首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LF Lin  SP Chiu  MJ Wu  PY Chen  JH Yen 《PloS one》2012,7(8):e43304
Luteolin (3',4',5,7-tetrahydroxyflavone), a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132) in PC12 cells. The correlation between miR-132 knockdown and a decrease in luteolin-mediated neurite outgrowth may indicate a mechanistic link by which miR-132 functions as a mediator for neuritogenesis. Furthermore, we find that luteolin led to the phosphorylation and activation of cAMP response element binding protein (CREB), which is associated with the up-regulation of miR-132 and neurite outgrowth. Moreover, luteolin-induced CREB activation, miR-132 expression and neurite outgrowth were inhibited by adenylate cyclase, protein kinase A (PKA) and MAPK/ERK kinase 1/2 (MEK1/2) inhibitors but not by protein kinase C (PKC) or calcium/calmodulin-dependent protein kinase II (CaMK II) inhibitors. Consistently, we find that luteolin treatment increases ERK phosphorylation and PKA activity in PC12 cells. These results show that luteolin induces the up-regulation of miR-132, which serves as an important regulator for neurotrophic actions, mainly acting through the activation of cAMP/PKA- and ERK-dependent CREB signaling pathways in PC12 cells.  相似文献   

2.
The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data indicating a survival-promoting effect of NCAM-stimulation by C3 on cerebellar and dopaminergic neurones induced to undergo apoptosis. This protective effect of C3 included an inhibition of both DNA-fragmentation and caspase-3 activation. The survival-promoting effect of NCAM-stimulation was also shown to be dependent on PI3K.  相似文献   

3.
We found in the present study that stimulation of the A(2A) adenosine receptor (A(2A)-R) using an A(2A)-selective agonist (CGS21680) rescued the blockage of nerve growth factor (NGF)-induced neurite outgrowth when the NGF-evoked MAPK cascade was suppressed by an MEK inhibitor (PD98059) or by a dominant-negative MAPK mutant (dnMAPK). This action of A(2A)-R (designated as the A(2A)-rescue effect) can be blocked by two inhibitors of protein kinase A (PKA) and was absent in a PKA-deficient PC12 variant. Activation of the cAMP/PKA pathway by forskolin exerted the same effect as that by A(2A)-R stimulation. PKA, thus, appears to mediate the A(2A)-rescue effect. Results from cAMP-response element-binding protein (CREB) phosphorylation at serine 133, trans-reporting assays, and overexpression of two dominant-negative CREB mutants revealed that A(2A)-R stimulation led to activation of CREB in a PKA-dependent manner and subsequently reversed the damage of NGF-evoked neurite outgrowth by PD98059 or dnMAPK. Expression of an active mutant of CREB readily rescued the NGF-induced neurite outgrowth impaired by dnMAPK, further strengthening the importance of CREB in the NGF-mediated neurite outgrowth process. Moreover, simultaneous activation of the A(2A)-R/PKA/CREB-mediated and the phosphatidylinositol 3-kinase pathways caused neurite outgrowth that was not suppressed by a selective inhibitor of TrkA, indicating that transactivation of TrkA was not involved. Collectively, CREB functions in conjunction with the phosphatidylinositol 3-kinase pathway to mediate the neurite outgrowth process in PC12 cells.  相似文献   

4.
The functions of the extracellular domains of neural cell adhesion molecule (NCAM) have been studied extensively, whereas the roles of the cytoplasmic domains of the transmembrane forms of NCAM are less elucidated. We investigated the importance of the cytoplasmic domain of the 140-kDa NCAM isoform (cytNCAM-140) and of the 180-kDa NCAM isoform (cytNCAM-180) in NCAM-induced neurite extension by estimating NCAM-dependent neurite outgrowth from PC12-E2 cells grown in coculture with NCAM-negative or NCAM-positive fibroblasts. PC12-E2 cells were transiently transfected with expression plasmids encoding cytNCAM-140, cytNCAM-180, the constitutively active form of the mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase kinase (MEK2), and the enhanced variant of the green fluorescent protein (EGFP). EGFP expression was used for identification of transfected cells. We found that expression of cytNCAM-180 had no effect on NCAM-stimulated neuritogenesis, whereas expression of cytNCAM-140 strongly inhibited this process. However, if MEK2 was expressed concomitantly with cytNCAM-140, neurite outgrowth was rescued, indicating that cytNCAM-140 is involved in signaling via the Ras-MAP kinase pathway. PC12-E2 cells were subsequently transiently transfected with constructs encoding a series of fragments of cytNCAM-140 and various full-length cytNCAM-140 mutants, and the residues Thr-Glu-Val-Lys-Thr (839-843) were identified as essential in NCAM-stimulated neuritogenesis. The combined substitution of Glu(840) and Lys(842) with Ala abrogated the effect of the construct, assigning a critical role to these two residues.  相似文献   

