首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
In this article we report on construction of expression vector, heterologous expression in Escherichia coli, isolation, purification, and physicochemical characterization of an artificial chimeric protein HMWb(5)-EGFP consisting of full-length cytochrome b(5) (HMWb(5)) and green fluorescence protein (EGFP) from Aequorea. Optimization of expression conditions yielded an expression level up to 1500 nmol of chimeric protein per liter of culture. Recombinant chimeric protein HMWb(5)-EGFP was purified from cell membranes by using metal-affinity chromatography. It possesses physicochemical, spectral, and fluorescence properties of cytochrome b(5) and EGFP indicating independent character of protein folding in frames of the chimera. It is shown that there is a fluorescent resonance energy transfer in HMWb(5)-EGFP between the fluorophore of EGFP and heme of cytochrome b(5), and the distance between chromophores in the chimeric protein is approximately 67.3 A. The chimeric protein was shown to exist as a monomer in aqueous solution in the presence of detergents. The data indicate that the HMWb(5)-EGFP designed in the present work is a very promising model for modern biosensors and an instrument to study protein-protein interactions.  相似文献   

3.
Li B  Mao D  Liu Y  Li L  Kuang T 《Photosynthesis research》2005,83(3):297-305
A pure, active cytochrome b 6 f was isolated from the chloroplasts of the marine green alga, Bryopsis corticulans. To investigate and characterize this cytochrome b 6 f complex, sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), absorption spectra measurement and HPLC were employed. It was shown that this purified complex contained four large subunits with apparent molecular masses of 34.8, 24, 18.7 and 16.7 kD. The ratio of Cyt b 6 to Cytf was 2.01 : 1. The cytochromeb 6 f was shown to catalyze the transfer of 73 electrons from decylplastoquinol to plastocyanin–ferricyanide per Cyt f per second. α-Carotene, one kind of carotenoid that has not been found to present in cytochrome b 6 f complex, was discovered in this preparation by reversed phase HPLC. It was different from β-carotene usually found in cytochrome b 6 f complex. The configuration of the major α-carotene component was assigned to be 9-cis by resonance Raman spectroscopy. Different from the previous reports, the configuration of this α-carotene in dissociated state was determined to be all-trans. Besides this carotene, chlorophyll a was also found in this complex. It was shown that the molecular ratios of chlorophylla, cis and all-trans-α-carotene to Cyt f in this complex were 1.2, 0.7 and 0.2, respectively.  相似文献   

4.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

5.
The final reactions of rosmarinic acid biosynthesis, the introduction of the aromatic 3- and 3′-hydroxyl groups, are catalysed by cytochrome P450-dependent hydroxylases. The cDNAs encoding CYP98A14 as well as a NADPH:cytochrome P450 reductase (CPR) were isolated from Coleus blumei and actively expressed in Saccharomyces cerevisiae. The CYP98A14-cDNA showed an open reading frame of 1521 nucleotides with high similarities to 4-coumaroylshikimate/quinate 3-hydroxylases. Yeast microsomes harbouring the CYP98A14 protein catalysed the 3-hydroxylation of 4-coumaroyl-3′,4′-dihydroxyphenyllactate and the 3′-hydroxylation of caffeoyl-4′-hydroxyphenyllactate, in both cases forming rosmarinic acid. Apparent K m-values for 4-coumaroyl-3′,4′-dihydroxyphenyllactate and caffeoyl-4′-hydroxyphenyllactate were determined to be at 5 μM and 40 μM, respectively. CYP98A14 differs from CYP98s from other plants, since 4-coumaroylshikimate or -quinate were not accepted as substrates. Coexpression of the Coleus blumei CPR and CYP98A14 in the same yeast cells increased the hydroxylation activity up to sevenfold. CYP98A14 from Coleus blumei is a novel bifunctional cytochrome P450 specialised for rosmarinic acid biosynthesis.  相似文献   

