首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As ploidy level and mating system can affect genetic diversity and differentiation, we conducted population genetic analyses of two closely related mosses, Scorpidium cossonii (Schimp.) Hedenäs, and S. revolvens (Sw. ex Anonymo) Rubers which differ in ploidy level and sexual system. We collected 315 specimens in total from five populations of S. cossonii and four populations of S. revolvens in the Swiss Alps. Ploidy level, genetic diversity within populations, and genetic differentiation between populations and species were estimated using nine microsatellite markers. In each S. cossonii sample, each locus bore only one allele, while in S. revolvens, seven out of the nine loci were fixed or nearly fixed for two alleles per locus per individual. These findings are consistent with a gametophytic haploid S. cossonii and allodiploid S. revolvens. The haploid and dioicous S. cossonii was genetically more diverse than the (allo)diploid and monoicous S. revolvens. Differences in genetic diversity between the two species may be explained by different mating systems, different population sizes, and different population histories. Genetic differentiation among populations of S. cossonii was higher than among those of S. revolvens. The low genetic differentiation among populations of the monoicous species was not unexpected, since monoicous species frequently produce sporophytes, long-distance spore dispersal is more likely and leads to low differentiation.  相似文献   

2.
Aim The distribution of the genetic variation in long‐lived species is a combination of both, historical and current processes. In Nothofagus nervosa (Phil.) Dim. et Mil., the possible existence of multiple glacial refugia, the unidirectional gene flow along fragmented areas and the natural hybridization with the related species Nothofagus obliqua (Mirb.) Oerst. highlights as the most important factors responsible for modelling its genetic structure. The present study aims to find out the relative importance of these evolutionary processes in determining the distribution pattern of the genetic variation in N. nervosa. Location The study was carried out in north‐western Patagonia, Argentina. Twenty populations covering the entire distribution range of N. nervosa in Argentina were analysed. For comparison purposes, three populations from Chile were also included. Methods Genetic variation was detected using isozyme gene markers; diversity and differentiation parameters were calculated. A cluster analysis was performed and the correlation between genetic and geographical distances was tested. Results Levels of genetic variation were relatively high given the small distribution range of the species in Argentina. Genetic and geographical distances were not correlated and a longitudinal trend in the genetic variation was evident. Hotspots of diversity with rare and private alleles were observed among western populations, while hybrid seeds were found almost exclusively among eastern populations. Main conclusions The higher level of diversity observed in western populations could be related with the location of glacial refugia. Furthermore, it should also reflect low levels of gene flow given the eastward unidirectional winds. On the contrary, ancient and current interspecific hybridization processes would mainly cause the particular genetic constitution of the eastern populations. Evidence is presented supporting that glaciations and hybridization were the main factors shaping the distribution of the genetic variation in N. nervosa.  相似文献   

3.
Interplay between the complex geography, hydrogeomorphological history, past climatic changes, and anthropogenic pressures is likely responsible for the current diversity and species' distribution of freshwater fishes in the Iberian Peninsula. To further disentangle the evolutionary processes promoting the diversification of endemic Iberian Cyprinids through time and space, we explored the patterns of genetic diversity of the Iberian arched‐mouth nase, Iberochondrostoma lemmingii (Steindachner, 1866), using molecular markers rendering at different timescales: the mitochondrial gene cytochrome b and seven microsatellite loci. Both markers showed significant differentiation of populations though the relative genetic distances among populations were different between markers. Mitochondrial DNA results indicate the isolation of hydrographic basins as the main driver of population differentiation, with Tejo as the centre of diversification. The results also support connections between Tejo, Guadiana, and Guadalquivir, with levels of divergence suggesting an earlier severance of Guadalquivir, whereas Guadiana and Tejo maintained connections until a more recent past. Establishment of more peripherial populations in small southern basins (Quarteira and Almargem) could have been ruled by founder events. However, the analysis of present‐day genetic configuration suggested by microsatellite data implies, for the first time, the involvement of other factors in the evolution of arched‐mouth Iberian nase populations. Relative low genetic distances between inter‐basin populations (Tejo and Guadiana) and the lack of concordance between differentiation and geography suggest a possible influence of human‐mediated translocations in the population genetic patterns of I. lemmingii. High intra‐basin differentiation levels were found within Tejo and Guadiana and may be associated with factors intrinsic to the species (e.g. low dispersal capability) or natural and/or artificial barriers to gene flow. The low vagility of the species appears to be an important factor influencing the evolutionary processes shaping the phylogeographical patterns of I. lemmingii, which could be relevant for the conservation of this threatened species. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 559–572.  相似文献   