5.
6.
The present study examined the role of phospholipase D2 (PLD2) in the regulation of depolarization-induced neurite outgrowth and the expression of growth-associated protein-43 (GAP-43) and synapsin I in rat pheochromocytoma (PC12) cells. Depolarization of PC12 cells with 50 mmol/L KCl increased neurite outgrowth and elevated mRNA and protein expression of GAP-43 and synapsin I. These increases were suppressed by inhibition of Ca2+-calmodulin-dependent protein kinase II (CaMKII), PLD, or mitogen-activated protein kinase kinase (MEK). Knockdown of PLD2 by small interfering RNA (siRNA) suppressed the depolarization-induced neurite outgrowth, and the increase in GAP-43 and synapsin I expression. Depolarization evoked a Ca2+ rise that activated various signaling enzymes and the cAMP response element-binding protein (CREB). Silencing CaMKIIδ by siRNA blocked KCl-induced phosphorylation of proline-rich protein tyrosine kinase 2 (Pyk2), Src kinase, and extracellular signal-regulated kinase (ERK). Inhibition of Src or MEK abolished phosphorylation of ERK and CREB. Furthermore, phosphorylation of Pyk2, ERK, and CREB was suppressed by the PLD inhibitor, 1-butanol and transfection of PLD2 siRNA, whereas it was enhanced by over-expression of wild-type PLD2. Depolarization-induced PLD2 activation was suppressed by CaMKII and Src inhibitors, but not by MEK or protein kinase A inhibitors. These results suggest that the signaling pathway of depolarization-induced PLD2 activation was downstream of CaMKIIδ and Src, and upstream of Pyk2(Y881) and ERK/CREB, but independent of the protein kinase A. This is the first demonstration that PLD2 activation is involved in GAP-43 and synapsin I expression during depolarization-induced neuronal differentiation in PC12 cells.  相似文献   

7.
The role of protein kinase C (PKC) isoforms in the neural cell adhesion molecule (NCAM)-mediated neurite outgrowth was tested using a co-culture system consisting of fibroblasts with or without NCAM expression upon which either primary cerebellar granular neurones (CGN) or pheochromocytoma (PC12-E2) cells were grown. The latter transiently expressed various PKC isoforms and domains derived from selected PKCs. PKC inhibitors of various specificity inhibited NCAM-stimulated neuritogenesis from CGN, indicating that PKC is involved in this process. Moreover, stimulation by the NCAM-mimetic peptide, C3d, elicited phosphorylation of PKC in CGN. Expression of kinase-deficient forms of PKCalpha, betaI and betaII blocked NCAM-mediated neurite extension, but had no effect on nerve growth factor (NGF)-mediated neurite outgrowth. Expression of two PKCepsilon constructs: (i) a fragment from PKCepsilon encompassing the pseudosubstrate, the C1a domain (including the actin-binding site, ABS), and parts of the V3 region, or (ii) the PKCepsilon-specific ABS blocked NCAM-mediated neurite extension in both cases. These two constructs also partially inhibited NGF-stimulated neuritogenesis indicating that PKCepsilon is a positive regulator of both NCAM- and NGF-mediated differentiation. We suggest that PKCepsilon is a common downstream mediator for several neuritogenic factors, whereas one or more conventional PKCs are specifically involved in NCAM-stimulated neurite outgrowth.  相似文献   

8.
9.
10.
Our previous study has shown that anti-Thy-1 antibody promotes neurite outgrowth of cultured dorsal root ganglion (DRG) neurons in a protein kinase A (PKA)-dependent manner. The present study provided another intracellular signaling pathway for the neurotrophic effect of anti-Thy-1 antibody. In DMSO-treated control cells, Thy-1 was enriched in microdomain-like structures on cell membranes by immunofluorescence observation. Treatment of DRG neurons with anti-Thy-1 antibody not only stimulated neurite outgrowth, but also increased the branching complexity of the neurites in both small and large neurons. We have previously shown that anti-Thy-1 antibody causes a time-dependent activation of mitogen-activated protein kinase (MEK) and of cyclic AMP response-element binding protein (CREB). Here, anti-Thy-1 antibody elicited a transient activation of c-Src kinase, and the activation of c-Src kinase appeared occurring upstream of the activation of MEK and CREB, since pretreatment with the Src kinase inhibitor, PP2, effectively abolished the anti-Thy-1 antibody-induced neurite outgrowth and the phosphorylation of MEK and CREB. CREB phosphorylation might result in upregulation of certain neurite outgrowth-related proteins. We therefore conclude that anti-Thy-1 antibody activates the c-Src kinase-MEK-CREB cascade and overcomes the inhibitory effect of Thy-1 on neurite outgrowth in DRG neurons.  相似文献   