6.
The ba 3-type cytochrome c oxidase from Thermus thermophilus is phylogenetically very distant from the aa 3–type cytochrome c oxidases. Nevertheless, both types of oxidases have the same number of redox-active metal sites and the reduction of O2 to water is catalysed at a haem a 3-CuB catalytic site. The three-dimensional structure of the ba 3 oxidase reveals three possible proton-conducting pathways showing very low homology compared to those of the mitochondrial, Rhodobacter sphaeroides and Paracoccus denitrificans aa 3 oxidases. In this study we investigated the oxidative part of the catalytic cycle of the ba 3 -cytochrome c oxidase using the flow-flash method. After flash-induced dissociation of CO from the fully reduced enzyme in the presence of oxygen we observed rapid oxidation of cytochrome b (k ≅ 6.8 × 104 s−1) and formation of the peroxy (PR) intermediate. In the next step a proton was taken up from solution with a rate constant of ~1.7 × 104 s−1, associated with formation of the ferryl (F) intermediate, simultaneous with transient reduction of haem b. Finally, the enzyme was oxidized with a rate constant of ~1,100 s−1, accompanied by additional proton uptake. The total proton uptake stoichiometry in the oxidative part of the catalytic cycle was ~1.5 protons per enzyme molecule. The results support the earlier proposal that the PR and F intermediate spectra are similar (Siletsky et al. Biochim Biophys Acta 1767:138, 2007) and show that even though the architecture of the proton-conducting pathways is different in the ba 3 oxidases, the proton-uptake reactions occur over the same time scales as in the aa 3-type oxidases. Smirnova and Zaslavsky contributed equally to the work described in this paper.  相似文献   

7.
A biotransformation system was designed to co-express CYP107P3 (CSP4), cytochrome P450, from Streptomyces peuceticus, along with CamA (putidaredoxin reductase) and CamB (putidaredoxin) from Pseudomonas putida, the necessary reducing equivalents, in a class I type electron-transfer system in E. coli BL21 (DE3). This was carried out using two plasmids with different selection markers and compatible origins of replication. The study results showed that this biotransformation system was able to mediate the O-dealkylation of 7-ethoxycumarin.  相似文献   

8.
Tributyl phosphate (TBP) is a toxic organophosphorous compound widely used in nuclear fuel processing and chemical industries. Rhodopseudomonas palustris, one of the most metabolically versatile photosynthetic bacteria, is shown here to degrade TBP efficiently under photosynthetic conditions. This study shows that this O2- and NADPH/FMNH2-dependent process was also catalyzed when TBP was incubated with membrane-associated proteins extracted from this strain. The effects of several regulators of cytochrome P450 activity on the TBP consumption suggest a key role for a cytochrome P450 in this process. Disruption of the rpa0241 gene encoding a putative cytochrome P450 led to a 60% decrease of the TBP catabolism, whereas reintroducing the gene in the mutant restored the wild-type phenotype. The rpa0241 gene was expressed and purified in Escherichia coli. Characterization by UV-visible spectroscopy of the purified recombinant membrane-bound protein (CYP201A2) encoded by the rpa0241 gene revealed typical spectral characteristics of cytochrome P450 with a large spin state change of the heme iron associated with binding of TBP (K d ≈ 65 μM). It is proposed that CYP201A2 catalyzes the initial step of the biodegradation process of TBP.  相似文献   

9.
In Escherichia coli, the F1FO ATP synthase b subunits house a conserved arginine in the tether domain at position 36 where the subunit emerges from the membrane. Previous experiments showed that substitution of isoleucine or glutamate result in a loss of enzyme activity. Double mutants have been constructed in an attempt to achieve an intragenic suppressor of the b arg36→ile and the b arg36→glu mutations. The b arg36→ile mutation could not be suppressed. In contrast, the phenotypic defect resulting from the b arg36→glu mutation was largely suppressed in the b arg36→glu,glu39→arg double mutant. E. coli expressing the b arg36→glu,glu39→arg subunit grew well on succinate-based medium. F1FO ATP synthase complexes were more efficiently assembled and ATP driven proton pumping activity was improved. The evidence suggests that efficient coupling in F1FO ATP synthase is dependent upon a basic amino acid located at the base of the peripheral stalk.  相似文献   

