in the interaction with membranes. The possible significance of the cis-trans Pro23 isomerism is discussed.  相似文献   

4.
Synthetic peptides were used in this study to identify a structural element of apolipoprotein (apo) A-I that stimulates cellular cholesterol efflux and stabilizes the ATP binding cassette transporter A1 (ABCA1). Peptides (22-mers) based on helices 1 (amino acids 44-65) and 10 (amino acids 220-241) of apoA-I had high lipid binding affinity but failed to mediate ABCA1-dependent cholesterol efflux, and they lacked the ability to stabilize ABCA1. The addition of helix 9 (amino acids 209-219) to either helix 1 (creates a 1/9 chimera) or 10 (9/10 peptide) endowed cholesterol efflux capability and ABCA1 stabilization activity similar to full-length apoA-I. Adding helix 9 to helix 1 or 10 had only a small effect on lipid binding affinity compared with the 22-mer peptides, indicating that helix length and/or determinants on the polar surface of the amphipathic alpha-helices is important for cholesterol efflux. Cholesterol efflux was specific for the structure created by the 1/9 and 9/10 helical combinations, as 33-mers composed of helices 1 and 3 (1/3), 2/9, and 4/9 failed to mediate cholesterol efflux in an ABCA1-dependent manner. Transposing helices 9 and 10 (10/9 peptide) did not change the class Y structure, hydrophobicity, or amphiphilicity of the helical combination, but the topography of negatively charged amino acids on the polar surface was altered, and the 10/9 peptide neither mediated ABCA1-dependent cholesterol efflux nor stabilized ABCA1 protein. These results suggest that a specific structural element possessing a linear array of acidic residues spanning two apoA-I amphipathic alpha-helices is required to mediate cholesterol efflux and stabilize ABCA1.  相似文献   

5.
The cAMP-dependent protein kinase (PKA) is targeted to specific subcellular compartments through its interaction with A-kinase anchoring proteins (AKAPs). AKAPs contain an amphipathic helix domain that binds to the type II regulatory subunit of PKA (RII). Synthetic peptides containing this amphipathic helix domain bind to RII with high affinity and competitively inhibit the binding of PKA with AKAPs. Addition of these anchoring inhibitor peptides to spermatozoa inhibits motility (Vijayaraghavan, S., Goueli, S. A., Davey, M. P., and Carr, D. W. (1997) J. Biol. Chem. 272, 4747-4752). However, inhibition of the PKA catalytic activity does not mimic these peptides, suggesting that the peptides are disrupting the interaction of AKAP(s) with proteins other than PKA. Using the yeast two-hybrid system, we have now identified two sperm-specific human proteins that interact with the amphipathic helix region of AKAP110. These proteins, ropporin (a protein previously shown to interact with the Rho signaling pathway) and AKAP-associated sperm protein, are 39% identical to each other and share a strong sequence similarity with the conserved domain on the N terminus of RII that is involved in dimerization and AKAP binding. Mutation of conserved residues in ropporin or RII prevents binding to AKAP110. These data suggest that sperm contains several proteins that bind to AKAPs in a manner similar to RII and imply that AKAPs may have additional and perhaps unique functions in spermatozoa.  相似文献   

6.
The N-terminal 1-34 fragments of the parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) elicit the full spectrum of bone-related biological activities of the intact native sequences. It has been suggested that the structural elements essential for bioactivity are two helical segments located at the N-terminal and C-terminal sequences, connected by hinges or flexible points around positions 12 and 19. In order to assess the relevance of the local conformation around Gly(12) upon biological function, we synthesized and characterized the following PTH(1-34) analogues containing Aib residues: (I) A-V-S-E-I-Q-F-nL-H-N-Aib-G-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(11), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (II) A-V-S-E-I-Q-F-nL-H-N-L-Aib-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(12),Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (III) A-V-S-E-I-Q-F-nL-H-N-L-G-Aib-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(13), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (IV) A-V-S-E-I-Q-F-nL-H-N-Aib-Aib-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-YNH(2) ([Nle(8,18), Aib(11,12), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (V) A-V-S-E-I-Q-F-nL-H-N-L-Aib-Aib-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(12,13),Nal(23),Tyr(34)]bPTH(1-34)-NH(2)). (nL= Nle; Nal= L-(2-naphthyl)-alanine; Aib= alpha-amino-isobutyric acid.) The introduction of Aib residues at position 11 in analogue I or at positions 11 and 12 in analogue IV resulted in a 5-20-fold lower efficacy and a substantial loss of binding affinity compared to the parent compound [Nle(8,18), Nal(23),Tyr(34)]bPTH(1-34)-NH(2). Both binding affinity and adenylyl cyclase stimulation activity are largely restored when the Aib residues are introduced at position 12 in analogue II, 13 in analogue III, and 12-13 in analogue V. The conformational properties of the analogues in aqueous solution containing dodecylphosphocholine micelles were studied by CD, two-dimensional (2D) NMR and computer simulations. The results indicated the presence of two helical segments in all analogues, located at the N-terminal and C-terminal sequences. Insertion of Aib residues at positions 12 and 13, or of Aib dyads at positions 11-12 and 12-13, enhances the stability of the N-terminal helix of all analogues. In all analogues the Aib residues are included in the helical segments. These results confirmed the importance of the helical structure in the N-terminal activation domain, as well as of the presence of the Leu(11) hydrophobic side chain in the native sequence, for PTH-like bioactivity.  相似文献   