11.
Neu differentiation factor (NDF; also known as neuregulin) induces a pleiotropic cellular response that is cell type-dependent. NDF and its receptor ErbB-4 are highly expressed in neurons, implying important roles in neuronal cell functions. In the present study we demonstrate that ErbB-4 receptors expressed in PC12 cells mediate NDF-induced signals and neurite outgrowth that are indistinguishable from those mediated by the nerve growth factor-activated Trk receptors. In PC12-ErbB-4 cells but not in PC12 cells, NDF induced an initial weak mitogenic signal and subsequently neurite outgrowth. The NDF-induced differentiation in PC12-ErbB-4 cells was mimicked by the pan-ErbB ligand betacellulin but not by other epidermal growth factor-like ligands. Thus, NDF and betacellulin mediate similar activities through the ErbB-4 receptor. Indeed, only these ligands induced strong phosphorylation of the ErbB-4 receptors. Neurite outgrowth induced by NDF in PC12-ErbB-4 cells was accompanied by sustained activation of mitogen-activated protein kinase (MAPK) and induction of the neural differentiation marker GAP-43. Inhibition of the MAPK kinase MEK or of protein kinase C (PKC) blocked NDF-induced differentiation, whereas elevation of cyclic AMP levels enhanced the response. Taken together, these results indicate that neurite outgrowth induced by ErbB-4 in PC12 cells requires MAPK and PKC signaling networks.  相似文献   

12.
13.
14.
Homophilic binding in trans of the neural cell adhesion molecule (NCAM) mediates adhesion between cells and leads, via activation of intracellular signaling cascades, to neurite outgrowth in primary neurons as well as in the neuronal cell line PC12. NCAM mediates neurite extension in PC12 cells by two principal routes of signaling: NCAM/Fyn and NCAM/fibroblast growth factor receptor (FGFR), respectively. Previous studies have shown that activation of mitogen-activated protein kinases is a pivotal point of convergence in NCAM signaling, but the mechanisms behind this activation are not clear. Here, we investigated the involvement of adaptor proteins in NCAM and fibroblast growth factor 2 (FGF2)-mediated neurite outgrowth in the PC12-E2 cell line. We found that both FGFR substrate-2 and Grb2 play important roles in NCAM as well as in FGF2-stimulated events. In contrast, the docking protein ShcA was pivotal to neurite outgrowth induced by NCAM, but not by FGF2, in PC12 cells. Moreover, in rat cerebellar granule neurons, phosphorylation of ShcA was stimulated by an NCAM mimicking peptide, but not by FGF2. This activation was blocked by inhibitors of both FGFR and Fyn, indicating that NCAM activates FGFR signaling in a manner distinct from FGF2 stimulation, and regulates ShcA phosphorylation by the concerted efforts of the NCAM/FGFR as well as the NCAM/Fyn signaling pathway.  相似文献   

15.
Wu CL  Chou YH  Chang YJ  Teng NY  Hsu HL  Chen L 《PloS one》2012,7(4):e34999
The regulation of neurite outgrowth is crucial in developing strategies to promote neurite regeneration after nerve injury and in degenerative diseases. In this study, we demonstrate that overexpression of an adaptor/scaffolding protein SH2B1β promotes neurite re-growth of differentiated PC12 cells, an established neuronal model, using wound healing (scraping) assays. Cell migration and the subsequent remodeling are crucial determinants during neurite regeneration. We provide evidence suggesting that overexpressing SH2B1β enhances protein kinase C (PKC)-dependent cell migration and phosphatidylinositol 3-kinase (PI3K)-AKT-, mitogen activated protein kinase (MAPK)/extracellular signal-regulated protein kinase (ERK) kinase (MEK)-ERK-dependent neurite re-growth. Our results further reveal a cross-talk between pathways involving PKC and ERK1/2 in regulating neurite re-growth and cell migration. We conclude that temporal regulation of cell migration and neurite outgrowth by SH2B1β contributes to the enhanced regeneration of differentiated PC12 cells.  相似文献   

