首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Stimulation of platelets with thrombin leads to rapid degradation of inositol phospholipids, generation of diacylglycerol (DAG) and subsequent activation of protein kinase C (PKC). Previous studies indicated that prior activation of PKC with phorbol myristate acetate (PMA) desensitizes platelets to thrombin stimulation, as indicated by a decreased production of inositol phosphates and decreased Ca2+ mobilization. This suggests that PKC activation generates negative-feedback signals, which limit the phosphoinositide response. To test this hypothesis further, we examined the effects of PKC activators and inhibitors on thrombin-stimulated DAG mass formation in platelets. Pretreatment with PMA abolishes thrombin-stimulated DAG formation (50% inhibition at 60 nM). Pretreatment of platelets with the PKC inhibitors K252a or staurosporine potentiates DAG production in response to thrombin (3-4-fold) when using concentrations required to inhibit platelet PKC (1-10 microM). K252a does not inhibit phosphorylation of endogenous DAG or phosphorylation of a cell-permeant DAG in unstimulated platelets, indicating that DAG over-production is not due to inhibition of DAG kinase. Sphingosine, a PKC inhibitor with a different mechanism of action, also potentiates DAG formation in response to thrombin. Several lines of evidence indicate that DAG formation under the conditions employed occurs predominantly by phosphoinositide (and not phosphatidylcholine) hydrolysis: (1) PMA alone does not elicit DAG formation, but inhibits agonist-stimulated DAG formation; (2) thrombin-stimulated DAG formation is inhibited by neomycin (1-10 mM) but not by the phosphatidate phosphohydrolase inhibitor propranolol; and (3) no metabolism of radiolabelled phosphatidylcholine was observed upon stimulation by thrombin or PMA. These data provide strong support for a role of PKC in limiting the extent of platelet phosphoinositide hydrolysis.  相似文献   

2.
Three isozymes of diacylglycerol kinase (DGK), DGK-I, DGK-II, and DGK-III, were purified from the cytosol of human platelets by successive chromatography on DEAE-cellulose, Ultrogel AcA34, heparin-Sepharose, ATP-agarose, Mono Q, phenyl-Superose, HCA-hydroxyapatite, Wakopak G40, and TSK-3000SW columns. Two DGK species (DGK-I and DGK-III) were purified to apparent homogeneity, and upon SDS-polyacrylamide gel electrophoresis, they showed a single band of apparent molecular mass of 152 kDa (DGK-I) or 58 kDa (DGK-III). The peptide mapping analysis showed that DGK-I and DGK-III are structurally different. DGK-II was only partially purified, and its apparent Mr was estimated to be 75,000 by gel filtration. The specific enzyme activities of the three isozymes were increased 1,480-fold (DGK-I), 690-fold (DGK-II) and 2,100-fold (DGK-III) over original platelet cytosol. The activities of DGK-II and DGK-III were markedly enhanced by the presence of deoxycholate or phosphatidylserine, whereas DGK-I activity was not much affected by the anionic compounds. All of the three activities were strongly suppressed by phosphatidylcholine. Triton X-100 and octyl glucoside were strongly inhibitory to all of the enzymes, although to different extents. The DGK inhibitor, R59022, inhibited DGK-II and to a lesser extent DGK-III, but little affected DGK-I activity. DGK-I was much more heat-stable than DGK-II and DGK-III. The Km values for ATP were 150 microM for DGK-I, 245 microM for DGK-II, and 450 microM for DGK-III. The apparent Km values for suspended diolein were not much different among the DGKs and were in the range of 50-80 microM. These observations indicate that human platelet cytosol contains DGK isozymes with different enzymological properties. Furthermore, the three DGKs isolated from human platelets were found not to cross-react with the antibody raised against porcine brain 80-kDa DGK, thus indicating that human platelets contain novel species of DGK.  相似文献   

