首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
We have previously shown that the cyclooxygenase (COX)-2/PGE2 pathway plays a key role in VEGF production in gastric fibroblasts. Recent studies have identified three PGE synthase (PGES) isozymes: cytosolic PGES (cPGES) and microsomal PGES (mPGES)-1 and -2, but little is known regarding the expression and roles of these enzymes in gastric fibroblasts. Thus we examined IL-1beta-stimulated mPGES-1 and cPGES mRNA and protein expression in gastric fibroblasts by quantitative PCR and Western blot analysis, respectively, and studied both their relationship to COX-1 and -2 and their roles in PGE2 and VEGF production in vitro. IL-1beta stimulated increases in both COX-2 and mPGES-1 mRNA and protein expression levels. However, COX-2 mRNA and protein expression were more rapidly induced than mPGES-1 mRNA and protein expression. Furthermore, MK-886, a nonselective mPGES-1 inhibitor, failed to inhibit IL-1beta-induced PGE2 release at the 8-h time point, while totally inhibiting PGE2 at the later stage. However, MK-886 did inhibit IL-1beta-stimulated PGES activity in vitro by 86.8%. N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS-398), a selective COX-2 inhibitor, totally inhibited PGE2 production at both the 8-h and 24-h time points, suggesting that COX-2-dependent PGE2 generation does not depend on mPGES-1 activity at the early stage. In contrast, NS-398 did not inhibit VEGF production at 8 h, and only partially at 24 h, whereas MK-886 totally inhibited VEGF production at each time point. These results suggest that IL-1beta-induced mPGES-1 protein expression preferentially coupled with COX-2 protein at late stages of PGE2 production and that IL-1beta-stimulated VEGF production was totally dependent on membrane-associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily proteins, which includes mPGES-1, but was partially dependent on the COX-2/PGE2 pathway.  相似文献   

3.
Prostaglandin E2 (PGE2) is the major primary prostaglandin generated by brain cells. However, the coordination and intracellular localization of the cyclooxygenases (COXs) and prostaglandin E synthases (PGESs) that convert arachidonic acid to PGE2 in brain tissue are not known. We aimed to determine whether microsomal and cytosolic PGES (mPGES-1 and cPGES) colocalize and coordinate activity with either COX-1 or COX-2 in brain tissue, particularly during development. Importantly, we found that cytosolic PGES also associates with microsomes (cPGES-m) from the cerebrum and cerebral vasculature of the pig and rat as well as microsomes from various cell lines; this seemed dependent on the carboxyl terminal 35-amino acid domain and a cysteine residue (C58) of cPGES. In microsomal membranes from the postnatal brain and cerebral microvessels of mature animals, cPGES-m colocalized with both COX-1 and COX-2, whereas mPGES-1 was undetectable in these microsomes. Accordingly, in this cell compartment, cPGES could coordinate its activity with COX-2 and COX-1 (partly inhibited by NS398); albeit in microsomes of the brain microvasculature from newborns, mPGES-1 was also present. In contrast, in nuclei of brain parenchymal and endothelial cells, mPGES-1 and cPGES colocalized exclusively with COX-2 (determined by immunoblotting and immunohistochemistry); these PGESs contributed to conversion of PGH2 into PGE2. Hence, contrary to a previously proposed model of exclusive COX-2/mPGES-1 coordination, COX-2 can coordinate with mPGES-1 and/or cPGES in the brain, depending on the cell compartment and the age group.  相似文献   

4.
Prostaglandin E(2) (PGE(2)) is considered important for blastocyst spacing, implantation, and decidualization in rodent uteri. PGE synthase (PGES) catalyzes the isomerization of PGH(2) to PGE(2). Two isoforms of PGES exist: microsomal PGES (mPGES) and cytosolic PGES (cPGES); however, the expression and regulation of cPGES in the mammalian uterus during early pregnancy are still unknown. The aim of this study was to investigate the differential expression of cPGES in mouse uterus during early pregnancy and its regulation under different conditions using in situ hybridization and immunohistochemistry. A strong level of cPGES mRNA signal was exhibited in the stromal cells at the implantation site on Day 5 of pregnancy, whereas cPGES immunostaining was strongly detected in the luminal epithelium. The signals for both cPGES mRNA and immunostaining were strongly detected in the decidualized cells from Days 6-8 of pregnancy. A basal level of cPGES mRNA signal and immunostaining was exhibited in the uterus in delayed implantation. After delayed implantation was terminated by estrogen treatment and embryo implantation was initiated, cPGES mRNA signal was strongly detected in the stroma underlying the luminal epithelium at the implantation site, and cPGES immunostaining was strongly observed in the luminal epithelium surrounding the implanting blastocyst. A strong cPGES mRNA signal and immunostaining were detected in decidualized cells under artificial decidualization, whereas only a basal level of cPGES mRNA signal and immunostaining were observed in the control horn. Our data suggest that cPGES may play an important role during implantation and decidualization.  相似文献   

