首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Sensitivity of various mitochondrial enzymes to oxidative damage was tested on isolated rat liver hepatocytes permeabilized by digitonin. In permeabilized hepatocytes normal respiratory control values were obtained and mitochondrial membranes remained intact. Respiratory rates of NADH-dependent (glutamate + malate, palmitylcarnitine + malate) and flavoprotein-dependent (succinate) substrates were determined in hepatocytes exposed for 5 min to 0.5-3 mM tert-butyl hydroperoxide before addition of digitonin. Our data showed that oxidation of NADH-dependent substrates is much more sensitive to oxidative stress than oxidation of flavoprotein-dependent ones, evidently due to the modification of iron-sulfur clusters or SH groups in the NADH dehydrogenase enzyme complex (Complex I).  相似文献   

2.
Experiments in which we investigated the possible oxidative utilization of lipoid substrates by brain and liver mitochondria were carried out with rats aged 5 and 90 days, kept under completely standardized conditions. Brain mitochondria were isolated on a Ficoll gradient after Clark and Nicklas (1970). Respiratory activity (or the respiratory control index-R.C.) was determined in the manner described in an earlier paper (Dobesová and Mourek 1980). Na succinate or Na malate was used as the testing substrate; palmityl carnitine, acetyl carnitine and acetoacetate were used as lipoid substrates. Oxygen consumption was measured with a Clark's oxygen electrode and respiration was expressed in nAt oxygen per min per mg protein, which was measured by the method of Lowry et al. (1951). When using succinate or malate, in agreement with our previous results we did not find any development changes in the respiratory activity of the brain mitochondria. The oxidation of acetoacetate by the brain mitochondria of 5-day-old rats was about five times greater, and of acetyl carnitine over two times greater, compared with the CNS mitochondria of adult rats. The oxidative utilization of lipoid substrates by the liver mitochondria of 5-day-old rats was significantly greater than their utilization by CNS mitochondria (in the case of palmityl carnitine three times greater, for example) and was always significantly greater than in the liver mitochondria of adult rats. We demonstrated that mitochondria isolated from the brain of 5-day-old rats are equipped with an enzymatic apparatus which allows them to utilize lipoid substrates on a significantly greater scale than in adulthood.  相似文献   

3.
Digitonin solubilizes mitochondrial membrane, breaks the integrity of the respiratory chain and releases two mobile redox-active components: coenzyme Q (CoQ) and cytochrome c (cyt c). In the present study we report the inhibition of glycerol-3-phosphate- and succinate-dependent oxygen consumption rates by digitonin treatment. Our results show that the inhibition of oxygen consumption rates is recovered by the addition of exogenous synthetic analog of CoQ idebenone (hydroxydecyl-ubiquinone; IDB) and cyt c. Glycerol-3-phosphate oxidation rate is recovered to 148 % of control values, whereas succinate-dependent oxidation rate only to 68 %. We find a similar effect on the activities of glycerol-3-phosphate and succinate cytochrome c oxidoreductase. Our results also indicate that succinate-dependent oxidation is less sensitive to digitonin treatment and less activated by IDB in comparison with glycerol-3-phosphate-dependent oxidation. These findings might indicate the different mechanism of the electron transfer from two flavoprotein-dependent dehydrogenases (glycerol-3-phosphate dehydrogenase and succinate dehydrogenase) localized on the outer and inner face of the inner mitochondrial membrane, respectively.  相似文献   

4.
Mechanical ventilation (MV) is a life-saving intervention used in patients with acute respiratory failure. Unfortunately, prolonged MV results in diaphragmatic weakness, which is an important contributor to the failure to wean patients from MV. Our laboratory has previously shown that reactive oxygen species (ROS) play a critical role in mediating diaphragmatic weakness after MV. However, the pathways responsible for MV-induced diaphragmatic ROS production remain unknown. These experiments tested the hypothesis that prolonged MV results in an increase in mitochondrial ROS release, mitochondrial oxidative damage, and mitochondrial dysfunction. To test this hypothesis, adult (3–4 months of age) female Sprague–Dawley rats were assigned to either a control or a 12-h MV group. After treatment, diaphragms were removed and mitochondria were isolated for subsequent respiratory and biochemical measurements. Compared to control, prolonged MV resulted in a lower respiratory control ratio in diaphragmatic mitochondria. Furthermore, diaphragmatic mitochondria from MV animals released higher rates of ROS in both State 3 and State 4 respiration. Prolonged MV was also associated with diaphragmatic mitochondrial oxidative damage as indicated by increased lipid peroxidation and protein oxidation. Finally, our data also reveal that the activities of the electron transport chain complexes II, III, and IV are depressed in mitochondria isolated from diaphragms of MV animals. In conclusion, these results are consistent with the concept that diaphragmatic inactivity promotes an increase in mitochondrial ROS emission, mitochondrial oxidative damage, and mitochondrial respiratory dysfunction.  相似文献   