4.
Brasenia schreberi J.F. Gmelin is a declared endangered species found in the lakes and ponds of South Korea. For planning its conservation strategy, we examined the genetic diversity within and among six populations, using randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). Polymorphisms were more frequently detected per loci with AFLP (69.3%) than RAPD (36.8%). High genetic diversity was recognized within populations: polymorphic loci (PPL) values ranged from 36.3% in the CJM population to 74.5% in the GGT population, with a mean value of 47.8% based on AFLP markers. Great genetic differentiation (θB) was detected among the six populations (0.670 on RAPD and 0.196 on AFLP), and we calculated a low rate of gene flow (Nem), i.e., 0.116 on RAPD and 0.977 on AFLP. Furthermore, a Mantel test revealed that no correlation existed between genetic distances and geographical distances among the six local populations, based on RAPD or AFLP markers. These results are attributed to a number of factors, including an insufficient length of time for genetic diversity to be reduced following a natural decline in population size and isolation, adaptation of the genetic system to small population conditions, and a restricted gene flow rate. Based on both its genetic diversity and population structure, we suggest that a strategy for conserving and restoringB. schreberi must focus on maintaining historical processes, such as high levels of outbreeding, while monitoring increased gene flow among populations. This is because a reduction in genetic diversity as a result of genetic drift is undesirable.  相似文献   

5.
The distribution of Nepenthes mirabilis ranges from Northeast (NE) to South (S) Thailand. Eleven individuals from NE, S and Suen Jatujak market in Bangkok, Central (C) Thailand, were collected and divided into four populations according to their geographical areas. These four populations were analyzed to determine a genetic diversity profile using thirteen inter-simple sequence repeat markers. The individuals produced 75.18% polymorphic banding profiles. The Shannon’s index was used to estimate genetic diversity. Total genetic diversity (H T) and inter-population genetic diversity (H S) were 0.854 and 0.678, respectively. The degree of genetic differentiation (G ST) of the species populations is 0.206, whereas the gene flow (Nm) among all the various geographical area populations is 1.016. Both the dendrogram and the results of the Shannon’s diversity index suggest great genetic diversity. These results support the broad range of distribution sites of Nepenthes mirabilis, which would require high genetic diversity to adapt to the environmental variations that can be found between NE, C, and S Thailand. ANOVA shows that the genetic diversity in each population is not significantly different (P > 0.05). Mantel tests reveal that geographical distance is an important factor for affecting the genetic distances among populations.  相似文献   

6.
Mejía O  Polaco OJ  Zúñiga G 《Genetica》2004,122(3):325-333
Lampreys are the only surviving representatives of the oldest known vertebrates. The Mexican lamprey L. geminis (nonparasitic), is particularly interesting, because it is an endemic, biogeographical relict, and a threatened species. RAPD markers were used to describe genetic diversity in L. geminis A total of 77 specimens were collected from five populations, three in the R'o Grande de Morelia-Cuitzeo basin and two in the R'o Duero-Lerma-Chapala basin, Mexico. Eighty-eight RAPD markers were obtained from eight primers. Genetic diversity within each population was estimated using Shannon's index (S), heterozygosity (H) and gene diversity (h). These estimates revealed significant variation within populations, although a variance homogeneity test (HOMOVA) showed no significant differences among populations or between basins. Nei genetic distance values indicate a low genetic differentiation among populations. Analysis of molecular variance (AMOVA) indicates that most of the genetic diversity occurs within populations (91.4%), but that a statistically significant amount is found among populations (P0.001). Principal coordinates and cluster analyses of RAPD phenotypes show that specimens are not grouped by geographical origin. The genetic diversity found within L. geminispopulations may be explained by its breeding system and an overlapping of generations. The scarce genetic differentiation among populations is likely to the low rate of DNA change that characterizes the lamprey group.  相似文献   