7.
The N-terminal 1-34 fragment of parathyroid hormone (PTH) elicits the full spectrum of bone-related biological activities of the intact native sequences. It has been suggested that the structural elements essential for bioactivity are two helical segments located at the N-terminal and C-terminal sequences, connected by hinges or flexible points around positions 12 and 19. In order to assess the relevance of the local conformation around Gly(18) upon biological function, we synthesized and characterized the following human (h) PTH(1-34) analogues containing beta-amino acid residues: [analogues: see text]. Biological activity and binding affinity of analogue I are one order of magnitude lower than those of the parent compound. In analogue II, both binding affinity and biological activity are partially recovered. Analogues III and V have no binding affinity and very low biological activity. Both bioactivity and binding affinity are partially recovered in analogue IV. The conformational properties of the analogues in aqueous solution containing dodecylphosphocholine micelles were studied by CD, 2D-nuclear magnetic resonance and molecular dynamics calculations. The results confirmed the presence in all analogues of two helical segments located at the N-terminal and C-terminal sequences. The insertion of beta-amino acid residues around position 18 does not cause appreciable conformational differences in the five analogues. The differences in biological activity and binding affinity among the five analogues cannot be related to structural differences in the membrane mimetic environment reported in this study. Our results stress the importance of the side-chain functionalities in the sequence 17-19 for biological function.  相似文献   

8.
We report here the NMR structure and backbone dynamics of an exchangeable apolipoprotein, apoLp-III, from the insect Locusta migratoria. The NMR structure adopts an up-and-down elongated five-helix bundle, which is similar to the x-ray crystal structure of this protein. A short helix, helix 4', is observed that is perpendicular to the bundle and fully solvent-exposed. NMR experimental parameters confirm the existence of this short helix, which is proposed to serve as a recognition helix for apoLp-III binding to lipoprotein surfaces. The L. migratoria apoLp-III helix bundle displays several characteristic structural features that regulate the reversible lipoprotein binding activity of apoLp-III. The buried hydrophilic residues and exposed hydrophobic residues readily adjust the marginal stability of apoLp-III, facilitating the helix bundle opening. Specifically, upon lipoprotein binding the locations and orientations of the buried hydrophilic residues modulate the apoLp-III helix bundle to adopt a possible opening at the hinge that is opposite the recognition short helix, helix 4'. The backbone dynamics provide additional support to the recognition role of helix 4' and this preferred conformational adaptation of apoLp-III upon lipid binding. In this case, the lipid-bound open conformation contains two lobes linked by hinge loops. One lobe contains helices 2 and 3, and the other lobe contains helices 1, 4, and 5. This preferred bundle opening is different from the original proposal on the basis of the x-ray crystal structure of this protein (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesenberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 603-608), but it efficiently uses helix 4' as the recognition short helix. The buried interhelical H-bonds are found to be mainly located between the two lobes, potentially providing a specific driving force for the helix bundle recovery of apoLp-III from the lipid-bound open conformation. Finally, we compare the NMR structures of Manduca sexta apoLp-III and L. migratoria apoLp-III and present a united scheme for the structural basis of the reversible lipoprotein binding activity of apoLp-III.  相似文献   