5.
Peroxide-induced membrane damage in human erythrocytes   总被引:2,自引:0,他引:2  
Erythrocytes exposed to H2O2 or t-butyl hydroperoxide (tBHP) exhibited lipid peroxidation and increased passive cation permeability. In the case of tBHP a virtually complete inhibition of both processes was caused by butylated hydroxytoluene (BHT), whereas pretreatment of the cells with CO increased both lipid peroxidation and K+ leakage. In the experiments with H2O2, on the other hand, both BHT and CO strongly inhibited lipid peroxidation, without affecting the increased passive cation permeability. These observations indicate different mechanisms of oxidative damage, induced by H2O2 and tBHP, respectively. The SH-reagent diamide strongly inhibited H2O2-induced K+ leakage, indicating the involvement of SH oxidation in this process. With tBHP, on the contrary, K+ leakage was not significantly influenced by diamide. Thiourea inhibited tBHP-induced K+ leakage, without affecting lipid peroxidation. Together with other experimental evidence this contradicts a rigorous interdependence of tBHP-induced lipid peroxidation and K+ leakage.  相似文献   

6.
To study possible factors in the pathogenesis of the ethanol-induced fatty liver, we investigated the effect of chronic ethanol consumption on the metabolism of fatty acids by isolated hepatic mitochondria. Chronic ethanol consumption resulted in decreased fatty acid oxidation, as evidenced by a reduction in oxygen uptake and CO2 production associated with the oxidation of fatty acids. The State 3 rate of oxygen uptake was depressed to a greater extent than the State 4 or the uncoupler-stimulated rate; the respiratory control ratio was also decreased. Therefore, one site of action of chronic ethanol feeding is on oxidative phosphorylation. The reduction in fatty acid oxidation, in general, is not due to an effect on the activation or translocation of fatty acids into the mitochondria. There was no effect by ethanol feeding on the activity of palmitoyl coenzyme A synthetase, whereas carnitine palmitoyltransferase activity was increased. The use of an artificial system (formazan production) to study beta oxidation in the absence of the electron transport chain is described. In the presence of fluorocitrate, which inhibits citric acid cycle activity, ketogenesis and formazan production were increased by chronic ethanol consumption. Thus beta oxidation to the level of acetyl-CoA is not impaired by chronic ethanol consumption. Total oxidation of fatty acids to CO2 is depressed by chronic ethanol intoxication because of effects on oxidative phosphorylation or the citric acid cycle (or both). Neither nutritional deficiency, cofactor depletion, nor the presence of ethanol in vitro explains these effects. Several of the effects of chronic ethanol consumption on fatty acid oxidation are mimicked by acetaldehyde and acetate, products of ethanol oxidation. Chronic ethanol consumption leads to persistent impairment of mitochondrial oxidation of fatty acids to CO2. However, oxidation of fatty acids to acetyl-CoA is not decreased by chronic ethanol consumption.  相似文献   

7.
Acetaldehyde inhibited the oxidation of fatty acids by rat liver mitochondria as assayed by oxygen consumption and CO2 production. ADP-stimulated oxygen uptake was more sensitive to inhibition by acetaldehyde than was uncoupler-stimulated oxygen uptake, suggesting an effect of acetaldehyde on the electron transport-phosphorylation system. This conclusion is supported by the decrease in the respiratory control ratio, associated with fatty acid oxidation. Acetaldehyde depressed ketone body production as well as the content of acetyl CoA during palmitoyl-1-carnitine oxidation. Acetaldehyde was considerably more inhibitory toward fatty acid oxidation than was acetate. Therefore, the inhibition by acetaldehyde is not mediated by acetate, the direct product of acetaldehyde oxidation by the mitochondria. Oxygen uptake was depressed by acetaldehyde to a slightly, but consistently, greater extent in the absence of fluorocitrate, than in its presence. This suggests inhibition of oxygen consumption from β-oxidation to acetyl CoA and that which arises from citric acid cycle activity. The inhibition of fatty acid oxidation is not due to any effect on the activation or translocation of fatty acids into the mitochondria.The depression of the end products of fatty acid oxidation (CO2, ketones, acetyl CoA) as well as the greater sensitivity of palmitate oxidation compared to acetate oxidation, suggests inhibition by acetaldehyde of β-oxidation, citric acid cycle activity, and the respiratory-phosphorylation chain. Neither the activities of palmitoyl CoA synthetase nor carnitine palmitoyltransferase appear to be rate limiting for fatty acid oxidation.  相似文献   