7.
The genetic consequences of population fragmentation and isolation are major issues in conservation biology. In this study we analyse the genetic variability and structure of the Iberian populations of Mioscirtus wagneri, a specialized grasshopper exclusively inhabiting highly fragmented hypersaline low grounds. For this purpose we have used seven species‐specific microsatellite markers to type 478 individuals from 24 localities and obtain accurate estimates of their genetic variability. Genetic diversity was relatively low and we detected genetic signatures suggesting that certain populations of M. wagneri have probably passed through severe demographic bottlenecks. We have found that the populations of this grasshopper show a strong genetic structure even at small geographical scales, indicating that they mostly behave as isolated populations with low levels of gene flow among them. Thus, several populations can be regarded as independent and genetically differentiated units which require adequate conservation strategies to avoid eventual extinctions that in highly isolated localities are not likely to be compensated for with the arrival of immigrants from neighbouring populations. Overall, our results show that these populations probably represent the ‘fragments’ of a formerly more widespread population and highlight the importance of protecting Iberian hypersaline environments due to the high number of rare and endangered species they sustain.  相似文献   

8.
Scattered patches of Polylepis forest that occur within the 3,000–4,500 m altitudinal belt of the Andean Cordillera from Venezuela to Argentina have been hypothesized to be remnants of once continuous forests whose range became fragmented through anthropogenic activities that probably preceded the Spanish conquest. Allozyme variation of Polylepis pauta from 12 forest populations in three adjacent watersheds in Northeastern Ecuador was investigated to assess whether observed patterns of gene diversity were consistent with a more continuous historical range of the species and to evaluate the populations’ potential for restoration. Genetic diversity and polymorphism in P. pauta populations were higher than mean values for most wind pollinated and dispersed temperate and tropical tree species with regional distributions. Genetic differentiation among watersheds was lower than among populations within each watershed. Isolation by distance was not evident and several populations from different watersheds were more genetically similar than populations from the same watershed. Larger forest patches with broader altitudinal ranges had more alleles. Forest patches on steeper slopes and at higher elevations supported populations with less genetic diversity; this might have resulted from the predominance of vegetative reproduction in these landslide prone areas. The amount of genetic diversity maintained by P. pauta, coupled with low genetic differentiation among populations within and among watersheds, is consistent with a more continuous historical range of the species in Northeastern Ecuador and point to the Oyacachi basin as having the highest levels of genetic diversity.  相似文献   

9.
Geographic distance and geographical barriers likely play a considerable role in structuring genetic variation in species, although some migratory species may have less phylogeographic structure on a smaller spatial scale. Here, genetic diversity and the phylogenetic structure among geographical populations of the yellow-spined bamboo locust, Ceracris kiangsu, were examined with 16S rDNA and amplified fragment length polymorphisms (AFLPs). In this study, no conspicuous phylogeographical structure was discovered from either Maximum parsimony (MP) and Neighbor-joining (NJ) phylogenetic analyses. The effect of geographical isolation was not conspicuous on a large spatial scale.At smaller spatial scales local diversity of some populations within mountainous areas were detected using Nei''s genetic distance and AMOVA. There is a high level of genetic diversity and a low genetic differentiation among populations in the C. kiangsu of South and Southeast China. Our analyses indicate that C. kiangsu is a monophyletic group. Our results also support the hypothesis that the C. kiangsu population is in a primary differentiation stage. Given the mismatch distribution, it is likely that a population expansion in C. kiangsu occurred about 0.242 Ma during the Quaternary interglaciation. Based on historical reports, we conjecture that human activities had significant impacts on the C. kiangsu gene flow.  相似文献   

10.
  1. Habitat fragmentation is one of the main threats to biodiversity. Barriers to dispersal caused by anthropogenic habitat alteration may affect phylogeographic patterns in freshwater mussels. Knowledge of the phylogenetic and phylogeographic patterns of unionoids is vital to inform protection of their biodiversity.
  2. Here, we assessed influences of dams and their environmental effects on the genetic diversity and population connectivity of a broadly distributed freshwater mussel, Nodularia douglasiae, in Poyang Lake Basin.
  3. The results showed high genetic diversity in areas without dams and low genetic diversity in areas with dams. High genetic differentiation and low gene flow were found among the 11 populations. Genetic variation was significantly correlated with dissolved oxygen levels.
  4. The observation of low genetic diversity in populations separated by dams indicated that those populations were subjected to genetic erosion and demographic decline because they are disconnected from other populations with higher diversity. High genetic differentiation and low gene flow among the 11 populations could be correlated with anthropogenic habitat alteration.
  5. These results indicated that anthropogenic habitat alterations have led to the decline in freshwater mussel diversity. Therefore, we recommend maintaining favourable habitat conditions and connectivity of rivers or lakes, and strengthening study of life histories with host-test experiments to identify potential host fish species to strengthen the knowledge base underpinning freshwater mussel conservation.
  相似文献   