3.
The diacylglycerol kinase inhibitor R59022 (10 microM) potentiates secretion and aggregation responses in human platelets challenged with sub-maximal concentrations of thrombin. Potentiation correlates closely with increased formation of diacylglycerol, increased phosphorylation of a 40 kDa protein, a known substrate for protein kinase C, and with decreased formation of phosphatidic acid, the product of diacylglycerol kinase. Phosphorylation of myosin light chains, formation of inositol phosphates and the mobilization of Ca2+ by thrombin are not affected by R59022 (10 microM). These data support a role for protein kinase C in platelet aggregation and secretion, and provide further evidence that endogenous diacylglycerols bring about the activation of this enzyme. These data also add further argument against a role for phosphatidic acid in platelet activation.  相似文献   

4.
The membrane-bound diacylglycerol kinase from Swiss 3T3 cells (M-DG kinase) was characterized with a mixed micellar assay system, and compared with the cytosolic diacylglycerol kinase from 3T3 cells and with the membrane-bound diacylglycerol kinase from Escherichia coli. M-DG kinase selectively phosphorylated arachidonoyl-diacylglycerols, at a rate 2- to 8-fold higher than that for other naturally occurring long-chain diacylglycerols. In contrast, the cytosolic 3T3 enzyme exhibited little or no selectivity among long-chain diacylglycerols but had higher activity with more soluble substrates such as 1,2-didecanoylglycerol. Comparison of the properties of M-DG kinase with those of the bacterial membrane-bound enzyme revealed that selectivity for arachidonoyl-diacylglycerol was unique to the mammalian enzyme. All three kinases were activated by phosphatidylserine, but activation did not alter the arachidonoyl selectivity of M-DG kinase. Phosphatidylserine activated M-DG kinase by increasing Vm and decreasing the apparent Km for diacylglycerol. High concentrations of diacylglycerol reduced the Ka for phosphatidylserine, but did not abolish the phosphatidylserine requirement for maximum activity. Examination of the thermal lability of M-DG kinase revealed that this enzyme was rapidly and selectively inactivated by preincubation with its preferred substrate. This novel effect may have obscured previous attempts to discern substrate selectivity. Taken together, the results provide evidence that M-DG kinase is an arachidonoyl-diacylglycerol kinase that may participate in the formation of arachidonoyl-enriched species of phosphatidylinositol.  相似文献   

5.
In intact platelets, a permeable diacylglycerol having a 1,2-sn- but not 2,3-sn- configuration activated protein kinase C directly. In the presence of Ca2+-ionophore this diacylglycerol caused full activation of platelet release reaction. 1,3-Isomer was inactive. Among these isomers only 1,2-sn-diacylglycerol was converted rapidly to the corresponding phosphatidic acid in both intact and broken cell preparations. Thus, the diacylglycerol which functions in stimulus-response coupling possesses a 1,2-sn-glycerol backbone, and other isomers are not involved in the signal transduction through the protein kinase C pathway.  相似文献   

6.
The cyclic beta-1,2-glucans of Rhizobium may function during legume nodulation. These molecules may become highly substituted with phosphoglycerol moieties from the head group of phosphatidylglycerol; diglyceride is a by-product of this reaction (K. J. Miller, R. S. Gore, and A. J. Benesi, J. Bacteriol. 170:4569-4575, 1988). We recently reported that R. meliloti 1021 produces a diacylglycerol kinase (EC 2.7.1.107) activity that shares several properties with the diacylglycerol kinase enzyme of Escherichia coli (W. P. Hunt, R. S. Gore, K. J. Miller, Appl. Environ. Microbiol. 57:3645-3647, 1991). A primary function of this rhizobial enzyme is to recycle diglyceride generated during cyclic beta-1,2-glucan biosynthesis. In the present study, we report the cloning and initial characterization of a single-copy gene from R. meliloti 1021 that encodes a diacylglycerol kinase homolog; this homolog can complement a diacylglycerol kinase deficient strain of E. coli. The sequence of the rhizobial diacylglycerol kinase gene was predicted to encode a protein of 137 amino acids; this protein shares 32% identity with the E. coli enzyme. Analysis of hydropathy and the potential to form specific secondary structures indicated a common overall structure for the two enzymes. Because diglyceride metabolism and cyclic beta-1,2-glucan biosynthesis are metabolically linked, future studies with diacylglycerol kinase mutants of R. meliloti 1021 should further elucidate the roles of the cyclic beta-1,2-glucans in the Rhizobium-legume symbiosis.  相似文献   

