首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi are an important and diverse component of soil communities, but these communities have proven difficult to study in conventional biotic surveys. We evaluated soil fungal diversity at two sites in a temperate forest using direct isolation of small-subunit and internal transcribed spacer (ITS) rRNA genes by PCR and high-throughput sequencing of cloned fragments. We identified 412 sequence types from 863 fungal ITS sequences, as well as 112 ITS sequences from other eukaryotic microorganisms. Equal proportions of Basidiomycota and Ascomycota sequences were present in both the ITS and small-subunit libraries, while members of other fungal phyla were recovered at much lower frequencies. Many sequences closely matched sequences from mycorrhizal, plant-pathogenic, and saprophytic fungi. Compositional differences were observed among samples from different soil depths, with mycorrhizal species predominating deeper in the soil profile and saprophytic species predominating in the litter layer. Richness was consistently lowest in the deepest soil horizon samples. Comparable levels of fungal richness have been observed following traditional specimen-based collecting and culturing surveys, but only after much more extensive sampling. The high rate at which new sequence types were recovered even after sampling 863 fungal ITS sequences and the dominance of fungi in our libraries relative to other eukaryotes suggest that the abundance and diversity of fungi in forest soils may be much higher than previously hypothesized. All sequences were deposited in GenBank, with accession numbers AY 969316 to AY 970290 for the ITS sequences and AY 969135 to AY 969315 for the SSU sequences.  相似文献   

2.
The conservation and regeneration of native Scots pine (Pinus sylvestris L.) woodlands is being actively encouraged by conservation agencies in the UK because of their high biodiversity value. In the present study, the consequences of regeneration on terrestrial fungal communities was determined in three parallel transects running from open moorland, through an intermediate zone showing seedling colonization, into a mature Scots pine forest at Abernethy Forest, Cairngorm, Scotland. Soil cores were taken at 18 m intervals along each 180 m transect, and the diversity of the soil fungal community was investigated by DGGE and sequence analysis of ITS fragments PCR-amplified from DNA extracted from soil. Analysis of DGGE profiles generated for two of the three transects indicates a clear shift in the community from the moorland region of the transects to the forest region. Whereas a few bands were present at all sampling points across the transects, the majority of bands were unique to either the moorland or forest samples. FASTA database searches of ITS sequence data generated from excised DGGE bands revealed the closest species match for each band. In some cases, the similarity of ITS sequences to database sequences was poor, but the remaining sequences were most closely related to ITS sequences of both mycorrhizal and non-mycorrhizal fungi. The data are discussed in relation to the effect of native pine woodland expansion on the soil fungal community.  相似文献   

3.
We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age) in pots associated with four maize cultivars, including two genetically modified (GM) cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA). The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most “active” fungi (as recovered via RNA). Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production). Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time.  相似文献   

4.
Anaerobic fungi are key players in the breakdown of fibrous plant material in the rumen, but not much is known about the composition and stability of fungal communities in ruminants. We analyzed anaerobic fungi in 53 rumen samples from farmed sheep (4 different flocks), cattle, and deer feeding on a variety of diets. Denaturing gradient gel electrophoresis fingerprinting of the internal transcribed spacer 1 (ITS1) region of the rrn operon revealed a high diversity of anaerobic fungal phylotypes across all samples. Clone libraries of the ITS1 region were constructed from DNA from 11 rumen samples that had distinctly different fungal communities. A total of 417 new sequences were generated to expand the number and diversity of ITS1 sequences available. Major phylogenetic groups of anaerobic fungi in New Zealand ruminants belonged to the genera Piromyces, Neocallimastix, Caecomyces and Orpinomyces. In addition, sequences forming four novel clades were obtained, which may represent so far undetected genera or species of anaerobic fungi. We propose a revised phylogeny and pragmatic taxonomy for anaerobic fungi, which was tested and proved suitable for analysis of datasets stemming from high-throughput next-generation sequencing methods. Comparing our revised taxonomy to the taxonomic assignment of sequences deposited in the GenBank database, we believe that >29% of ITS1 sequences derived from anaerobic fungal isolates or clones are misnamed at the genus level.  相似文献   