16.
17.
The neural cell adhesion molecule (NCAM) is pivotal in neural development, regeneration, and learning. Here we characterize two peptides, termed P1-B and P2, derived from the homophilic binding sites in the first two N-terminal immunoglobulin (Ig) modules of NCAM, with regard to their effects on neurite extension and adhesion. To evaluate how interference of these mimetic peptides with NCAM homophilic interactions in cis influences NCAM binding in trans, we employed a coculture system in which PC12-E2 cells were grown on monolayers of fibroblasts with or without NCAM expression and the rate of neurite outgrowth subsequently was analyzed. P2, but not P1-B, induced neurite outgrowth in the absence of NCAM binding in trans. When PC12-E2 cells were grown on monolayers of NCAM-expressing fibroblasts, the effect of both P1-B and P2 on neurite outgrowth was dependent on peptide concentrations. P1-B and P2 acted as conventional antagonists, agonists, and reverse agonists of NCAM at low, intermediate, and high peptide concentrations, respectively. The demonstrated in vitro triple pharmacological effect of mimetic peptides interfering with the NCAM homophilic cis binding will be valuable for the understanding of the actions of these mimetics in vivo.  相似文献   

18.
A combinatorial library of undecapeptides was produced and utilized for the isolation of peptide binding to the fibronectin type 3 modules (F3I–F3II) of the neural cell adhesion molecule (NCAM). The isolated peptides were sequenced and produced as dendrimers. Two of the peptides (denoted ENFIN2 and ENFIN11) were confirmed to bind to F3I–F3II of NCAM by surface plasmon resonance. The peptides induced neurite outgrowth in primary cerebellar neurons and PC12E2 cells, but had no apparent neuroprotective properties. NCAM is known to activate different intracellular pathways, including signaling through the fibroblast growth factor receptor, the Src-related non-receptor tyrosine kinase Fyn, and heterotrimeric G-proteins. Interestingly, neurite outgrowth stimulated by ENFIN2 and ENFIN11 was independent of signaling through fibroblast growth factor receptor and Fyn, but could be inhibited with pertussis toxin, an inhibitor of certain heterotrimeric G-proteins. Neurite outgrowth induced by trans- homophilic NCAM was unaffected by the peptides, whereas knockdown of NCAM completely abrogated ENFIN2- and ENFIN11-induced neuritogenesis. These observations suggest that ENFIN2 and ENFIN11 induce neurite outgrowth in an NCAM-dependent manner through G-protein-coupled signal transduction pathways. Thus, ENFIN2 and ENFIN11 may be valuable for exploring this particular type of NCAM-mediated signaling.  相似文献   

19.
Elevation of the intracellular cAMP concentration ([cAMP]i) regulates metabolism, cell proliferation, and differentiation and plays roles in memory formation and neoplastic growth. cAMP mediates its effects mainly through activation of protein kinase A (PKA) as well as Epac1 and Epac2, exchange factors activating the small GTPases Rap1 and Rap2. However, how cAMP utilizes these effectors to induce distinct biological responses is unknown. We here studied the specific roles of PKA and Epac in neuroendocrine PC12 cells. In these cells, elevation of [cAMP]i activates extracellular signal-regulated kinase (ERK) 1/2 and induces low-degree neurite outgrowth. The present study showed that specific stimulation of PKA triggered ERK1/2 activation that was considerably more transient than that observed upon simultaneous activation of both PKA and Epac. Unexpectedly, the PKA-specific cAMP analog induced cell proliferation rather than neurite outgrowth. The proliferative signaling pathway activated by the PKA-specific cAMP analog involved activation of the epidermal growth factor receptor and ERK1/2. Activation of Epac appeared to extend the duration of PKA-dependent ERK1/2 activation and converted cAMP from a proliferative into an anti-proliferative, neurite outgrowth-promoting signal. Thus, the present study showed that the outcome of cAMP signaling can depend heavily on the set of cAMP effectors activated.  相似文献   

20.
NF-kappa B has been implicated in the survival and differentiation of PC12 cells. In this study, we examined the effect of the NF-kappa B-inducing kinase (NIK) on these processes. When inducibly expressed in PC12 cells, a kinase-proficient but not -deficient form of NIK promoted neurite process formation and mediated anti-apoptotic signaling. As expected, NIK expression led to I kappa B kinase activation and induced nuclear translocation of NF-kappa B. However, NIK-induced neurite outgrowth was only partially blocked by concomitant expression of a nondegradable form of I kappa B alpha that completely blocks NF-kappa B induction. In search of additional signaling pathways activated by NIK, we now demonstrate that NIK activates MEK1 phosphorylation and induces the Erk1/Erk2 MAPK pathway. Treatment of PC12 cells with PD98059, a MEK1 inhibitor, potently blocked neurite process formation; however, a dominantly interfering mutant of the upstream Shc adapter failed to alter this response. These findings reveal a new function for NIK as a MEK1-dependent activator of the MAPK pathway and implicate both the I kappa B kinase and MAPK signaling cascades in NIK-induced differentiation of PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号