5.
We investigated possible involvement of three isozymes of prostaglandin E synthase (PGES), microsomal PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in COX-2-dependent prostaglandin E(2) (PGE(2)) formation following proteinase-activated receptor-2 (PAR2) stimulation in human lung epithelial cells. PAR2 stimulation up-regulated mPGES-1 as well as COX-2, but not mPGES-2 or cPGES, leading to PGE(2) formation. The PAR2-triggered up-regulation of mPGES-1 was suppressed by inhibitors of COX-1, cytosolic phospholipase A(2) (cPLA(2)) and MEK, but not COX-2. Finally, a selective inhibitor of mPGES-1 strongly suppressed the PAR2-evoked PGE(2) formation. PAR2 thus appears to trigger specific up-regulation of mPGES-1 that is dependent on prostanoids formed via the MEK/ERK/cPLA(2)/COX-1 pathway, being critical for PGE(2) formation.  相似文献   

6.
To better define the role of the various prostanoid synthases in the adjuvant-induced arthritis (AIA) model, we have determined the temporal expression of the inducible PGE synthase (mPGES-1), mPGES-2, the cytosolic PGES (cPGES/p23), and prostacyclin synthase, and compared with that of cyclooxygenase-1 (COX-1) and COX-2. The profile of induction of mPGES-1 (50- to 80-fold) in the primary paw was similar to that of COX-2 by both RNA and protein analysis. Quantitative PCR analysis indicated that induction of mPGES-1 at day 15 was within 2-fold that of COX-2. Increased PGES activity was measurable in membrane preparations of inflamed paws, and the activity was inhibitable by MK-886 to >or=90% with a potency similar to that of recombinant rat mPGES-1 (IC(50) = 2.4 microM). The RNA of the newly described mPGES-2 decreased by 2- to 3-fold in primary paws between days 1 and 15 postadjuvant. The cPGES/p23 and COX-1 were induced during AIA, but at much lower levels (2- to 6-fold) than mPGES-1, with the peak of cPGES/p23 expression occurring later than that of COX-2 and PGE(2) production. Prostacyclin (measured as 6-keto-PGF(1alpha)) was transiently elevated on day 1, and prostacyclin synthase was down-regulated at the RNA level after day 3, suggesting a diminished role of prostacyclin during the maintenance of chronic inflammation in the rat AIA. These results show that mPGES-1 is up-regulated throughout the development of AIA and suggest that it plays a major role in the elevated production of PGE(2) in this model.  相似文献   

7.
Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase A2 enzymes, cyclooxygenase (COX) enzymes, and various lineagespecific terminal prostanoid synthases. Prostaglandin E synthase (PGES), which isomerizes COX-derived PGH2 specifically to PGE2, occurs in multiple forms with distinct enzymatic properties, expressions, localizations and functions. Two of them are membrane-bound enzymes and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli, is down-regulated by antiinflammatory glucocorticoids, and is functionally coupled with COX-2 in marked preference to COX-1. Recent gene targeting studies of mPGES-1 have revealed that this enzyme represents a novel target for anti-inflammatory and anti-cancer drugs. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate PGE2 production. This review highlights the latest understanding of the expression, regulation and functions of these three PGES enzymes.  相似文献   