5.
H Toju  AS Tanabe  S Yamamoto  H Sato 《PloS one》2012,7(7):e40863
The kingdom Fungi is estimated to include 1.5 million or more species, playing key roles as decomposers, mutualists, and parasites in every biome on the earth. To comprehensively understand the diversity and ecology of this huge kingdom, DNA barcoding targeting the internal transcribed spacer (ITS) region of the nuclear ribosomal repeat has been regarded as a prerequisite procedure. By extensively surveying ITS sequences in public databases, we designed new ITS primers with improved coverage across diverse taxonomic groups of fungi compared to existing primers. An in silico analysis based on public sequence databases indicated that the newly designed primers matched 99% of ascomycete and basidiomycete ITS taxa (species, subspecies or varieties), causing little taxonomic bias toward either fungal group. Two of the newly designed primers could inhibit the amplification of plant sequences and would enable the selective investigation of fungal communities in mycorrhizal associations, soil, and other types of environmental samples. Optimal PCR conditions for the primers were explored in an in vitro investigation. The new primers developed in this study will provide a basis for ecological studies on the diversity and community structures of fungi in the era of massive DNA sequencing.  相似文献   

6.
The fungal loop model of semiarid ecosystems integrates microtopographic structures and pulse dynamics with key microbial processes. However limited data exist about the composition and structure of fungal communities in these ecosystems. The goal of this study was to characterize diversity and structure of soil fungal communities in a semiarid grassland. The effect of long-term nitrogen fertilization on fungi also was evaluated. Samples of rhizosphere (soil surrounding plant roots) and biological soil crust (BSC) were collected in central New Mexico, USA. DNA was amplified from the samples with fungal specific primers. Twelve clone libraries were generated with a total of 307 (78 operational taxonomic units, OTUs) and 324 sequences (67 OTUs) for BSC and rhizosphere respectively. Approximately 40% of soil OTUs were considered novel (less than 97% identity when compared to other sequences in NCBI using BLAST). The dominant organisms were dark-septate (melanized fungi) ascomycetes belonging to Pleosporales. Effects of N enrichment on fungi were not evident at the community level; however the abundance of unique sequences, sampling intensity and temporal variations may be uncovering the effect of N in composition and diversity of fungal communities. The fungal communities of rhizosphere soil and BSC overlapped substantially in composition, with a Jaccard abundance similarity index of 0.75. Further analyses are required to explore possible functions of the dominant species colonizing zones of semiarid grassland soils.  相似文献   

7.
The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.  相似文献   

8.
Diverse fungal assemblages colonize the fine feeder roots of woody plants, including mycorrhizal fungi, fungal root endophytes and soil saprotrophs. The fungi co-inhabiting Cenococcum geophilum ectomycorrhizae (ECM) of Abies balsamea, Betula papyrifera and Picea glauca were studied at two boreal forest sites in Eastern Canada by direct PCR of ITS rDNA. 50 non-Cenococcum fungal sequence types were detected, including several potentially mycorrhizal species as well as fungal root endophytes. Non-melanized ascomycetes dominated, in contrast to the dark septate endophytes (DSE) reported in most culture dependent studies. The results demonstrate significant differences in root associated fungal assemblages among the host species studied. Fungal diversity was also host dependent, with P. glauca roots supporting a more diverse community than A. balsamea. Differences in root associated fungal communities may well influence ecological interactions among host plant species.  相似文献   

9.
Yang S  Pfister DH 《Mycologia》2006,98(4):535-540
Plant species in the subfamily Monotropoideae are mycoheterotrophs; they obtain fixed carbon from photosynthetic plants via a shared mycorrhizal network. Previous findings show mycoheterotrophic plants exhibit a high level of specificity to their mycorrhizal fungi. In this study we explore the association of mycorrhizal fungi and Monotropa uniflora (Monotropoideae: Ericaceae) in eastern North America. We collected M. uniflora roots and nearby basidiomycete sporocarps from four sites within a 100 km2 area in eastern Massachusetts. We analyzed DNA sequences of the internal transcribed spacer region (ITS) from the fungal nuclear ribosomal gene to assess the genetic diversity of fungi associating with M. uniflora roots. In this analysis we included 20 ITS sequences from Russula sporocarps collected nearby, 44 sequences of Russula or Lactarius species from GenBank and 12 GenBank sequences of fungi isolated from M. uniflora roots in previous studies. We found that all 56 sampled M. uniflora mycorrhizal fungi were members of the Russulaceae, confirming previous research. The analysis showed that most of the diversity of mycorrhizal fungi spreads across the genus Russula. ITS sequences of the mycorrhizal fungi consisted of 20 different phylotypes: 18 of the genus Russula and two of Lactarius, based on GenBank searches. Of the sampled plants, 57% associated with only three of the 20 mycorrhizal fungi detected in roots, and of the 25 sporocarp phylotypes collected three, were associated with M. uniflora. Furthermore the results indicate that the number of different fungal phylotypes associating with M. uniflora of eastern North America is higher than that of western North America but patterns of fungal species abundance might be similar between mycorrhizae from the two locations.  相似文献   

