首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant invasions disrupt native plant reproduction directly via competition for light and other resources and indirectly via competition for pollination. Furthermore, shading by an invasive plant may reduce pollinator visitation and therefore reproduction in native plants. Our study quantifies and identifies mechanisms of these direct and indirect effects of an invasive shrub on pollination and reproductive success of a native herb. We measured pollinator visitation rate, pollen deposition, and female reproductive success in potted arrays of native Geranium maculatum in deciduous forest plots invaded by the non-native shrub Lonicera maackii and in two removal treatments: removal of aboveground L. maackii biomass and removal of flowers. We compared fruit and seed production between open-pollinated and pollen-supplemented plants to test for pollen and light limitation of reproduction. Plots with L. maackii had significantly lower light, pollinator visitation rate, and conspecific pollen deposition to G. maculatum than biomass removal plots. Lonicera maackii flower removal did not increase pollinator visitation or pollen deposition compared to unmanipulated invaded plots, refuting the hypothesis of competition for pollinators. Thus, pollinator-mediated impacts of invasive plants are not limited to periods of co-flowering or pollinator sharing between potential competitors. Geranium maculatum plants produced significantly fewer seeds in plots containing L. maackii than in plant removal plots. Seed set was similar between pollen-supplemented and open-pollinated plants, but pollen-supplemented plants exhibited higher seed set in plant removal plots compared to invaded plots. Therefore, we conclude that the mechanism of impact of L. maackii on G. maculatum reproduction was increased understory shade.  相似文献   

2.
The incorporation of an animal-dispersed exotic plant species into the diet of native frugivores can be an important step to that species becoming invasive. We investigated bird dispersal of Lonicera maackii, an Asian shrub invasive in eastern North America. We (i) determined which species of birds disperse viable L. maackii seeds, (ii) tested the effect of gut passage on L. maackii seeds, and (iii) projected the seed shadow based on habitat use by a major disperser. We found that four native and one exotic bird species dispersed viable L. maackii seeds. Gut passage through American robins did not inhibit germination, but gut passage through cedar waxwings did. American robins moved mostly along woodlot edges and fencerows, leading us to project that most viable seeds would be defecated in such habitats, which are very suitable for L. maackii. We conclude that L. maackii has been successfully incorporated into the diets of native and exotic birds and that American robins preferentially disperse seeds to suitable habitat.  相似文献   

3.
Exotic ecosystem engineers induce structural and qualitative habitat changes in invaded landscapes, yet studies rarely examine the effects of both of these changes on native taxa. We used a factorial experiment in natural, predator‐containing environments to determine whether performance of amphibian larvae was affected by predators and/or changes in habitat structure or chemistry associated with the invasive shrub Lonicera maackii. Invertebrate predators significantly reduced survival of American toad Anaxyrus americanus larvae, whereas tadpole development was accelerated in pools inoculated with the chemical signature of L. maackii. The significant effect of L. maackii chemistry on A. americanus larvae suggests that invasive species may have non‐intuitive effects even on native taxa with which they share no trophic connection, and may represent cryptic components of the multiple, interactive drivers of biodiversity change.  相似文献   

4.
Understanding the effects of invasive plants on native consumers is important because consumer-mediated indirect effects have the potential to alter the dynamics of coexistence in native communities. Invasive plants may promote changes in consumer pressure due to changes in protective cover (i.e., the architectural complexity of the invaded habitat) and in food availability (i.e., subsidies of fruits and seeds). No experimental studies have evaluated the relative interplay of these two effects. In a factorial experiment, we manipulated cover and food provided by the invasive shrub Amur honeysuckle (Lonicera maackii) to evaluate whether this plant alters the foraging activity of native mammals. Using tracking plates to quantify mammalian foraging activity, we found that removal of honeysuckle cover, rather than changes in the fruit resources it provides, reduced the activity of important seed consumers, mice in the genus Peromyscus. Two mesopredators, Procyon lotor and Didelphis virginiana, were also affected. Moreover, we found rodents used L. maackii for cover only on cloudless nights, indicating that the effect of honeysuckle was weather-dependent. Our work provides experimental evidence that this invasive plant species changes habitat characteristics, and in so doing alters the behavior of small- and medium-sized mammals. Changes in seed predator behavior may lead to cascading effects on the seeds that mice consume.  相似文献   