7.
The metabolism of exogenous [3H]diacylglycerols by intact human platelets was studied in order to examine: the metabolic fate of these second messengers in an intact cell, the effect of diacylglycerol kinase and diacylglycerol lipase inhibitors on this metabolism, the effect of agonist stimulation on metabolism, and the dependence of metabolism on diacylglycerol chain length. When 2.5 microM [3H]dioctanoylglycerol (diC8) was added to 10(9) platelets it was rapidly metabolized; 80% was converted to various products in 2.5 min. Initially, 40% was recovered as 3H-labeled phospholipid (predominantly phosphatidic acid) reflecting the action of diacylglycerol kinase, 20% was recovered as [3H]glycerol due to the action of diacylglycerol and monoacylglycerol lipases, and small amounts were recovered as triacylglycerol and monoacylglycerol. Thrombin stimulation of platelets did not affect the rate or pathway of metabolism. Pretreatment of platelets with the diacylglycerol kinase inhibitors, diC8ethyleneglycol or 1-monooleoylglycerol, inhibited 3H-labeled phospholipid production 47% and 75%, respectively, and resulted in a longer lived diC8 signal. The diacylglycerol lipase inhibitor, RHC 80267, inhibited the production of water-soluble metabolites 75%. Despite inhibition of the lipase, the overall metabolism of exogenous [3H]diC8 occurred at a similar rate as in control platelets due to an increased flux towards phospholipid. The ability of exogenous diacylglycerols to be metabolized by diacylglycerol kinase correlated well with their ability to activate protein kinase C in platelets. [3H]Dibutyroylglycerol, didodecanoylglycerol, and ditetradecanoylglycerol, were not metabolized by this route. These diacylglycerols were still metabolized via the lipase pathway. The results indicate that platelets possess potent attenuation systems to defend against the accumulation of diacylglycerol second messengers, and that the primary metabolic fate of cell-permeable, exogenous diacylglycerols is conversion to phosphatidic acid.  相似文献   

8.
9.
Plasma-membrane fractions were prepared from the livers of rats injected with 0.15 M-NaCl (controls) or vasopressin (1 nmol/kg body wt.). When assayed in the presence of deoxycholate, vasopressin increased the Vmax. of plasma-membrane diacylglycerol kinase 2-4-fold, and the apparent Km of the enzyme for 1,2-dioleoyl-sn-glycerol was doubled. The effect of vasopressin on the Vmax. of plasma-membrane diacylglycerol kinase was twice as great between pH 7 and 8.5 than at pH 6 or 6.5. Vasopressin doubled the activity of diacylglycerol kinase in the plasma-membrane fraction when the enzyme was assayed with phosphatidylserine rather than deoxycholate as stimulator, and when either 1-stearoyl-2-arachidonoyl-sn-glycerol or 1,2-dioleoyl-sn-glycerol was the substrate. In perfused livers vasopressin (10 nM) increased the Vmax. of plasma-membrane diacylglycerol kinase 2-fold, and phenylephrine (3 microM) gave a similar effect. Vasopressin doubled diacylglycerol kinase activity in hepatocytes that had been preincubated for 55 min, but not in cells that had only been preincubated for 15 min.  相似文献   