9.
Conformational flexibility and biological activity of salmon calcitonin   总被引:3,自引:0,他引:3  
We have assessed the biological activity of salmon calcitonin I (sCT) using an in vivo biological assay of hypocalcemic activity in rats. The changes in biological activity observed are explained on the basis of changes in the conformational properties of the hormone analogues. Helical content in the presence and absence of lipids and detergents was assessed by using circular dichroism, and the section of the molecule that folds into a helix was predicted on the basis of the helix-coil transition theory of Mattice and co-workers. In the amino acid sequence of sCT, residue 8 is valine and residue 16 is leucine. The synthetic calcitonin derivatives [Gly8]sCT and [Ala16]sCT have higher biological activity than the native hormone although they have a lower helical content. The increased biological activity of these derivatives is ascribed to an increase in their conformational flexibility resulting from the substitution of amino acid residues with less bulky side chains and less tendency to form helical structures. The derivative [Met8]sCT has less substitution than sCT on the beta-carbon at position 8, but it has increased helix-forming potential in the region of residues 8-12. These two factors affect conformational flexibility in opposite ways, resulting in the biological activity of [Met8]sCT being slightly higher than that of sCT. However, increased conformational flexibility does not always increase biological activity. Substitution of the L-arginine at residue 24 for a D-arginine has little effect on the conformational properties or biological activity of sCT. However, [Gly8, D-Arg24]sCT is less active than sCT, [Gly8]sCT, or [D-Arg24]sCT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
High manufacturing costs and oral delivery are the constraints in clinical application of calcitonin. We selected surface‐displayed Saccharomyces cerevisiae as a low‐cost and safe carrier for oral delivery of salmon calcitonin (sCT). The sCT DNA fragment, optimized according to the codon preference of S. cerevisiae, was synthesized and cloned into the plasmid M‐pYD1 to yield recombinant yAGA2‐sCT, which was induced to express sCT by galactose for 0, 12, and 24 h. sCT expression was detected on the cell surface by indirect immunofluorescence and peaked at 12 h. About 65% recombinants expressed sCT on flow cytometry. The in vivo and in vitro activity of recombinant sCT was determined by detecting bioactivity of antiosteoclastic absorption on bone wafers and orally administering yAGA2‐sCT to Wistar rats, respectively. For safety assessment of yAGA2‐sCT, we observed abnormalities, morbidity, and mortality and determined body weight, serum chemistry parameters, hematological parameters, and organ weight. In vitro bioactivity of the recombinant sCT was similar to that of commercial sCT, Miacalcic; oral administration of 5 g/kg yAGA2‐sCT induced a long‐term hypocalcemic effect in Wistar rats and no adverse effects. This study demonstrates that yAGA2‐sCT anchoring sCT protein on a S. cerevisiae surface has potential for low‐cost and safe oral delivery of sCT. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

11.
Calcitonin (Ct) is a 32-residue peptide hormone that is mainly known for its hypocalcemic effect and the inhibition of bone resorption. Our previous studies have led to potent, side-chain lactam-bridged human Ct (hCt) analogues [Kapurniotu, A. Kayed, R., Taylor, J.W. & Voelter W. (1999) Eur. J. Biochem. 265, 606-618; Kapurniotu, A. & Taylor, J.W. (1995) J. Med. Chem. 38, 836-847]. We have hypothesized that a possibly type I beta turn/beta sheet conformation in the region 17-21 may play an important role in hCt bioactivity. To investigate this hypothesis, analogues of the potent hCt agonist cyclo17,21-[Asp17,Lys21]hCt (1) bearing type I (and II') or II beta turn-promoting substituents at positions 18 and 19 were designed, synthesized and their solution conformations, human Ct receptor binding affinities and in vivo hypocalcemic potencies were assessed. The novel analogues include cyclo17,21-[Asp17,D-Phe19, Lys21]hCt (2), cyclo17,21-[Asp17,Aib18,Lys21]hCt (3), cyclo17,21-[Asp17,D-Lys18,Lys21]hCt (4), corresponding partial sequence peptides containing the lactam-bridged region 16-22, and nonbridged control peptides. Only 1 showed a higher Ct receptor binding affinity than hCt, whereas analogues 2-4 had similar receptor affinities to hCt. In the in vivo hypocalcemic assay, 3 and 4 were as potent as 1, whereas 2 completely lost the high potency of 1, suggesting that type I (and II') beta turn-promoting substituents are fully compatible with in vivo bioactivity. CD spectroscopy showed that analogues 1-4 were markedly beta sheet-stabilized compared to hCt and indicated the presence of distinct beta turn conformeric populations in each of the analogues. Unexpectedly, the D-amino acid- or Aib-containing cyclic analogues 2-4 but not 1 or hCt self-associated into SDS denaturation-stable dimers. Our results demonstrate a crucial role of the conformational and topological features of the residues in sequence 17-21 and in particular of residues 18 and 19 for human Ct receptor binding and in vivo bioactivity and also for the self association state of hCt. These results may assist to delineate the structure-function relationships of hCt and to design novel hCt agonists for the treatment of osteoporosis and other bone-disorder-related diseases.  相似文献   