5.
Floral displays of invasive plants have positive and negative impacts on native plant pollination. Invasive plants may also decrease irradiance, which can lead to reduced pollination of native plants. The effects of shade and flowers of invasive plant species on native plant pollination will depend on overlap in flowering phenologies. We examined the effect of the invasive shrub Lonicera maackii on female reproductive success of the native herb Hydrophyllum macrophyllum at two sites: one with asynchronous flowering phenologies (slight overlap) and one with synchronous (complete overlap). At each site, we measured light availability, pollinator visitation, pollen deposition, and seed set of potted H. macrophyllum in the presence and absence of L. maackii. At both sites, understory light levels were lower in plots containing L. maackii. At the asynchronous site, H. macrophyllum received fewer pollinator visits in the presence of L. maackii, suggesting shade from L. maackii reduced visitation to H. macrophyllum. Despite reduced visitation, H. macrophyllum seed set did not differ between treatments. At the synchronous site, H. macrophyllum received more pollinator visits and produced more seeds per flower in the presence of co-flowering L. maackii compared to plots in which L. maackii was absent, and conspecific pollen deposition was positively associated with seed set. Our results support the hypothesis that co-flowering L. maackii shrubs facilitated pollination of H. macrophyllum, thereby mitigating the negative impacts of shade, leading to increased seed production. Phenological overlap appears to influence pollinator-mediated interactions between invasive and native plants and may alter the direction of impact of L. maackii on native plant pollination.  相似文献   

6.
Although invasive plants are recognized as a major ecological problem, little is known of the relative importance of plant community characteristics versus landscape context in determining invasibility of communities. We determined the relative importance of community and landscape features of 30 woodlots in influencing the invasion of Lonicera maackii. We sampled woodlots using the point‐quarter method and calculated canopy openness and basal areas and densities of shrub, sapling and tree species, as well as woody species richness. We used aerial photos and ArcView GIS to calculate landscape parameters from the same woodlots using a buffer distance of 1500 m. We used logistic and linear regression analyses to determine the community and landscape factors that best explain L. maackii presence and density. We also tested whether woodlot invasion by L. maackii begins at woodlot edges. Presence of L. maackii was significantly explained only by distance from the nearest town (logistic regression, p=0.017); woodlots nearer town were more likely to be invaded. Among invaded woodlots, density of L. maackii was positively related to the amount of edge in the landscape (partial R2=0.592) and negatively related to total tree basal area (partial R2=0.134), number of native woody species (partial R2=0.054), and sapling shade tolerance index (partial R2=0.054). Lonicera maackii in woodlot interiors were not younger than those on the perimeters, leading us to reject the edge‐first colonization model of invasion. Our findings reveal that landscape structure is of primary importance and community features of secondary importance in the invasion of L. maackii. This shrub is invading from multiple foci (towns) rather than an advancing front. Connectivity in the landscape (i.e. the number of corridors) did not promote invasion. However, edge habitat was important for invasion, probably due to increased propagule pressure. The community features associated with L. maackii invasion may be indicators of past disturbance.  相似文献   

7.
Allelopathic effects of invasive plants on native flora may be mitigated by the abiotic and biotic environment into which the allelochemicals are released. Lonicera maackii (Amur honeysuckle), an invasive plant of the eastern deciduous forest, suppresses seed germination in laboratory assays. We investigated how L. maackii leachate interacts with abiotic conditions and with the soil microbial community. First, we tested the effects of leaf extract from L. maackii on germination of the native woodland herb, Blephilia hirsuta, under different light and soil conditions. We found that germination of Blephilia hirsuta was reduced by L. maackii extract, but abiotic conditions did not interact with this effect. We also tested the effects of leaf extract on germination of five native woodland species and L. maackii placed in sterile or live soil. There was an overall suppressive effect of L. maackii extract on itself and the other five native species tested. However, L. maackii extract interacted with live soil in ways that differed with the species being tested and, in some cases, changed over time. Our results indicate that allelopathic potential of L. maackii shows context dependency with respect to soil microorganisms and native species identity but not to light conditions or soil type. Our results imply that restoration of invaded areas may require active reintroduction of species sensitive to allelopathy in live soil. Further, laboratory assays of allelopathy should consider the interaction of allelochemicals with biotic and abiotic conditions to more accurately predict the impacts of allelopathy on plant communities.  相似文献   