10.
We studied the influence of platelet-derived growth factor (PDGF) on diacylglycerol phosphorylation in Swiss 3T3 cells. Rates of incorporation of 32P into phosphatidic acid (PA) and phosphatidylinositol (PtdIns) were determined in prelabeled cells into which sn-1,2-didecanoylglycerol (diC10) had been introduced. PDGF stimulated the formation of [32P]PA and -PtdIns from endogenous substrates but decreased the formation of [32P]PA10 and -PtdIns10. Direct measurements of diacylglycerol phosphorylation in lysates of quiescent and stimulated cells showed that PDGF stimulated the phosphorylation of endogenous diacylglycerol 2-fold in parallel with diacylglycerol accumulation but decreased by 50% the phosphorylation of diC10. Total diacylglycerol kinase activity, measured in a mixed micellar assay, was not changed by PDGF treatment. The maximum activity of diacylglycerol kinase exceeded that needed to phosphorylate all of the endogenous diacylglycerol, suggesting that the PDGF-dependent increase in diacylglycerol mass would account for the increase in PA formation. The increased mass of diacylglycerol also could explain the inhibition of diC10 phosphorylation, via substrate competition. The predominant species of endogenous diacylglycerol was 1-stearoyl-2-arachidonoyl-glycerol (18:0/20:4 diacylglycerol). In mixed micelles, the rate of phosphorylation of 18:0/20:4 diacylglycerol was 8-fold higher than that of diC10, and the 18:0/20:4 species competed with diC10 for phosphorylation. Studies showed that a membrane-bound enzyme accounted for the PDGF effect on PA formation; there was no evidence for translocation of cytosolic enzyme to the membrane. The results support these conclusions: 1) PDGF stimulates the phosphorylation of cellular diacylglycerol by promoting a transient accumulation of this lipid. 2) The stimulated phosphorylation is catalyzed by a diacylglycerol kinase that preferentially phosphorylates 18:0/20:4 diacylglycerol over diC10. 3) The diacylglycerol kinase responsible for the PDGF effect is membrane-bound.  相似文献   

11.
Mammalian diacylglycerol kinases are a family of enzymes that catalyze the phosphorylation of diacylglycerol to produce phosphatidic acid. The extent of interaction of these enzymes with monoacylglycerols is the focus of the present study. Because of the structural relationship between mono- and diacylglycerols, one might expect the monoacylglycerols to be either substrates or inhibitors of diacylglycerol kinases. This would have some consequence to lipid metabolism. One of the lipid metabolites that would be affected is 2-arachidonoyl glycerol, which is an endogenous ligand for the CB1 cannabinoid receptor. We determined if the monoglycerides 2-arachidonoyl glycerol or 2-oleoyl glycerol affected diacylglycerol kinase activity. We found that 2-arachidonoyl glycerol is a very poor substrate for either the epsilon or the zeta isoforms of diacylglycerol kinases. Moreover, 2-arachidonoyl glycerol is an inhibitor for both of these diacylglycerol kinase isoforms. 2-oleoyl glycerol is also a poor substrate for these two isoforms of diacylglycerol kinases. As an inhibitor, 2-oleoyl glycerol inhibits diacylglycerol kinase ε less than does 2-arachidonoyl glycerol, while for diacylglycerol kinase ζ, these two monoglycerides have similar inhibitory potency. These results have implications for the known role of diacylglycerol kinase ε in neuronal function and in epilepsy since the action of this enzyme will remove 1-stearoyl-2-arachidonoylglycerol, the precursor of the endocannabinoid 2-arachidonoyl glycerol.  相似文献   

12.
The protein kinase C (PKC) was secreted from thrombin-stimulated human platelets in a time- and dose-dependent manner. The PKC specific inhibitors Ro31-8220 (0.05 microM) and GF 109203X (0.5 microM) totally inhibited the secreted kinase activity. Western blot analysis of the secretory components showed reactivity to PKCalpha, PKCbetaII, and PKCdelta antibodies, but not to PKCbetaI, and p42/44 MAPK, although they were present in lysed platelets. The fractionation of platelets secreted components showed that PKC activity increased in both soluble and microparticle fractions after thrombin treatments. This is the first report demonstrating that activated human platelets selectively secrete protein kinase C isozymes. Protein kinase C secreted by platelets in this unique manner may have an extracellular role in the plasma, and may regulate cellular functions, including remodeling of vascular endothelial cells.  相似文献   