10.
This is the first study to assess the diversity and community structure of the Agaricomycotina in an ectotrophic forest using above-ground fruiting body surveys as well as soil rDNA sampling. We recovered 132 molecular operational taxonomic units, or 'species', from fruiting bodies and 66 from soil, with little overlap. Fruiting body sampling primarily recovered fungi from the Agaricales, Russulales, Boletales and Cantharellales. Many of these species are ectomycorrhizal and form large fruiting bodies. Soil rDNA sampling recovered fungi from these groups in addition to taxa overlooked during the fruiting body survey from the Atheliales, Trechisporales and Sebacinales. Species from these groups form inconspicuous, resupinate and corticioid fruiting bodies. Soil sampling also detected fungi from the Hysterangiales that form fruiting bodies underground. Generally, fruiting body and soil rDNA samples recover a largely different assemblage of fungi at the species level; however, both methods identify the same dominant fungi at the genus-order level and ectomycorrhizal fungi as the prevailing type. Richness, abundance, and phylogenetic diversity (PD) identify the Agaricales as the dominant fungal group above- and below-ground; however, we find that molecularly highly divergent lineages may account for a greater proportion of total diversity using the PD measure compared with richness and abundance. Unless an exhaustive inventory is required, the rapidity and versatility of DNA-based sampling may be sufficient for a first assessment of the dominant taxonomic and ecological groups of fungi in forest soil.  相似文献   

11.
Molecular microbial ecology has revealed remarkable biodiversity - prokaryotic and eukaryotic - in numerous soil environments. However, no culture-independent surveys of the termitosphere exists, although termites dominate tropical rainforests. Here, we focused on soil feeders, building nests with their soil-born faeces, enriched with clay-organic complexes, thus contributing to the improvement of soil fertility. In order to assess the fungal community composition of these termitaries compared with soils not foraged by termites, samples of the two types were collected in the Lopé rainforest, Gabon, and processed for generation of fungal internal transcribed spacer (ITS) clone libraries. Although primers were universal, most of the recovered sequences represented Ascomycete that were previously uncharacterized and the proportions of which reached 72.5% in soils and 80% in termitaries. Their affiliation with identified fungi was analysed in performing a phylogenetic tree based on 5.8S rDNA. Furthermore, the ascomycete communities of soil-feeding termitaries and soils shared only 6.3% of sequences. This discrepancy of composition between soil and nest may result from the building behaviour of termites, as the organic matter in the nest is chemically modified, and some vacant ecological microniches are available for more specialized fungi.  相似文献   

12.
Archaeal 16S rRNA gene sequences have been found in a variety of moderate-temperature habitats including soil and rhizospheres. In this study, the differences of archaeal communities associated with Scots pine (Pinus sylvestris L.) short roots, different types of mycorrhizospheric compartments, and uncolonized boreal forest humus were tested by direct DNA extraction, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE), and sequencing. The results indicated that mycorrhizal colonization of Scots pine roots substantially influence the archaeal community of pine rhizospheres. Colonization of short roots by most mycorrhizal fungi tested increased both archaeal frequency and diversity. Most of the archaeal sequences encountered in mycorrhizas belonged to the phylum Euryarchaeota, order of Halobacteriales. The difference in archaeal diversity between the mycorrhizospheric compartments and humus was profound. Most compartments with fungal components contained euryarchaeotal 16S rRNA gene sequences, whereas a high diversity of crenarchaeotal sequences and no euryarchaeotal sequences were found in forest humus outside mycorrhizospheres.  相似文献   

13.
Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand types in boreal forests. Understanding relationships between fungal community composition, particularly mycorrhizas, and understory plant composition is therefore important in predicting how future fire regimes may affect vegetation. We used an extreme wildfire event in boreal forests of Canada's Northwest Territories to test drivers of fungal communities and assess relationships with plant communities. We sampled soils from 39 plots 1 year after fire and 8 unburned plots. High‐throughput sequencing (MiSeq, ITS) revealed 2,034 fungal operational taxonomic units. We found soil pH and fire severity (proportion soil organic layer combusted), and interactions between these drivers were important for fungal community structure (composition, richness, diversity, functional groups). Where fire severity was low, samples with low pH had higher total fungal, mycorrhizal, and saprotroph richness compared to where severity was high. Increased fire severity caused declines in richness of total fungi, mycorrhizas, and saprotrophs, and declines in diversity of total fungi and mycorrhizas. The importance of stand age (a surrogate for fire return interval) for fungal composition suggests we could detect long‐term successional patterns even after fire. Mycorrhizal and plant community composition, richness, and diversity were weakly but significantly correlated. These weak relationships and the distribution of fungi across plots suggest that the underlying driver of fungal community structure is pH, which is modified by fire severity. This study shows the importance of edaphic factors in determining fungal community structure at large scales, but suggests these patterns are mediated by interactions between fire and forest stand composition.  相似文献   