10.
The peripheral stalk of F1F0 ATP synthase is composed of a parallel homodimer of b subunits that extends across the cytoplasmic membrane in F0 to the top of the F1 sector. The stalk serves as the stator necessary for holding F1 against movement of the rotor. A series of insertions and deletions have been engineered into the hydrophilic domain that interacts with F1. Only the hydrophobic segment from {val-121} to {ala-132} and the extreme carboxyl terminus proved to be highly sensitive to mutation. Deletions in either site apparently abolished enzyme function as a result of defects is assembly of the F1F0 complex. Other mutations manipulating the length of the sequence between these two areas had only limited effects on enzyme function. Expression of a b subunit with insertions with as few as two amino acids into the hydrophobic segment also resulted in loss of F1F0 ATP synthase. However, a fully defective b subunit with seven additional amino acids could be stabilized in a heterodimeric peripheral stalk within a functional F1F0 complex by a normal b subunit.  相似文献   

11.
Many bacteria adapt to microoxic conditions by synthesizing a particular cytochrome c oxidase (cbb 3) complex with a high affinity for O2, encoded by the ccoNOQP operon. A survey of genome databases indicates that ccoNOQP sequences are widespread in all sub-branches of Proteobacteria but otherwise are found only in bacteria of the CFB group (Cytophaga, Flexibacter, Bacteroides). Our analysis of available genome sequences suggests four major strategies of regulating ccoNOQP expression in response to O2. The most widespread strategy involves direct regulation by the O2-responsive protein Fnr. The second strategy involves an O2-insensitive paralogue of Fnr, FixK, whose expression is regulated by the O2-responding FixLJ two-component system. A third strategy of mixed regulation operates in bacteria carrying both fnr and fixLJ-fixK genes. Another, not yet identified, strategy is likely to operate in the -Proteobacteria Helicobacter pylori and Campylobacter jejuni which lack fnr and fixLJ-fixK genes. The FixLJ strategy appears specific for the -subclass of Proteobacteria but is not restricted to rhizobia in which it was originally discovered.  相似文献   

12.
The functional role of theNicotiana plumbaginifolia cytochrome P450 gene CYP72A2 was investigated in transgenic plants. N. tabacum plants transformed with a sense or antisense CYP72A2 construct exhibited diminished heights, branched stems, smaller leaves and deformed flowers. Western blot analysis revealed reduced levels of a 58kDa protein corresponding to CYP72A2, suggesting that the CYP72A2 homolog was suppressed in the sense and antisense plants. Transgenic plants had increased resistance to Manduca sexta larvae that consumed about 35 to 90 less of transgenic versus control leaves. A virulent strain of Pseudomonas syringae pv. tabaci induced a disease-limiting response followed by a delayed and decreased development of disease symptoms in the transgenics. CYP72A2 gene mediated resistance suggests that the plant-pest or -pathogen interactions may have been modified by changes in bioactive metabolite pools.  相似文献   

13.
In the mitochondria of animal steroidogenic tissues, cytochrome P450SCC encoded by the CYP11A1 gene catalyzes the conversion of cholesterol into pregnenolone—the general precursor of all steroid hormones. In this work we study the steroid metabolism in transgenic tobacco plants carrying the CYP11A1 cDNA encoding cytochrome P450SCC from the bovine adrenal cortex. The transgenic plants under investigation markedly surpass the control wild-type plants by size and are characterized by a shortened period of vegetative growth (by rapid flowering); their leaves contain pregnenolone—the product of a reaction catalyzed by cytochrome P450SCC. The level of progesterone in transgenic tobacco leaves is higher than in the control plants of the wild type. The seeds of the transgenic plants contain less (24R)-brassinosteroids than the wild-type tobacco plants. The results obtained indicate that the synthesis of an active P450SCC cytochrome in transgenic Nicotiana tabacum plants has a profound effect on steroid metabolism and is responsible for the specific phenotypic features of transgenic plants bearing CYP11A1 cDNA.  相似文献   

14.
The Perilla (Perilla frutescens L. cv. Okdong) oleosin gene, PfOle19, produces a 19-kDa protein that is highly expressed only in seeds. The activity of the −2,015 bp 5′-upstream promoter region of this gene was investigated in transgenic Arabidopsis plants using the fusion reporter constructs of enhanced green fluorescent protein (EGFP) and β-glucuronidase (GUS). The PfOle19 promoter directs Egfp expression in developing siliques, but not in leaves, stems or roots. In the transgenic Arabidopsis, EGFP fluorescence and histochemical GUS staining were restricted to early seedlings, indehiscent siliques and mature seeds. Progressive 5′-deletions up to the −963 bp position of the PfOle19 promoter increases the spatial control of the gene expression in seeds, but reduces its quantitative levels of expression. Moreover, the activity of the PfOle19 promoter in mature seeds is 4- and 5-fold greater than that of the cauliflower mosaic virus 35S promoter in terms of both EGFP intensity and fluorometric GUS activity, respectively.  相似文献   