13.
R E Muid  B Twomey  M M Dale 《FEBS letters》1988,234(1):235-240
A 'cocktail' consisting of an inhibitor of diacylglycerol kinase (R59022, 10 microM), an inhibitor of diacylglycerol lipase (RHC80267, 10 microM), and an inhibitor of phospholipase A2 (either 100 microM indomethacin, or 100 microM sodium meclofenamate) markedly enhanced superoxide production by human neutrophils stimulated with post-receptor stimuli, fluoride and gamma-hexachlorocyclohexane. On the other hand, the response to the C3b/Fc receptor stimulus, opsonized zymosan, was marginally decreased whilst that to the Fc receptor stimulus, aggregated IgG, was virtually unaffected. Since the inhibitors used are deemed to inhibit the main routes of arachidonate production, these results call into question the role of arachidonate in the transduction of O2- generation by post-receptor stimuli, but support a role for arachidonate in receptor-mediated transduction.  相似文献   

14.
R59 022 (6-[2-[4-[(4-fluorophenyl)phenylmethylene]-1- piperidinyl]ethyl]-7-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one) has been suggested as an inhibitor of diacylglycerol kinase in erythrocyte membranes and intact platelets. In the present study, we have investigated the effects of this drug on arachidonic acid mobilization occurring in response to thrombin in intact human platelets. Our results indicate that release of arachidonic acid from membrane phospholipids such as phosphatidylcholine and phosphatidylinositol was severely impaired by R59 022 and the extent of inhibition amounted to 77% and 84%, respectively, as compared to controls. This resulted in a dramatic decrease in the accumulation of free arachidonic acid (labeled/unlabeled) and the percent inhibition of free arachidonic acid accumulation amounted to 80-90% as compared to controls. Furthermore, the drug caused a significant accumulation of thrombin-induced diacylglycerol (labeled) without affecting the formation of labeled phosphatidic acid (PA). We found no significant changes in the radioactivity of either phosphatidylethanolamine or phosphatidylserine following stimulation with thrombin in the presence or absence of R59 022. We conclude that the observed inhibition of thrombin-induced arachidonic acid mobilization by R59 022 may be due to its effects on the activities of diacylglycerol lipase/phospholipase A2. In addition, the failure of further stimulation of thrombin-induced PA by R59 022 may indicate that PA-specific phospholipase A2 is either not involved in the release of arachidonic acid or is not a major source for arachidonic acid release in thrombin-stimulated human platelets. These findings may prove to be important when this drug is used as a selective inhibitor of diacylglycerol kinase.  相似文献   

15.
Rat serum, active in the hydrolysis of the tumor-promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA), was examined with regard to lipid interferences of [3H]TPA hydrolysis and enzyme substrate specificity. The enzymatic hydrolysis of TPA could be enhanced 8-fold, over crude serum, by using a lipid-free acetone powder of rat serum. Addition of lipid to the lipid-free acetone powder produced potent inhibition of TPA hydrolysis. The inclusion of multilamallar liposomes resulted in similar inhibition, and isolation of liposomes by high-speed centrifugation showed that 95% of the radiolabeled TPA was associated with the fatty pellet. Substrate specificity studies demonstrated that the serum activity hydrolyzes the long-chain ester of TPA and the long-chain primary acyl group of diacylglycerols. TPA was hydrolyzed at approximately twice the rate of dioleoylglycerol; however, the most reactive substrates were those synthetic analogs of diacylglycerol containing a short-chain ester group at the sn-2 position. Palmitic acid was liberated from [1-14C]palmitoyl-2-acetyl-sn-glycerol and [1-14C]palmitoyl-2-butyryl-sn-glycerol at 120- and 33-times the rate of TPA hydrolysis, respectively. Lipase resistant 1-hexadecyl-2-[3H]acetylglycerol was also used as substrate, but the sn-2 ester moiety showed poor lability. The diacylglycerol analogs are new lipase substrates and, in view of their similarities to the fatty acyl portion of TPA, it is thought that these compounds could serve as protein kinase C activators.  相似文献   