8.
Question: Will a non‐indigenous, invasive, understorey shrub, such as Lonicera maackii (Amur honeysuckle) have an impact on the productivity of overstorey trees in hardwood forests? Location: Trees from 12 invaded and four non‐invaded sites were sampled in hardwood forests of southwestern Ohio, US. Methods: Changes in radial and basal area tree growth in the ten years prior to L. maackii invasion vs. ten years after invasion were examined using dendrochronological techniques. Intervention analysis was used to detect growth changes 25 years prior to and 25 years following invasion, and estimates of load impacts for L. maackii population and biomass were also calculated. Results: We found that the rate of radial and basal area growth of overstorey trees was reduced significantly in eleven out of twelve invaded sites. Non‐invaded sites did not exhibit this consistent pattern of reduced growth. For invaded vs. non‐invaded sites, the mean basal area growth was reduced by 15.8%, and the overall rate of basal area growth was reduced by 53.1%. Intervention analysis revealed that the first significant growth reductions were 6.25 ± 1.24 (mean ± SE) years after invasion with the greatest frequency of negative growth changes occurring 20 years after invasion. In invaded stands, 41% of trees experienced negative growth changes. In terms of invasive load estimates per 1000 L. maackii individuals, radial tree growth was reduced by 0.56 mm.a?1, and basal area growth was reduced by 0.74 cm2.a?1, Given these findings, significant economic losses could occur in hardwood forests of Ohio. Conclusions: To our knowledge, this is the first study using dendrochronological techniques to investigate the impact of a non‐indigenous, understorey plant on overstorey tree growth. Active management will likely be needed to maintain forest productivity in L. maackii impacted landscapes.  相似文献   

9.
Invasive plants are often associated with reduced cover of native plants, but rarely has competition between invasives and natives been assessed experimentally. The shrub Lonicera maackii, native to northeastern Asia, has invaded forests and old fields in numerous parts of eastern North America, and is associated with reduced tree seedling density in Ohio forests. A field experiment was conducted to test the effects of established L. maackii on the survival and growth of transplanted native tree species. The experiment examined above-ground competition (by removing L. maackii shoots) and below-ground competition (by trenching around transplanted seedlings). The effects of above-ground competition with L. maackii were generally more important than below-ground competition, though both were detected. Shoot treatment was the key determinant for the survival of all species except P. serotina, whereas trenching only enhanced survival for A. saccharum caged and P. serotina, and only in the shoot removal treatment. For the surviving seedlings, L. maackii shoot removal increased growth of A. saccharum seedlings protected with cages, but actually reduced the growth of unprotected Q. rubra and A. saccharum seedlings, indicating that L. maackii shoots confer some protection from deer browsing. Significant interactions between root and shoot treatment on Q. rubra growth parameters, specifically greatest growth in the shoot present & trenched treatment, is attributed to protection from deer browsing combined with release from below-ground competition. Despite this protective function of L. maackii shoots, the overall effect of this invasive shrub is increased mortality of native tree seedlings, suggesting it impacts the natural regeneration of secondary forests.  相似文献   

10.
Miller KE  Gorchov DL 《Oecologia》2004,139(3):359-375
Effects of invasive plant species on native plant species are frequently assumed or inferred from comparisons, but rarely quantified experimentally. Such quantification is important to assessing risks and impacts of invasives. We quantified the effects of Lonicera maackii, an exotic shrub invasive in many eastern North American forests, on survival, growth, and reproduction of three perennial herbs: Allium burdickii, Thalictrum thalictroides , and Viola pubescens. We predicted that the spring ephemeral, A. burdickii , would be most impacted, due to early leaf expansion of L. maackii. Field experiments were carried out in two deciduous forest stands, one (Greggs Woodlot, GW) disturbed and the other (Western Woods, WW) relatively undisturbed. In each stand, individual herbs were transplanted into a blocked design of 60 plots where L. maackii was present, absent, or removed, and monitored for 5 growing seasons. Lonicera maackii did not affect survival of transplants, but reduced growth and final size of individuals of all three species. For two of the species, A. burdickii and V. pubescens, L. maackii reduced the proportion of live plants flowering in both stands, and reduced the seed or fruit number per flowering individual in GW. For T. thalictroides the proportion flowering was not affected, but seed number per flowering plant was reduced by L. maackii in both stands. For all three species, cumulative seed production over the course of the study was reduced by L. maackii. Overall, effects on the spring ephemeral, A. burdickii, were similar to effects on the other herbs. Because mortality of these established individuals was not affected, short-term studies might conclude forest herbs are unaffected by invasive shrubs. However, the growth and reproduction impacts documented here suggest that populations are impacted in the long-term.  相似文献   