11.
12.
Stipa capillata L. (Poaceae) is a rare grassland species in Central Europe that is thought to have once been widespread in post‐glacial times. Such relict species are expected to show low genetic diversity within populations and high genetic differentiation between populations due to bottlenecks, long‐term isolation and ongoing habitat fragmentation. These patterns should be particularly pronounced in selfing species. We analysed patterns of random amplified polymorphic DNA (RAPD) variation in the facultatively cleistogamous S. capillata to examine whether genetic diversity is associated with population size, and to draw initial conclusions on the migration history of this species in Central Europe. We analysed 31 S. capillata populations distributed in northeastern, central and western Germany, Switzerland and Slovakia. Estimates of genetic diversity at the population level were low and not related to population size. Among all populations, extraordinarily high levels of genetic differentiation (amova : φST = 0.86; Bayesian analysis: θB = 0.758) and isolation‐by‐distance were detected. Hierarchical amova indicated that most of the variability was partitioned among geographic regions (59%), or among populations between regions when the genetically distinct Slovakian populations were excluded. These findings are supported by results of a multivariate ordination analysis. We also found two different groups in an UPGMA cluster analysis: one that contained the populations from Slovakia, and the other that combined the populations from Germany and Switzerland. Our findings imply that Scapillata is indeed a relict species that experienced strong bottlenecks in Central Europe, enhanced by isolation and selfing. Most likely, populations in Slovakia were not the main genetic source for the post‐glacial colonization of Central Europe.  相似文献   

13.
Dipteronia is an endemic genus to China and includes only two species, Dipteronia sinensis and D. dyeriana. Based on random amplified polymorphic DNA (RAPD) markers, a comparative study of the genetic diversity and genetic structure of Dipteronia was performed. In total, 128 and 103 loci were detected in 17 D. sinensis populations and 4 D. dyeriana populations, respectively, using 18 random primers. These results showed that the proportions of polymorphic loci for the two species were 92.97% and 81.55%, respectively, indicating that the genetic diversity of D. sinensis was higher than that of D. dyeriana. Analysis, based on similarity coefficients, Shannon diversity index and Nei gene diversity index, also confirmed this result. AMOVA analysis demonstrated that the genetic variation of D. sinensis within and among populations accounted for 56.89% and 43.11% of the total variation, respectively, and that of D. dyeriana was 57.86% and 42.14%, respectively. The Shannon diversity index and Nei gene diversity index showed similar results. The abovementioned characteristics indicated that the genetic diversity levels of these two species were extremely similar and that the interpopulational genetic differentiation within both species was relatively high. Analysis of the genetic distance among populations also supported this conclusion. Low levels of interpopulational gene flow within both species were believed to be among the leading causes for the above-mentioned phenomenon. The correlation analysis between genetic and geographical distances showed the existence of a remarkably significant correlation between the genetic distance and the longitudinal difference among populations of D. sinensis (p < 0.01), while no significant correlation was found between genetic and geographical distances among populations of D. dyeriana. This indicated that genetic distance was correlated with geographical distances on a large scale rather than on a small scale. This result may be related to differences in the selection pressure on species by their habitats with different distribution ranges. We suggest that in situ conservation efforts should focus on establishing more sites to protect the natural populations and their habitats. Ex situ conservation efforts should focus on enhancing the exchange of seeds and seedlings among populations to facilitate gene exchange and recombination, and to help conserve genetic diversity. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(5): 785–792 [译自: 植物生态学报, 2005, 29(5): 785–792]  相似文献   

14.
Luo  Qianqian  Li  Fengqing  Yu  Longhua  Wang  Liyun  Xu  Gangbiao  Zhou  Zhichun 《Conservation Genetics》2022,23(1):63-74