15.
Although an affinity tag such as six consecutive histidines, (His)6-tag, has been widely used to obtain high quantity of recombinant proteins, little is known about its influences on heme proteins for lack of structural information. When (His)6-tag was introduced to the N-terminus of a small heme protein, cytochrome b 5, experimental results showed the resultant protein, (His)6-cyt b 5, has similar property and function to that of isolated cyt b 5. To provide structural information for this observation, we herein performed a structural prediction of (His)6-cyt b 5 by molecular modeling in combination with molecular dynamics simulation. The predicted structure, as assessed by a series of criteria with good quality, reveals that the (His)6-tag adopts a helical conformation and packs against the hydrophobic core 2 of cyt b 5 through salt bridges, hydrogen bonding and hydrophobic interactions. The heme group, with the axial His ligands slightly rotated, was found to have similar conformation as in isolated cyt b 5, which indicates that the N-terminal (His)6-tag does not alter the heme active site, resulting in similar dynamics properties for core 1. This study provides valuable information of interactions between (His)6-tag and the rest of the protein, aiding in rational design and application of functional His-tagged proteins.  相似文献   

16.
17.
The nucleotide sequence variation of the mitochondrial cytochrome b gene was studied in Schrenck newt Salamandrella schrenckii (Strauch, 1870) from populations of Primorye and the Khabarovsk region. Phylogenetic analysis revealed two haplotype clusters, southern cluster 1 and northern cluster 2, with a divergence of 3%. Analysis of the mtDNA and cytochrome b amino acid sequence variations made it possible to assume that the modern range of Schrenck newt was colonized from south Primorye northwards. In contrast to the southern cluster, the northern one demonstrated all the signs of demographic expansion (a unimodal distribution of pairwise nucleotide differences, specific results of tests for selective neutrality of mtDNA variation, and a good correspondence of genetic parameters to those expected from demographic expansion models).  相似文献   

18.
The generation of superoxide anion radical (O2 ·−) in the cytochrome b 6 f complex (Cyt b 6 f) of spinach under high-light illumination was studied using electron paramagnetic resonance spectroscopy. The generation of O2 ·− was lost in the absence of molecular oxygen. It was also suppressed in the presence of NaN3 and could be scavenged by extraneous antioxidants such as ascorbate, β-carotene, and glutathione. The results also indicate that O2 ·−, which is produced under high-light illumination of the Cyt b 6 f from spinach, might be generated from a reaction involing 1O2, and the Rieske Fe-S protein could serve as the electron donor in the O2 ·− production. The mechanism of photoprotection of the Cyt b 6 f complex by antioxidants is discussed.  相似文献   

19.
Yield of S-adenosylmethionine was improved significantly in recombinant Pichia pastoris by controlling NH4 + concentration. The highest production rate was 0.248 g/L h when NH4 + concentration was 450 mmol/L and no repression of cell growth was observed. Within very short induction time (47 h), 11.63 g/L SAM was obtained in a 3.7 L bioreactor.  相似文献   

20.
The kinetics of the ubiquinol-cytochrome c reductase reaction was examined using membrane fragments and purified bc(1) complexes derived from a wild-type (WT) and a newly constructed mutant (MUT) strains of Paracoccus denitrificans. The cytochrome c(1) of the WT samples possessed an additional stretch of acidic amino acids, which was lacking in the mutant. The reaction was followed with positively charged mitochondrial and negatively charged bacterial cytochromes c, and specific activities, apparent k(cat) values, and first-order rate constant values were compared. These values were distinctly lower for the MUT fractions using mitochondrial cytochrome c but differed only slightly with the bacterial species. The MUT preparations were less sensitive to changes of ionic strength of the reaction media and showed pure first-order kinetics with both samples of cytochrome c. The reaction of the WT enzyme was first order only with bacterial cytochrome c but proceeded with a non-linear profile with mitochondrial cytochrome c. The analysis of the reaction pattern revealed a rapid onset of the reaction with a successively declining rate. Experiments performed in the absence of an electron donor indicated that electrostatic attraction could directly participate in cytochrome c reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号