8.
The objectives of these experiments were: 1) to determine an effective culture method for production of transferable bovine embryos following exogenous DNA microinjection; 2) to determine the effect of these methods on the ability of the injected zygotes and 2-cell embryos to develop in vivo; and, 3) to compare development of embryos microinjected as zygotes or 2-cell embryos. DNA fragments encoding bovine growth hormone (bGH), bGH-10Delta6, and a bGH antagonist, bGH-M8 (5) were used. A total of 639 zygotes and 153 2-cell embryos were injected. Zygotes and 2-cell embryos microinjected with bGH-M8 were incubated for 6 days in oviducts of intermediate recipients (rabbits or sheep) or co-cultured in vitro with bovine oviduct epithelial cells. Zygotes and 2-cell embryos microinjected with bGH-10Delta6 were co-cultured in vitro only. The most effective method for the production of transferable bovine embryos following exogenous DNA microinjection was via in vitro co-culturing with bovine epithelial cells. For example, 32.3% of the bGH-M8 and 33.5% of the bGH-10Delta6 microinjected zygotes reached the morula/blastocyst stage while 48.4% and 63.0% of the 2-cell embryos injected with bGH-M8 and bGH-10Delta6, respectively, developed to the morula/blastocyst stage. The percentage of blastocysts obtained for control, non-injected zygotes and 2-cell embryos was 34.5% and 69.6%, respectively. The developmental rate to the morula/blastocyst stage was approximately 20% greater for embryos obtained from microinjected 2-cell embryos relative to microinjected zygotes. However, there was no significant difference in pregnancy rates following transfer of these blastocysts to cow uteri.  相似文献   

9.
Prostaglandins derived from arachidonic acid are involved in a wide variety of physiological and pathological processes. The primary enzymes involved in the production of PGE2 from arachidonic acid are cyclooxygenases and prostaglandin E synthases. These enzymes have been identified in human, but only partially in the monkey where microsomal PGES-1 and cytosolic PGES have not been characterized. The present study was undertaken to clone these enzymes and to study their tissue distribution, along with mPGES-2. The coding sequence of Macaque mPGES-1 is 98% homologous to human mPGES-1 at the nucleic acid level and the deduced amino acid sequence has 98% homology with the human protein. The Macaque cPGES cDNA is more than 99% homologous to the human and the deduced amino acids sequence is identical to that of the human cPGES. By Northern blot analysis, we found that mPGES-2 and cPGES mRNA were expressed in the endometrium, myometrium, ovary and oviduct, albeit at different levels, while mPGES-1 mRNA was detected at a weak level, mainly in the oviduct. Western Blot analysis revealed that mPGES-2, mPGES-1 and cPGES proteins were present in all tissues tested. These results suggest that production of PGE2 in Macaque may involve more than one PGES and that further studies will be needed to fully understand the conditions under which each PGES contributes to PGE2 production.  相似文献   

10.
Basigin is a member of the immunoglobulin superfamily and a key molecule related to mouse blastocyst implantation. Whether preimplantation mouse embryos express basigin mRNA is still unknown. The aim of this study was to use a quantitative competitive polymerase chain reaction to assess quantitatively the levels of basigin mRNA in mouse oocyte and preimplantation embryos. Basigin mRNA was detected in the oocyte and all the stages of preimplantation embryos. The levels of basigin mRNA were 0.0606 +/- 0.0282 in the oocyte, 0.0102 +/- 0.0036 in the zygote, 0.0007 +/- 0.0003 in the 2-cell embryo, 0.0031 +/- 0.0017 in the 4-cell embryo, 0.0084 +/- 0.0024 in the 8-cell embryo, 0.0537 +/- 0.0121 in the morula and 0.0392 +/- 0.0161 attomoles in the blastocyst, respectively. The levels of basigin mRNA in the oocyte, morula and blastocyst were significantly higher than those in the zygote and embryos at the 2-cell, 4-cell and 8-cell stages. The high level of basigin expression in the blastocyst may play a role during embryo implantation.  相似文献   