Taxus mairei (Lemée & Lév.) S.Y. Hu ex T. S. Liu is a vulnerable tree species, and it is also a precious timber species in China. We used 13 microsatellites to assess the genetic diversity and differentiation of 665 T. mairei samples from 18 natural populations. A total of 291 alleles were detected. The average number of alleles (Na?=?22.39), expected heterozygosity (He?=?0.74), polymorphic information content (PIC?=?0.86) and Shannon diversity index (I?=?1.66) of the loci indicated a high level of genetic diversity in natural T. mairei populations. Moreover, gene flow was more active among populations (Nm?=?1.62) than within populations. Among the 18 populations, the Xinfeng population in Jiangxi Province has the highest genetic diversity. Although each of the studied populations should be protected from further deforestation and agricultural expansion, the Xinfeng population deserves the highest conservation priority. The results based on analysis of molecular variance showed that genetic variation occurred mainly within populations (84.90%; P?<?0.001), which indicated that the degree of genetic differentiation of the natural populations of T. mairei was low. Based on UPGMA, the 18 populations were categorized into two groups. A Mantel test showed that there was no significant correlation between standard genetic distance and geographical distance or altitude differences among the populations. The genetic clustering results also indicated that there are varying degrees of gene penetration among natural populations of T. mairei. The information presented here forms the basis for the development of genetic guidelines for appropriate conservation programs.

  相似文献   

15.
Theory predicts that genetic diversity and genetic differentiation may strongly vary among populations of the same species depending on population turnover and local population sizes. Yet, despite the importance of these predictions for evolutionary and conservation issues, empirical studies comparing high‐turnover and low‐turnover populations of the same species are scarce. In this study, we used Daphnia magna, a freshwater crustacean, as a model organism for such a comparison. In the southern/central part of its range, D. magna inhabits medium‐sized, stable ponds, whereas in the north, it occurs in small rock pools with strong population turnover. We found that these northern populations have a significantly lower genetic diversity and higher genetic differentiation compared to the southern/central populations. Total genetic diversity across populations was only about half and average within‐population diversity only about a third of that in southern/central populations. Moreover, an average southern population contains more genetic diversity than the whole metapopulation system in the north. We based our analyses both on silent sites and microsatellites. The similarity of our results despite the contrasting mutation rates of these markers suggests that the differences are caused by contemporary rather than by historical processes. Our findings show that variation in population turnover and population size may have a major impact on the genetic diversity and differentiation of populations, and hence may lead to differences in evolutionary processes like local adaptation, hybrid vigour and breeding system evolution in different parts of a species range.  相似文献   

16.
Aim To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations. Location The Swiss Alps and the Carpathians. Methods We screened 28 populations at three paternally inherited chloroplast simple sequence repeats (cpSSRs) for length variation in their mononucleotide repeats. Statistical analysis assessed haplotypic variation and fixation indices. Hierarchical analysis of molecular variance (AMOVA), Mantel test, spatial analysis of molecular variance (SAMOVA) and barrier analyses were applied to evaluate the geographical partitioning of genetic diversity across the species’ range. Results Haplotypic diversity was generally high throughout the natural range of P. cembra, with the mean value substantially higher in the Carpathians (H = 0.53) than in the Alps (H = 0.35). The isolated Carpathian populations showed the highest haplotype diversity among the populations originating from the High Tatras (Velka Studena Dolina) and South Carpathians (Retezat Mountains). AMOVA revealed that only 3% of the total genetic variation derived from genetic differentiation between the two mountain ranges. Differentiation among Carpathian populations was higher (FST = 0.19) than among Alpine populations (FST = 0.04). Low, but significant, correlation was found between the geographical and genetic distances among pairs of populations (r = 0.286, P < 0.001). SAMOVA results revealed no evident geographical structure of populations. barrier analysis showed the strongest differentiation in the eastern part of the species’ range, i.e. in the Carpathians. Main conclusions The populations of P. cembra within the two parts of the species’ range still share many cpDNA haplotypes, suggesting a common gene pool conserved from a previously large, continuous distribution range. Carpathian populations have maintained high haplotypic variation, even higher than Alpine populations, despite their small population sizes and spatial isolation. Based on our results, we emphasize the importance of the Carpathian populations of Swiss stone pine for conservation. These populations comprise private haplotypes and they may represent a particular legacy of the species’ evolutionary history.  相似文献   

17.
Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata, is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron, is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.  相似文献   