11.
The ability of plant communities to recover after non-native species invasion will depend upon the nature of their soil seed bank and seed rain characteristics. This study assessed changes in the soil seed bank and seed rain associated with the invasion of the non-native shrub Cytisus scoparius in subalpine vegetation. Soil seed bank and seed rain composition, density and richness were investigated at three areas of different stages of invasion: (i) recent (8–10 years), (ii) mature (15–16 years) and (iii) long-term (25 years). There were few changes in seed bank composition or richness regardless of invasion stage. By contrast, the seed rain composition, richness and density was substantially different within long-invaded areas. Very few seeds were able to colonise the dense barrier characteristic of larger, more mature C. scoparius stands. Some prominent herbs from the native vegetation were under-represented or absent from the seed bank, both in invaded and uninvaded areas. Laboratory germination experiments demonstrated that most native species germinate easily, which may imply a transient seed bank, rather than a persistent one. The majority of herbaceous and shrub species were capable of resprouting vegetatively. Therefore, regeneration appeared more reliant on the bud and tuber bank than a persistent soil seed bank. The dominance of graminoid species and C. scoparius rather than other herbaceous, shrub or tree species suggests that the regenerating vegetation will be dominated by grass species and/or C. scoparius. Hence, in areas where long-invaded C.␣scoparius stands are present the recovery of native subalpine vegetation maybe difficult. Recovery may only be possible through wind dispersal from the surrounding intact vegetation or through actively reseeding the area. This study highlights the importance of early intervention in invasive species management.  相似文献   

12.
In addition to effects mediated by resource competition, some invasive plants may impact surrounding vegetation by secreting compounds that are directly inhibitory to growth. Lonicera maackii, an invasive Asian shrub of forests and open areas in eastern and midwestern North America, has devastating effects on understory vegetation, some of which persist even after this shrub is removed. In this study, we explored the potential of aqueous extracts of the leaves and roots of this plant to inhibit seed germination of Impatiens capensis, Alliaria petiolata, Arabidopsis thaliana, and L. maackii in Petri dish bioassays. Both L. maackii root and leaf extracts significantly decreased germination in the three herb species. This inhibitory effect generally increased with increasing extract concentration and was more pronounced with application of leaf extract than root extract. However, when the same extracts were applied to seeds of L. maackii itself, germination was delayed in some cases, but was not significantly reduced by the end of the experiment. Germination of L. maackii seeds even reached significantly higher levels in some extract treatments than in no-extract controls. This implies that L. maackii can successfully inhibit the germination of other plants with few autotoxic effects and may even promote the germination of its own seeds.  相似文献   

13.
包括紫茎泽兰在内的许多外来植物都能够与新入侵生境的丛枝菌根真菌( AMF)形成互利共生,因此菌根真菌如何调节外来植物种的入侵是当前亟待研究的问题。测定了紫茎泽兰入侵不同阶段(紫茎泽兰呈零星丛状分布于本地植物群落中[部分入侵生境]及紫茎泽兰单优群落形成期[入侵生境])的土壤化学性状,而后通过野外试验,采用杀真菌剂处理,研究了包括AMF在内的土壤真菌对紫茎泽兰入侵的反馈作用。紫茎泽兰入侵改变了土壤化学性状。施用杀真菌剂降低了紫茎泽兰叶面积、叶片碳、氮、磷、和δ13 C含量。综合分析发现,在紫茎泽兰与本地植物混生群落中,土壤真菌能够增加紫茎泽兰叶片碳和δ13 C含量,但是不能提高紫茎泽兰的光合作用,表明碳和δ13 C含量的提高,不是光合作用的结果,而是通过其他机制实现的。因此可以得出,在部分入侵生境中,碳从土壤或临近植物经由菌丝网向紫茎泽兰转移。紫茎泽兰入侵不同阶段土壤养分的变化利于紫茎泽兰种群建立,同时利于紫茎泽兰借助真菌(尤其是AMF)从土壤或临近植物转移碳,促进种群扩散,这可能是紫茎泽兰入侵的机制之一。  相似文献   