14.
Soil fungi play a crucial role in ecosystem functioning and there is increasing evidence that exotic plants invading forests can affect soil fungal communities. We examined potential effects of the invasive plant Impatiens glandulifera on hyphal biomass of ectomycorrhizal fungi, their genetic diversity and the diversity of other soil fungi in deciduous forests in Switzerland. We compared invaded patches with patches where I. glandulifera had been removed, by establishing pairs of 3-m long transect lines at the edge of seven areas of either type. Along the transects we assessed the length of ectomycorrhizal fungal hyphae using the ‘ingrowth mesh bag method’, and used terminal restriction fragment length polymorphism (T-RFLP) analysis to examine fungal genetic diversity. The invasive plant reduced fungal hyphal biomass by 30–80%: the reduction was largest in the centre of the patch. I. glandulifera did not alter fungal richness, but affected the composition of fungal communities. This is probably the result of a decrease of mycorrhizal fungi, coupled with an increase of saprotrophic fungi. Our findings demonstrate the adverse impacts of an annual invasive plant species on both fungal hyphal biomass and the composition of soil fungal communities. This may negatively affect forest nutrient and carbon cycling, soil stability and the functionality of the fungal community, with major consequences for forest ecosystem functioning.  相似文献   

15.
To explore the fungal diversity in ruminant feces for bioenergy, libraries based on internal transcribed spacer (ITS), 18S rRNA, and 28S rRNA regions were constructed, respectively. Although the libraries were constructed from the same DNA extracts, the fungal taxa analyses based on these libraries are different. The ITS and 28S libraries comprised higher proportions of fungal clones than 18S libraries, and the ITS libraries converged into the lower diversities. The ITS libraries could be used to analyze the fungal community. The 18S libraries were suitable for the fungi and protozoa community. However, the 28S are suitable for analysis of Ascomycota fungi. The major fungal taxa in cattle feces analyzed by ITS, 18S, and 28S libraries are similar to those of sheep feces, respectively. The fungal taxa detected by the ITS library comprised only 20 % fungal taxa detected by the three libraries. The 18S library comprised 30 % fungal taxa; the 28S library comprised about 50 % fungal taxa. The results indicated that primer sets toward different DNA regions lead to the difference in structures of fungal community. So the selection of primer sets may influence the fungal communities, and libraries based on single primer sets may underestimate the fungal diversity. The comparison of ITS, 18S, and 28S libraries could fid more diverse fungi than that based on only one library.  相似文献   

16.
Many species of fungi are closely allied with bark beetles, including many tree pathogens, but their species richness and patterns of distribution remain largely unknown. We established a protocol for metabarcoding of fungal communities directly from total genomic DNA extracted from individual beetles, showing that the ITS3/4 primer pair selectively amplifies the fungal ITS. Using three specimens of bark beetle from different species, we assess the fungal diversity associated with these specimens and the repeatability of these estimates in PCRs conducted with different primer tags. The combined replicates produced 727 fungal Operational Taxonomic Units (OTUs) for the specimen of Hylastes ater, 435 OTUs for Tomicus piniperda, and 294 OTUs for Trypodendron lineatum, while individual PCR reactions produced on average only 229, 54, and 31 OTUs for the three specimens, respectively. Yet, communities from PCR replicates were very similar in pairwise comparisons, in particular when considering species abundance, but differed greatly among the three beetle specimens. Different primer tags or the inclusion of amplicons in separate libraries did not impact the species composition. The ITS2 sequences were identified with the Lowest Common Ancestor approach and correspond to diverse lineages of fungi, including Ophiostomaceae and Leotiomycetes widely found to be tree pathogens. We conclude that Illumina MiSeq metabarcoding reliably captures fungal diversity associated with bark beetles, although numerous PCR replicates are recommended for an exhaustive sample. Direct PCR from beetle DNA extractions provides a rapid method for future surveys of fungal species diversity and their associations with bark beetles and environmental variables.  相似文献   