16.
The diacylglycerol lipase inhibitor, RHC 80267, 1,6-di(O-(carbamoyl)cyclohexanone oxime)hexane, was tested for its ability to block the release of arachidonic acid from human platelets. At a concentration (10 microM) reported to completely inhibit diacylglycerol lipase in fractions of broken platelets, RHC 80267 had no effect on diacylglycerol lipase activity or the release of arachidonic acid from washed human platelets stimulated with collagen. At a high concentration (250 microM), the compound inhibited the formation of arachidonyl-monoacylglycerol by 70% and the release of arachidonate by 60%. However, at this concentration RHC 80267 was found to inhibit cyclooxygenase activity, phospholipase C activity and the hydrolysis of phosphatidylcholine (PC) (presumably by inhibiting phospholipase A2). The phospholipase C inhibition was attributed to the inhibition of prostaglandin H2 formation, as it was alleviated by the addition of the endoperoxide analog, U-46619. PC hydrolysis was only partially restored with U-46619, suggesting that RHC 80267 directly alters phospholipase A2 activity. The inhibition of arachidonate release observed was accounted for by the inhibition of PC hydrolysis. We conclude that RHC 80267, because of its lack of specificity at concentrations needed to inhibit diacylglycerol lipase, is an unsuitable inhibitor for studying the release of arachidonic acid in intact human platelets.  相似文献   

17.
Inhibition of EcoRI DNA methylase with cofactor analogs   总被引:5,自引:0,他引:5  
Four analogs of the natural cofactor S-adenosylmethionine (AdoMet) were tested for their ability to bind and inhibit the prokaryotic enzyme, EcoRI adenine DNA methylase. The EcoRI methylase transfers the methyl group from AdoMet to the second adenine in the double-stranded DNA sequence 5'GAATTC3'. Dissociation constants (KD) of the binary methylase-analog complexes obtained in the absence of DNA with S-adenosylhomocysteine (AdoHcy), sinefungin, N-methyl-AdoMet, and N-ethylAdoMet are 225, 43, greater than 1000, and greater than 1000 microM, respectively. In the presence of a DNA substrate, all four analogs show simple competitive inhibition with respect to AdoMet. The product of the enzymic reaction, AdoHcy, is a poor inhibitor of the enzyme (KI(AdoHcy) = 9 microM; KM(AdoMet) = 0.60 microM). Two synthetic analogs, N-methyl-AdoMet and N-ethyl-AdoMet, were also shown to be poor inhibitors with KI values of 50 and greater than 1000 microM, respectively. In contrast, the naturally occurring analog sinefungin was shown to be a highly potent inhibitor (KI = 10 nM). Gel retardation assays confirm that the methylase-DNA-sinefungin complex is sequence-specific. The ternary complex is the first sequence-specific complex detected for any DNA methylase. Potential applications to structural studies of methylase-DNA interactions are discussed.  相似文献   

18.
We investigated the diacyglycerol kinase species present in several baboon tissues using the substrates sn-1-stearoyl-2-arachidonoyl diacylglycerol and sn-1,2-didecanoyl diacylglycerol. Chromatography of octyl glucoside extracts of the baboon (Papio cynocephalus papio) tissues on hydroxyapatite columns revealed the presence of three diacylglycerol kinase species with different substrate preferences. One species markedly 'preferred' the substrate sn-1-stearoyl-2-arachidonoylglycerol, the two other species preferred sn-1,2-didecanoylglycerol. Measurement of the activity of the baboon brain diacylglycerol kinases toward diacylglycerols with a range of different fatty acid chains revealed a strict preference of the arachidonoyl diacylglycerol kinase for sn-1-acyl-2-arachidonoyl diacylglycerol, whereas the other enzymes showed no preference toward several long-chain-fatty-acid-containing diacylglycerols. The arachidonoyl diacylglycerol kinase was particularly abundant in brain and testis, whereas liver was practically devoid of this enzyme. The arachidonoyl diacylglycerol kinase from baboon brain was found to be predominantly associated with the particulate fraction and exhibited an apparent molecular mass of 130 kDa.  相似文献   