14.
Abstract Invasive woody species frequently change the composition of the established vegetation and the properties of the soil under their canopies. Accordingly, invasion may well affect regenerative phases of the community, especially at the seed bank level, likely influencing community restoration. Pyracantha angustifolia (Rosaceae) is an invasive shrub in central Argentina that affects woody recruitment, particularly enhancing the recruitment of other exotic woody species. There is though no information regarding its effect on the soil seed bank within the invaded community. The present study was set up to gain further insight into the canopy effects of P. angustifolia. We aimed to assess whether the invasive shrub affects seed bank composition, richness and seed density as compared with the dominant native shrub Condalia montana (Rhamnaceae), and to relate the observed seed bank patterns with those of the established vegetation. We evaluated the composition of the germinable seed bank and the established vegetation under the canopy of 16 shrubs of P. angustifolia, 16 shrubs of C. montana, and in 16 control plots (10 m2) without shrub cover. The floristic composition of the seed bank differed among canopy treatments. However, seed bank richness did not differ significantly. There was an overall high seed density of exotic species throughout the study site, though exotic forbs showed significantly lower seed densities under the invasive shrub. Pyracantha angustifolia would not promote the incorporation of new species into the seed bank of the invaded community but rather favour the establishment of woody species that do not depend on seed banks. The absence of dominant woody species in the seed bank, the dominance of exotic forbs, and the high similarity between established exotic species and those present in the seed bank may surely affect community restoration following the main disturbances events observed in the region.  相似文献   

15.
Several factors have been identified as relevant in determining the abundance of non-native invasive species. Nevertheless, the relative importance of these factors will vary depending on the invaded habitat and the characteristics of the invasive species. Due to their harsh environmental conditions and remoteness, high-alpine habitats are often considered to be at low risk of plant invasion. However, an increasing number of reports have shown the presence and spread of non-native plant species in alpine habitats; thus, it is important to study which factors control the invasion process in these harsh habitats. In this study, we assessed the role of disturbance, soil characteristics, biotic resistance and seed rain in the establishment and abundance of the non-native invasive species Taraxacum officinale (dandelion) in the Andes of central Chile. By focusing on human-disturbed patches, naturally disturbed patches, and undisturbed patches, we did not find that disturbance per se, or its origin, affected the establishment and abundance of T. officinale. The abundance of this non-native invasive species was not negatively related to the diversity of native species at local scales, indicating no biotic resistance to invasion; instead, some positive relationships were found. Our results indicate that propagule pressure (assessed by the seed rain) and the abiotic soil characteristics are the main factors related to the abundance of this non-native invasive species. Hence, in contrast to what has been found for more benign habitats, disturbance and biotic resistance have little influence on the invasibility of T. officinale in this high-alpine habitat.  相似文献   

16.
Invasion of habitats by exotic shrubs is often associated with a decrease in the abundance of native species, particularly trees. This is typically interpreted as evidence for direct resource competition between the invader and native species. However, this may also reflect indirect impacts of the exotic shrubs through harboring high densities of seed predators––known as apparent competition. Here I present data from separate seed predation experiments conducted with two shrub species exotic to North America; Rosa multiflora, an invader of abandoned agricultural land, and Lonicera maackii, an invader of disturbed or secondary forest habitats. Both experiments showed significantly greater risks of seed predation for tree seeds located under shrub canopies when compared to open microhabitats within the same site. These results indicate the potential importance of indirect impacts of exotic species invasions on native biota in addition to the direct impacts that are typically the focus of research.  相似文献   

17.
  • Soil fungal communities play an important role in the successful invasion of non‐native species. It is common for two or more invasive plant species to co‐occur in invaded ecosystems.
  • This study aimed to determine the effects of co‐invasion of two invasive species (Erigeron annuus and Solidago canadensis) with different cover classes on soil fungal communities using high‐throughput sequencing.
  • Invasion of E. annuus and/or Scanadensis had positive effects on the sequence number, operational taxonomic unit (OTU) richness, Shannon diversity, abundance‐based cover estimator (ACE index) and Chao1 index of soil fungal communities, but negative effects on the Simpson index. Thus, invasion of E. annuus and/or Scanadensis could increase diversity and richness of soil fungal communities but decrease dominance of some members of these communities, in part to facilitate plant further invasion, because high soil microbial diversity could increase soil functions and plant nutrient acquisition. Some soil fungal species grow well, whereas others tend to extinction after non‐native plant invasion with increasing invasion degree and presumably time. The sequence number, OTU richness, Shannon diversity, ACE index and Chao1 index of soil fungal communities were higher under co‐invasion of E. annuus and Scanadensis than under independent invasion of either individual species.
  • The co‐invasion of the two invasive species had a positive synergistic effect on diversity and abundance of soil fungal communities, partly to build a soil microenvironment to enhance competitiveness of the invaders. The changed diversity and community under co‐invasion could modify resource availability and niche differentiation within the soil fungal communities, mediated by differences in leaf litter quality and quantity, which can support different fungal/microbial species in the soil.
  相似文献   

18.