11.
The developmental rate to the blastocyst stage of frozen-thawed bovine in vitro produced embryos at stages earlier than Day 6 morula is not sufficiently high for practical utilization. The present study was undertaken to determine the effect of polarization of lipid droplets in the cytoplasm of bovine in vitro produced embryos from zygotes to the 8-cell stage, by centrifugation without following micromanipulation, on the survival rate of Day 4 16-cell embryos. After centrifugation at 15,500 x g in medium containing cytochalasin D, embryos were cultured to the 16-cell stage, classified as either mostly or partially delipidated by degree of lipid droplet removal, and then frozen. Embryos centrifuged at the 2-cell stage developed to the 16-cell stage similarly to those centrifuged at the 8-cell stage. The developmental rate to blastocysts after freezing of the mostly delipidated 16-cell embryos centrifuged at the 2-cell stage was higher than that of those centrifuged at the zygote stage, those that were partially delipidated at the 2-cell stage, and those that were not centrifuged. The results demonstrate that polarization of lipid droplets at the 2-cell stage by centrifugation without micromanipulation improved the survival rate of mostly delipidated 16-cell embryos after freezing.  相似文献   

12.
13.
14.
Prostaglandin E synthase (PGES), which converts cyclooxygenase (COX)-derived prostaglandin H2 (PGH2) to PGE2, is known to comprise a group of at least three structurally and biologically distinct enzymes. Two of them are membrane-bound and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli and downregulated by anti-inflammatory glucocorticoids as in the case of COX-2. It is functionally coupled with COX-2 in marked preference to COX-1. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate PGE2 production. Recently, mice have been engineered with specific deletions in each of these three PGES enzymes. In this review, we summarize the current understanding of the in vivo roles of PGES enzymes by knockout mouse studies and provide an overview of their biochemical properties.  相似文献   

15.
LPS induces an immediate release of thromboxane TxA2 and a delayed release of PGE2. Dexamethasone suppresses the LPS-induced release of TxA2 and PGE2. In the first 8 h after LPS addition, the specific COX-2 inhibitor SC236 inhibits the PGE2 and TxA2 release by about 80% and 20%, whereas the release of PGE2 and TxA2 between 8 and 24 h is inhibited by about 40% and 35%, respectively. Resident liver macrophages express substantial amounts of COX-1, TxAS, cPGES and mPGES-2, small amounts of COX-2 but almost no detectable amounts of mPGES-1. LPS induces an increase of COX-2 and mPGES-1, but does not change COX-1, cPGES, mPGES-2 and TxAS at protein level. Dexamethasone suppresses almost completely the LPS-induced effects on COX-2 and mPGES-1. It is concluded that (1) COX-1 and COX-2 are involved in the LPS-induced synthesis of TxA2 and PGE2; (2) TxA2 release is catalyzed at early time-points by the combined action of COX-1 and TxAs, whereas at later time points the newly expressed COX-2 couples to TxAS and contributes to the TxA2 release; (3) PGE2 release within the first 8 h is predominantly catalyzed by COX-2, whereas at later time-points COX-1 couples to the newly expressed mPGES-1 and contributes to the PGE2 release.  相似文献   

16.
Prostaglandin E2 (PGE2) is a key mediator involved in several inflammatory conditions. In this study, we investigated the expression and regulation of the terminal PGE2 synthesizing enzyme prostaglandin E synthases (mPGES-1, mPGES-2 and cPGES) in gingival fibroblasts stimulated with pro-inflammatory cytokines. We used siRNA knockdown of mPGES-1 to elucidate the impact of mPGES-1 inhibition on mPGES-2 and cPGES expression, as well as on PGE2 production. The cytokines TNFalpha and IL-1beta increased protein expression and activity of mPGES-1, accompanied by increased COX-2 expression and PGE2 production. The isoenzymes mPGES-2 and cPGES, constitutively expressed at mRNA and protein levels, were unaffected by the pro-inflammatory cytokines. We show for the first time that treatment with mPGES-1 siRNA down-regulated the cytokine-induced mPGES-1 protein expression and activity. Interestingly, mPGES-1 siRNA did not affect the cytokine-stimulated PGE2 production, whereas PGF(2alpha) levels were enhanced. Neither mPGES-2 nor cPGES expression was affected by siRNA silencing of mPGES-1. Dexamethasone and MK-886 both inhibited the cytokine-induced mPGES-1 expression while mPGES-2 and cPGES expression remained unaffected. In conclusion, mPGES-1 siRNA down-regulates mPGES-1 expression, and neither mPGES-2 nor cPGES substituted for mPGES-1 in a knockdown setting in gingival fibroblasts. Moreover, mPGES-1 siRNA did not affect PGE2 levels, whereas PGF(2alpha) increased, suggesting a compensatory pathway of PGE2 synthesis when mPGES-1 is knocked down.  相似文献   