12.
Class A amphipathic helical peptides have been shown to mimic apolipoprotein A-I, the major protein component of high density lipoproteins and have been shown to inhibit atherosclerosis in several dyslipidemic mouse models. Previously we reported the NMR structure of Ac-18A-NH2, the base-line model class A amphipathic helical peptide in a 50% (v/v) trifluoroethanol-d3/water mixture, a membrane-mimic environment (Mishra, V. K., Palgunachari, M. N., Anantharamaiah, G. M., Jones, M. K., Segrest, J. P., and Krishna, N. R. (2001) Peptides 22, 567-573). The peptide Ac-18A-NH2 forms discoidal nascent high density lipoprotein-like particles with 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Because subtle structural changes in the peptide.lipid complexes have been shown to be responsible for their antiatherogenic properties, we undertook high resolution NMR studies to deduce detailed structure of recombinant peptide.1,2-dimyristoyl-sn-glycero-3-phosphocholine complexes. The peptide adopts a well defined amphipathic alpha helical structure in association with the lipid at a 1:1 peptide:lipid weight ratio. Nuclear Overhauser effect spectroscopy revealed a number of intermolecular close contacts between the aromatic residues in the hydrophobic face of the helix and the lipid acyl chain protons. The pattern of observed peptide-lipid nuclear Overhauser effects is consistent with a parallel orientation of the amphipathic alpha helix, with respect to the plane of the lipid bilayer, on the edge of the disc (the belt model). Based on the results of chemical cross-linking and molecular modeling, we propose that peptide helices are arranged in a head to tail fashion to cover the edge of the disc. This arrangement of peptides is also consistent with the pKa values of the Lys residues determined previously. Taken together, these results provide for the first time a high resolution structural view of the peptide.lipid discoidal complexes formed by a class A amphipathic alpha helical peptide.  相似文献   

13.
The disulfide bridge formed between the cysteine residues at positions 1 and 7 of salmon calcitonin (sCT) is not required for biological activity. The analogues [Ala1,7]sCT,[AcmCys1,7]sCT and [AmcCys1,Ala7]sCT (AcmC = S-acetamido-methylcysteine) are linear sequences which retain full hypocalcemic activity in the intact rat and ability to activate adenylate cyclase of rat renal membranes. The secondary structure of these peptides in aqueous solution in the presence or absence of lipid is not greatly perturbed by the opening of the disulfide ring. In contrast with salmon calcitonin, substitution of Cys by AcmCys in human calcitonin results in greatly reduced hypocalcemic activity but no loss in the ability of the peptide to activate renal adenylate cyclase. Thus in vitro activation of adenylate cyclase by human calcitonin analogues is not always correlated with in vivo hypocalcemic potency.  相似文献   

14.
The stator in F(1)F(o)-ATP synthase resists strain generated by rotor torque. In Escherichia coli, the b(2)delta subunit complex comprises the stator, bound to subunit a in F(o) and to the alpha(3)beta(3) hexagon of F(1). Previous work has shown that N-terminal residues of alpha subunit are involved in binding delta. A synthetic peptide consisting of the first 22 residues of alpha (alphaN1-22) binds specifically to isolated wild-type delta subunit with 1:1 stoichiometry and high affinity, accounting for a major portion of the binding energy between delta and F(1). Residues alpha6-18 are predicted by secondary structure algorithms and helical wheels to be alpha-helical and amphipathic, and a potential helix capping box occurs at residues alpha3-8. We introduced truncations, deletions, and mutations into alphaN1-22 peptide and examined their effects on binding to the delta subunit. The deletions and mutations were introduced also into the N-terminal region of the uncA (alpha subunit) gene to determine effects on cell growth in vivo and membrane ATP synthase activity in vitro. Effects seen in the peptides were well correlated with those seen in the uncA gene. The results show that, with the possible exception of residues close to the initial Met, all of the alphaN1-22 sequence is required for binding of delta to alpha. Within this sequence, an amphipathic helix seems important. Hydrophobic residues on the predicted nonpolar surface are important for delta binding, namely alphaIle-8, alphaLeu-11, alphaIle-12, alphaIle-16, and alphaPhe-19. Several or all of these residues probably make direct interaction with helices 1 and 5 of delta. The potential capping box sequence per se appeared less important. Impairment of alpha/delta binding brings about functional impairment due to reduced level of assembly of ATP synthase in cells.  相似文献   