Aims

Non-native shrubs are important invaders of the Eastern Deciduous Forest, dramatically altering forest structure and functioning. Study of invasion mechanisms in this system has emphasized aboveground processes, and plant-soil feedbacks are relatively unexplored as a mechanism of shrub dominance. We tested whether plant-soil feedback in this habitat is affected by competition and whether arbuscular mycorrhizal fungi (AMF) are involved in plant-soil feedback.

Methods

We used a standard two-phase plant-soil feedback experiment run concurrently for each of three invasive shrub species, measuring feedback effects on AMF colonization, aboveground biomass, and the responses of native plant species in greenhouse mesocosms.

Results

Lonicera maackii and Ligustrum vulgare reduced AMF colonization of native roots, both with legacy effects (prior growth in soil) and direct effects (current growth in soil). Elaeagnus umbellata grown with natives left a legacy of increased AMF colonization of native communities.

Conclusions

Our results suggest that woody invasive species can alter the AMF associations of native plants even after the invasive is no longer present. Such consequences merit study with other native species and where environmental factors, such as light availability, might be expected to compound the effects of changes in AMF.  相似文献   

19.
Question: How resilient is the seed bank of an invaded dune system? Is that resilience dependent on duration of invasion? How does the accumulated litter layer contribute to the soil seed bank? Location: Coastal sand dunes invaded by Acacia longifolia, Portugal. Methods: Seedling emergence was used to quantify and compare soil seed banks in long‐invaded, recently invaded and non‐invaded areas. Changes in seed banks were also compared with areas where A. longifolia and the litter layer were removed. Results: Species richness, seedling density and diversity were higher in non‐invaded and recently‐invaded areas than in long‐invaded areas. Although there was an apparent similarity between non‐invaded and recently‐invaded areas, analyses of species traits revealed differences. Non‐invaded areas had a wider array of traits. Exotic/invasive species dominated invaded seed banks while native species dominated non‐invaded seed banks. Life forms, growth forms, longevity and dispersal mode showed differences between areas, with cleared plots of long‐invaded areas being apparently the most similar to non‐invaded plots. Acacia longifolia seeds were most abundant in long‐invaded areas, particularly where the litter layer remained. Removal of A. longifolia plus the litter had little effect on the seed bank composition of recently‐invaded areas but resulted in noticeable changes in seed banks of long‐invaded areas. Conclusions: Long‐invaded areas are less resilient and show a higher reinvasion potential, despite severe alteration of the seed banks of both areas. Seed bank studies can be a useful tool to guide management, but can give misleading results when invasion periods are protracted.  相似文献   

20.
Biological plant invasions pose a serious threat to native biodiversity and have received much attention, especially in terrestrial habitats. In freshwater ecosystems impacts of invasive plant species are less studied. We hypothesized an impact on organisms from the water column and from the sediment. We then assessed the impact of three aquatic invasive species on the plants and macroinvertebrates: Hydrocotyle ranunculoides, Ludwigia grandiflora and Myriophyllum aquaticum. Our research on 32 ponds in Belgium indicated that the reduction in the native plant species richness was a common pattern to invasion. However, the magnitude of impacts were species specific. A strong negative relationship to invasive species cover was found, with submerged vegetation the most vulnerable to the invasion. Invertebrate richness, diversity and abundance were measured in sediments of invaded and uninvaded ponds along a gradient of H. ranunculoides, L. grandiflora, and M. aquaticum species cover. We found a strong negative relationship between invasive species cover and invertebrate abundance, probably due to unsuitable conditions of the detritus for invertebrate colonization. Taxonomic compositions of aquatic invertebrate assemblages in invaded ponds differed from uninvaded ponds. Sensitive benthos, such as mayflies were completely absent in invaded ponds. The introduction of H. ranunculoides, L. grandiflora, and M. aquaticum in Belgian ponds has caused significant ecological alterations in the aquatic vegetation and the detritus community of ponds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号