17.
为揭示海南热带雨林国家公园大型真菌多样性及不同植被类型对真菌群落的影响, 本研究于2020年和2021年湿季对海南热带雨林国家公园内7个管理局辖区开展了大型真菌多样性调查, 比较了不同植被类型(山地雨林、低地雨林、低地雨林次生林、人工林)的大型真菌生活型(共生型、腐生型)组成差异。从设置的58条1 km长的样带内采集到1,869份子实体标本, 根据子实体形态与ITS rDNA序列分析, 从中鉴定出562种真菌, 涉及17目64科174属, 其中80%以上的物种由伞菌目、牛肝菌目、红菇目、多孔菌目、鸡油菌目、锈革孔菌目和炭角菌目构成。大型真菌的营养型以腐生型(占48.2%物种)和共生型(44.8%)为主。每条样带的平均物种丰富度和多度以中海拔的山地雨林最高, 分别为28 ± 5种和33 ± 6个, 而人工林最低, 分别为11 ± 1种和11 ± 2个。植被类型主要影响共生型大型真菌物种丰富度(P = 0.026)和子实体多度(P = 0.019)及Shannon-Wiener多样性(P = 0.028), 但对腐生型大型真菌的影响并不显著。多响应置换过程(multiple response permutation procedure, MRPP)检验结果表明, 不同植被类型对共生型与腐生型大型真菌群落物种组成均有显著影响(腐生型: P = 0.004, 共生型: P = 0.041)。冗余分析(redundancy analysis, RDA)的结果表明, 植被类型对腐生型和共生型真菌群落物种组成差异的解释度均较低(共生型: R2 = 0.068, P = 0.004; 腐生型: R2 = 0.067, P = 0.004)。海拔仅对腐生型真菌群落物种组成产生微弱影响(R2 = 0.029, P = 0.001), 而对共生型真菌影响不显著(R2 = 0.024, P = 0.072)。在不同保护地之间, 共生型(R2 = 0.148, P = 0.001)与腐生型(R2 = 0.123, P = 0.002)真菌物种组成均具显著差异; 基于样带‒真菌矩阵的网络图显示, 海南热带雨林国家公园内尖峰岭、霸王岭、五指山等国家级自然保护区的山地雨林是共生型大型真菌多样性较高区域, 应作为共生型真菌与宿主的优先保护区域。  相似文献   

18.
Soils support an enormous microbial diversity, but the ecological drivers of this diversity are poorly understood. Interactions between the roots of individual grass species and the arbuscular mycorrhizal (AM) fungi and bacteria in their rhizoplane were studied in a grazed, unimproved upland pasture. Individual root fragments were isolated from soil cores, DNA extracted and used to identify plant species and assess rhizoplane bacterial and AM fungal assemblages, by amplifying part of the small-subunit ribosomal RNA gene, followed by terminal restriction fragment length polymorphism analysis. For the first time we showed that AM fungal and bacterial assemblages are related in situ and that this relationship occurred at the community level. Principal coordinate analyses of the data show that the AM fungi were a major factor determining the bacterial assemblage on grass roots. We also report a strong influence of the composition of the plant community on AM fungal assemblage. The bacterial assemblage was also influenced by soil pH and was spatially structured, whereas AM fungi were influenced neither by the bacteria nor by soil pH. Our study shows that linkages between plant roots and their microbial communities exist in a complex web of interactions that act at individual and at community levels, with AM fungi influencing the bacterial assemblage, but not the other way round.  相似文献   

19.
【背景】除了菌根真菌(Orchid mycorrhizal fungi,OrMF)外,兰科植物根中还有其它内生真菌,称为根相关真菌(Root-associated fungi,RAF)。【目的】采用分离培养的方法获得同一栖息地针叶林和灌木林两种不同生境西藏杓兰、黄花杓兰和无苞杓兰的RAF菌株,研究其真菌谱系、多样性和生态功能结构。【方法】从杓兰根碎屑中分离RAF,通过总DNA提取、PCR扩增及测序得到ITS(Internaltranscribedspacer)序列;进行系统发育和多样性分析,并通过NCBI数据库比对得到相似性最高序列的注释信息来分析RAF生态学特性。【结果】共分离得到278株RAF,25种OTU类型,包括23个子囊菌门OTU,2个毛霉菌门OTU。RAF物种丰富度分析发现西藏杓兰的较黄花杓兰高,不同生境没有显著差异;不同杓兰物种较不同生境的RAF群落分化程度高。生态功能分析显示25个OTU包括共生型、腐生型和致病型3种营养型,以及外生菌根菌群、植物病原菌群、内生真菌群、动物病原菌群、真菌寄生菌群、杜鹃花类菌根群、未定义的腐生菌群和不确定型8种共位群。【结论】阐明不同生境采集的不同杓兰中RAF的分布特点和生态功能,为未来研究RAF与杓兰属植物的共生关系奠定基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号