15.
MacRaild CA  Howlett GJ  Gooley PR 《Biochemistry》2004,43(25):8084-8093
The structure of human apolipoprotein C-II (apoC-II) in the presence of dodecyl phosphocholine (DPC) micelles has been investigated by NMR spectroscopy. The resulting structural information is compared to that available for apoC-II in the presence of sodium dodecyl sulfate, revealing a high level of overall similarity but several significant differences. These findings further our understandings of the structural basis for apoC-II function. The interactions of the protein with the detergent micelle are probed using intermolecular nuclear Overhauser effects (NOEs) and paramagnetic agents. These interactions are seen across almost the full length of apoC-II and show the periodicity expected for an amphipathic helix interacting with the amphipathic surface of the DPC micelle. Furthermore, we observe specific contacts between lysine residues of apoC-II and protons near the phosphate group of DPC, consistent with the predictions of the so-called "snorkel hypothesis" of the structural basis for the apolipoprotein/lipid interaction (Segrest, J. P., Jackson, R. L., Morrisett, J. D., and Gotto, A. M., Jr. (1974) A molecular theory of lipid-protein interactions in the plasma lipoproteins, FEBS Lett 38, 247-258.). These findings offer the most detailed structural information available for the interaction between an apolipoprotein and the phospholipids of the lipoprotein surface and provide the first direct structural support for the snorkel hypothesis.  相似文献   

16.
Structural requirements for binding to the bone calcitonin (CT) receptor and for CT bioactivity both in vitro and in vivo were assessed for a series of N-terminally truncated, N alpha-acetylated, fragments of salmon calcitonin (sCT). Sequential deletion of amino acid residues from the amino-terminus of [Ala7]sCT-(2-32) peptide amide first led to partial agonists and, upon deletion of residues 1 to 7, to a high affinity antagonist, N alpha-acetyl-sCT-(8-32)-NH2. The presence of two separate domains within the sCT sequence is proposed: (I) a binding domain comprising residues 9-32 and (II) an activation domain requiring residues 3 to 6. N alpha-acetyl-sCT-(8-32)-NH2, in several bioassays including plasminogen activator release from LLC-PK1 cells (pA2 = 7.31), cAMP production in UMR-106-06 cells (pA2 = 7.81) and in the fetal rat long bone resorption assay showed potent antagonistic properties.  相似文献   

17.
As a key component of the innate immunity system, human cathelicidin LL-37 plays an essential role in protecting humans against infectious diseases. To elucidate the structural basis for its targeting bacterial membrane, we have determined the high quality structure of (13)C,(15)N-labeled LL-37 by three-dimensional triple-resonance NMR spectroscopy, because two-dimensional (1)H NMR did not provide sufficient spectral resolution. The structure of LL-37 in SDS micelles is composed of a curved amphipathic helix-bend-helix motif spanning residues 2-31 followed by a disordered C-terminal tail. The helical bend is located between residues Gly-14 and Glu-16. Similar chemical shifts and (15)N nuclear Overhauser effect (NOE) patterns of the peptide in complex with dioctanoylphosphatidylglycerol (D8PG) micelles indicate a similar structure. The aromatic rings of Phe-5, Phe-6, Phe-17, and Phe-27 of LL-37, as well as arginines, showed intermolecular NOE cross-peaks with D8PG, providing direct evidence for the association of the entire amphipathic helix with anionic lipid micelles. The structure of LL-37 serves as a model for understanding the structure and function relationship of homologous primate cathelicidins. Using synthetic peptides, we also identified the smallest antibacterial peptide KR-12 corresponding to residues 18-29 of LL-37. Importantly, KR-12 displayed a selective toxic effect on bacteria but not human cells. NMR structural analysis revealed a short three-turn amphipathic helix rich in positively charged side chains, allowing for effective competition for anionic phosphatidylglycerols in bacterial membranes. KR-12 may be a useful peptide template for developing novel antimicrobial agents of therapeutic use.  相似文献   