18.
The Mediterranean bath sponge Spongia officinalis is an iconic species with high socio‐economic value and precarious future owing to unregulated harvesting, mortality incidents and lack of established knowledge regarding its ecology. This study aims to assess genetic diversity and population structure of the species at different geographical scales throughout its distribution. For this purpose, 11 locations in the Eastern Mediterranean (Aegean Sea), Western Mediterranean (Provence coast) and the Strait of Gibraltar were sampled; specimens were analysed using partial mitochondrial cytochrome oxidase subunit I (COI) sequences, along with a set of eight microsatellite loci. According to our results (i) no genetic differentiation exists among the acknowledged Mediterranean morphotypes, and hence, S. officinalis can be viewed as a single, morphologically variable species; (ii) a notable divergence was recorded in the Gibraltar region, indicating the possible existence of a cryptic species; (iii) restriction to gene flow was evidenced between the Aegean Sea and Provence giving two well‐defined regional clusters, thus suggesting the existence of a phylogeographic break between the two systems; (iv) low levels of genetic structure, not correlated to geographical distance, were observed inside geographical sectors, implying mechanisms (natural or anthropogenic) that enhance dispersal and gene flow have promoted population connectivity; (v) the genetic diversity of S. officinalis is maintained high in most studied locations despite pressure from harvesting and the influence of devastating epidemics. These findings provide a basis towards the effective conservation and management of the species.  相似文献   

19.
Lu HP  Cai YW  Chen XY  Zhang X  Gu YJ  Zhang GF 《Genetica》2006,128(1-3):409-417
Heptacodium miconioides Rehd. is an endangered species endemic to China and has suffered rapid decrease of distribution range and population size. This species has been disappeared in central China where the modal specimen was collected. We analyzed the genetic variation of the remaining populations to reveal whether the genetic diversity also suffered decrease and to provide some suggestions for conservation. All the nine known remaining populations were sampled. Genetic variation was analyzed based on RAPD markers and two fragments of cpDNA sequence, intergenic spacers of petG-trnP and trnS-trnG. No variation was observed in the two fragments of cpDNA sequence. However, the species exhibited high level of RAPD variation compared to other threatened or rare plants. Measures of genetic diversity within populations were strongly related to the log of estimated population size, indicating that large populations usually have more genetic diversity than that of small ones. About 25% of the variation was partitioned among populations. Significant relationship was observed between differentiation and geographical distance, indicating a pattern of isolation-by-distance. Given for few populations remaining, all the populations should be protected and urgent efforts be paid on the small populations to avoid their local extinction.  相似文献   

20.
Li T  Zhang M  Qu Y  Ren Z  Zhang J  Guo Y  Heong KL  Villareal B  Zhong Y  Ma E 《Genetica》2011,139(4):511-524
The rice grasshopper, Oxya hyla intricata, is a rice pest in Southeast Asia. In this study, population genetic diversity and structure of this Oxya species was examined using both DNA sequences and AFLP technology. The samples of 12 populations were collected from four Southeast Asian countries, among which 175 individuals were analysed using mitochondrial DNA cytochrome c oxidase subunit I (COI) sequences, and 232 individuals were examined using amplified fragment length polymorphisms (AFLP) to test whether the phylogeographical pattern and population genetics of this species are related to past geological events and/or climatic oscillations. No obvious trend of genetic diversity was found along a latitude/longitude gradient among different geographical groups. Phylogenetic analysis indicated three deep monophyletic clades that approximately correspond to three geographical regions separated by high mountains and a deep strait, and TCS analysis also revealed three disconnected networks, suggesting that spatial and temporal separations by vicariance, which were also supported by AMOVA as a source of the molecular variance presented among groups. Gene flow analysis showed that there had been frequent historical gene flow among local populations in different regions, but the networks exhibited no shared haplotype among populations. In conclusion, the past geological events and climatic fluctuations are the most important factor on the phylogeographical structure and genetic patterns of O. hyla intricata in Southeast Asia. Habitat, vegetation, and anthropogenic effect may also contribute to gene flow and introgression of this species. Moreover, temperature, abundant rainfall and a diversity of graminaceous species are beneficial for the migration of O. hyla intricata. High haplotype diversity, deep phylogenetic division, negative Fu’s F s values and unimodal and multimodal distribution shapes all suggest a complicated demographic expansion pattern of these O. hyla intricata populations, which might have been caused by climatic oscillations during glacial periods in the Quaternary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号