19.
Diacylglycerol:ATP kinase(EC 2.3.1.-) was highly purified (more than 2000-fold) from rat liver cytosol. The specific activity of the obtained enzyme was about 1.5 μmol phosphatidate formed/mg of protein/min. The purification procedures included ammonium sulfate fractionation, DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and finally affinity chromatography on ATP-agarose. The activities of diacylglycerol:GTP kinase and monoacylglycerol:ATP kinase were copurified throughout the procedures, forming a single peak together with diacylglycerol: ATP kinase. Furthermore, these kinase activities showed a single peak when the highly purified enzyme was analyzed by a sucrose density gradient centrifugation and polyacrylamide gel electrophoresis. The three kinase activities are, therefore, most likely catalyzed by a single enzyme. The kinase showed an apparent molecular weight of 121,000 on gel filtration and sedimented at 5.1 S in a sucrose gradient centrifugation. The apparent Km values were 170 μm for ATP, 540 μm for GTP, and 3.0 μm for diacylglycerol. A number of nucleoside triphosphates and diphosphates competitively inhibited the kinase, in particular the activity utilizing GTP. Among the nucleotides tested, ADP was the most potent inhibitor (the apparent Ki:50 μm for diacylglycerol:ATP kinase and 42 μm for diacylglycerol:GTP kinase). The kinase required Mg2+ and deoxycholate for its activity, and the optimal pH was 8.0–8.5. No dependence on added phospholipids was observed.  相似文献   

20.
Both 1,2-diacyl- and 1-O-alkyl-2-acyl-sn-glycerols are released during stimulation of human polymorphonuclear leukocytes (PMNL). 1,2-Diacylglycerols have received intense interest as intracellular "second messengers" due to their ability to activate protein kinase C (Ca2+ phospholipid-dependent enzyme). However, little is known about bioactivities of the alkylacylglycerols. This study compared the ability of 1,2-diacyl- and 1-O-alkyl-2-acylglycerols to modulate the respiratory burst of stimulated PMNL, a response which depends on the activation of an NADPH oxidase to generate bactericidal species of reduced oxygen. Direct stimulation by N-formyl-Met-Leu-Phe caused an abrupt release of H2O2 which ceased within 2.5 min. Preincubation with diacylglycerols (1-oleoyl-2-acetylglycerol,5-30 microM, and 1,2-dioctanoylglycerol,2-5 microM) caused a decrease in lag time, 3-fold increase in initial rate of H2O2 release, and marked prolongation of the response to N-formyl-Met-Leu-Phe (features characteristic of a priming effect). Preincubation with alkylacylglycerols (1-O-delta 9-octadecenyl-2-acetylglycerol, 5-30 microM, and 1-O-octyl-2-octanoylglycerol, 20-50 microM) primed initiation (shortened lag time and increased velocity) but, in contrast to diacylglycerols, did not alter duration of H2O2 release. While low concentrations of diacylglycerols (5-30 microM) primed PMNL, higher concentrations (greater than or equal to 70 microM) stimulated the cells directly. In contrast, higher (70-100 microM) concentrations of alkylacylglycerols did not prime the responses but, in fact, inhibited priming (especially of duration) induced by diacylglycerol. The high concentrations of alkylacylglycerol also inhibited direct stimulation induced by high concentrations of diacylglycerol. Direct stimulation by high concentrations of diacylglycerol probably involves activation of protein kinase C, whereas alkylacylglycerol was found to inhibit activation of protein kinase C by diacylglycerol in vitro. Thus, diacylglycerols are complete priming agonists, altering both rate and duration of the response. In contrast, alkylacylglycerols may have biphasic, concentration-related effects in modulation of functions of PMNL. At low concentrations, they may facilitate initiation of functional events; however, as their concentration increases, they may serve to terminate responses. The distinct priming effects of these diglycerides also reveal that priming can involve at least two distinct events: 1) initiation and 2) prolongation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号