18.
Structural details on mdm2-p53 interaction   总被引:1,自引:0,他引:1  
Mdm2 is a cellular antagonist of p53 that keeps a balanced cellular level of p53. The two proteins are linked by a negative regulatory feedback loop and physically bind to each other via a putative helix formed by residues 18-26 of p53 transactivation domain (TAD) and its binding pocket located within the N-terminal 100-residue domain of mdm2 (Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., and Pavletich, N. P. (1996) Science 274, 948-953). In a previous report we demonstrated that p53 TAD in the mdm2-freee state is mostly unstructured but contains two nascent turns in addition to a "preformed" helix that is the same as the putative helix mediating p53-mdm2 binding. Here, using heteronuclear multidimensional NMR methods, we show that the two nascent turn motifs in p53 TAD, turn I (residues 40-45) and turn II (residues 49-54), are also capable of binding to mdm2. In particular, the turn II motif has a higher mdm2 binding affinity ( approximately 20 mum) than the turn I and targets the same site in mdm2 as the helix. Upon mdm2 binding this motif becomes a well defined full helix turn whose hydrophobic face formed by the side chains of Ile-50, Trp-53, and Phe-54 inserts deeply into the helix binding pocket. Our results suggest that p53-mdm2 binding is subtler than previously thought and involves global contacts such as multiple "non-contiguous" minimally structured motifs instead of being localized to one small helix mini-domain in p53 TAD.  相似文献   

19.
Human immunodeficiency virus type 1 protein R (HIV-1 Vpr) promotes nuclear entry of viral nucleic acids in nondividing cells, causes G(2) cell cycle arrest and is involved in cellular differentiation and cell death. Vpr subcellular localization is as variable as its functions. It is known, that consistent with its role in nuclear transport, Vpr localizes to the nuclear envelope of human cells. Further, a reported ion channel activity of Vpr is clearly dependent on its localization in or at membranes. We focused our structural studies on the secondary structure of a peptide consisting of residues 34-51 of HIV-1 Vpr. This part of Vpr plays an important role in Vpr oligomerization, contributes to cell cycle arrest activity, and is essential for virion incorporation and binding to HHR23A, a protein involved in DNA repair. Employing NMR spectroscopy we found this part of Vpr to be almost completely alpha helical in the presence of micelles, as well as in trifluoroethanol containing and methanol/chloroform solvent. Our results provide structural data suggesting residues 34-51 of Vpr to contain an amphipathic, leucine-zipper-like alpha helix, which serves as a basis for oligomerization of Vpr and its interactions with cellular and viral factors involved in subcellular localization and virion incorporation of Vpr.  相似文献   

20.
Yang ST  Jeon JH  Kim Y  Shin SY  Hahm KS  Kim JI 《Biochemistry》2006,45(6):1775-1784
Cathelicidins are essential components of the innate immune system of mammals, providing them a weapon against microbial invasion. PMAP-23 adopting a helix-hinge-helix structure with a central PXXP motif is a member of the cathelicidin family and has potent killing activities against a broad spectrum of microbial organisms. Although the antimicrobial effect of PMAP-23 is believed to be mediated by membrane disruption, many details of this event remain unclear. Here, we try to characterize the interaction between PMAP-23 and membrane phospholipids, focusing on the function of the central PXXP motif. PMAP-PA, in which the Pro residues were substituted by Ala, had significantly more alpha-helical content than PMAP-23, but was less amphipathic and more damaging to human erythrocytes and zwitterionic liposomes. The observed differences in the structures and biological activities of PMAP-23 and PMAP-PA confirmed the functional importance of the central hinge PXXP motif, which enables PMAP-23 to adopt a well-defined amphipathic conformation along its entire length and to have selective antimicrobial activity. CD and Trp fluorescence studies using fragments corresponding to the two helical halves of PMAP-23 revealed that the N-terminal half binds to anionic phospholipids and is more stable than the C-terminal half. In addition, Trp fluorescence quench analyses revealed that the C-terminal helix inserts more deeply into the hydrophobic region of the membrane than the N-terminal helix. Finally, observations made using biosensor technology enabled us to distinguish between the membrane binding and insertion steps, substantiating a proposed kinetic mode of the peptide-membrane interaction in which PMAP-23 first attaches to the membrane via the N-terminal amphipathic helix, after which bending and/or swiveling of the PXXP motif enables insertion of the C-terminal helix into the lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号