17.
The purpose of the present study was to determine the chronology of the pre-implantation embryonic development in Myocastor coypus (coypu). It was carried out by daily colpocytological examination and controlled mating of 33 females. Oocytes and embryos were obtained by flushing from day 0 to day 10 post-coitus (p.c.). On day 1 p.c., oocytes predominated whereas on day 2 p.c. zygotes were predominant. The cleavage period was from day 3 to day 6 p.c.. Morulae were collected from day 6 to day 9 p.c., whereas blastocysts were collected on days 8 and 9. From oviduct flushing, the embryos in the zygote stage and up to the morula stage with less than a 30-cell stage were recovered. Embryos in the morula stage with 30 or more cells and up to the growing blastocyst stage were collected from the flushing of hemiuteri.  相似文献   

18.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

19.
Arachidonic acid is converted to prostaglandin E(2) (PGE(2)) by a sequential enzymatic reaction performed by two isoenzyme groups, cyclooxygenases (COX-1 and COX-2) and terminal prostaglandin E synthases (cPGES, mPGES-1, and mPGES-2). mPGES-1 is widely considered to be the final enzyme regulating COX-2-dependent PGE(2) synthesis. These generalizations have been based in most part on experiments utilizing gene expression analyses of cell lines and tumor tissue. To assess the relevance of these generalizations to a native mammalian tissue, we used isolated human and rodent pancreatic islets to examine interleukin (IL)-1β-induced PGE(2) production, because PGE(2) has been shown to mediate IL-1β inhibition of islet function. Rat islets constitutively expressed mRNAs of COX-1, COX-2, cPGES, and mPGES-1. As expected, IL-1β increased mRNA levels for COX-2 and mPGES-1, but not for COX-1 or cPGES. Basal protein levels of COX-1, cPGES, and mPGES-2 were readily detected in whole cell extracts but were not regulated by IL-1β. IL-1β increased protein levels of COX-2, but unexpectedly mPGES-1 protein levels were low and unaffected. In microsomal extracts, mPGES-1 protein was barely detectable in rat islets but clearly present in human islets; however, in neither case did IL-1β increase mPGES-1 protein levels. To further assess the importance of mPGES-1 to IL-1β regulation of an islet physiologic response, glucose-stimulated insulin secretion was examined in isolated islets of WT and mPGES-1-deficient mice. IL-1β inhibited glucose-stimulated insulin secretion equally in both WT and mPGES-1(-/-) islets, indicating that COX-2, not mPGES-1, mediates IL-1β-induced PGE(2) production and subsequent inhibition of insulin secretion.  相似文献   

20.
Effects of the embryo retrieval stages and addition of glutathione (GSH) on post-thaw development of mouse morula were evaluated in 2 consecutive experiments. In the first experiment, 1-, 2-, 3- to 4- and 5- to 8-cell stage embryos were collected and cultured to the morula stage in Whitten's medium containing 0.1 mM ethylenediaminetetraacetic acid (EDTA). The development rate of 1-cell embryos to the morula stage was lower than that of the other stages (P<0.01). The post-thaw development rate of the morulae obtained from in vitro culture of 1-, 2-, 3- to 4-, and 5- to 8-cell embryos and from in vivo embryos (control) to the blastocyst stage was 55.5, 84.9, 87.4, 90.1 and 90.8%, respectively. The post-thaw development rate of morula obtained from in vitro produced 1-cell embryos was significantly lower than from the other stages or from the in vivo counterparts (P<0.0001). In Experiment 2, the impact of GSH supplementation of the culture medium in the presence or absence of EDTA was evaluated for embryo development to the morula stage and post-thaw survival, using in the 2 x 2 factorial design. Although EDTA supplementation increased development rates to the morulae (P<0.01) stage, GSH did not have an influence on morula development. However, the presence of either GSH or EDTA in the culture medium supported development to the blastocyst stage (P<0.01) of in vitro produced morulae. These data demonstrate that 1-cell embryos from a blocking-strain mouse cultured in vitro to the morula stage have a lower development rate following freezing and thawing than embryos collected at the 2-cell or later stages. Addition of EDTA or GSH, individually or in combination, to the culture medium may improve the development rate of morula to blastocyst stage following cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号