8.
Prompted by an apparent relationship between ketosis and fatty acid utilization, we studied the capacities for fatty acid oxidation through β-oxidation and Krebs cycle in liver mitochondria isolated from fetal and suckling rats. Rates of state 3 oxidation, as measured by oxygen consumption, were low for both palmitylcarnitine and palmityl CoA plus carnitine at 2 days before term and at birth, but increased at least ninefold during the first 8 days of life and at least sixfold during the remaining suckling period. Despite these sharp increases, oxygen consumption in suckling rats did not exceed the value for fed adult rats. Also, the rates of state 3 oxidation of succinate were low in suckling rats. Respiratory control indices, determined with each of the three substrates, were lower in suckling rats than fed adults. By contrast, ratios of fatty acyl ester to succinate oxidation, a relative measure of the oxidation of palmitylcarnitine and palmityl CoA, were 21–66% and 27–77% higher in suckling than in fed adult rats. The increased ratios indicate that the capacity for fatty acid oxidation is higher during postnatal development than in the fetal stage or adulthood. The oxidation capacity was inversely related to glycogen content in the liver. Although hepatic carnitine concentration and carnitine palmityltransferase activity increased during suckling period, they are not rate limiting for fatty acid oxidation. Studies of the partitioning of fatty acids showed that about two-thirds of the fatty acid oxidized through β-oxidation did not enter Krebs cycle for further oxidation. These results support our working hypothesis that ketosis of suckling rats stems from rapid oxidation of fatty acids and increased partitioning of acetyl CoA into ketogenesis.  相似文献   

9.
The metabolic characteristics of 12 skeletal muscles of the sheep were studied. Glycolytic activities (hexokinase, glycogen synthetase I and D, phosphorylase a and b, phosphofructokinase) were measured. Myofibrillar ATPase activity was evaluated. Oxygen consumption, respiratory control and carnitine palmityl transferase, isocitrate dehydrogenase, succinate dehydrogenase and cytochrome oxidase activities were measured in isolated mitochondria. Three metabolic types could be distinguished; (1) essentially oxidative slow twitch muscles, typified by the supraspinatus and infraspinatus, having low ATPase activity, (2) fast twitch red muscles, typified by the longissimus dorsi and the semimembranosus, having a higher ATPase activity and both high oxidative and high glycolytic activity, and (3) essentially glycolytic fast twitch muscles, typified by the tensor fascia lata and the semitendinosus, having the highest ATPase activity.  相似文献   

10.
L-Carnitine (L-C) is a naturally occurring quaternary ammonium compound endogenous in all mammalian species and is a vital cofactor for the mitochondrial oxidation of fatty acids. Fatty acids are utilized as an energy substrate in all tissues, and although glucose is the main energetic substrate in adult brain, fatty acids have also been shown to be utilized by brain as an energy substrate. L-C also participates in the control of the mitochondrial acyl-CoA/CoA ratio, peroxisomal oxidation of fatty acids, and the production of ketone bodies. Due to their intrinsic interaction with the bioenergetic processes, they play an important role in diseases associated with metabolic compromise, especially mitochondrial-related disorders. A deficiency of carnitine is known to have major deleterious effects on the CNS. Several syndromes of secondary carnitine deficiency have been described that may result from defects in intermediary metabolism and alterations principally involving mitochondrial oxidative pathways. Mitochondrial superoxide formation resulting from disturbed electron transfer within the respiratory chain may affect the activities of respiratory chain complexes I, II, III, IV, and V and underlie some CNS pathologies. This mitochondrial dysfunction may be ameliorated by L-C and its esters. In addition to its metabolic role, L-C and its esters such as acetyl-L-carnitine (ALC) poses unique neuroprotective, neuromodulatory, and neurotrophic properties which may play an important role in counteracting various disease processes. Neural dysfunction and metabolic imbalances underlie many diseases, and the inclusion of metabolic modifiers may provide an alternative and early intervention approach, which may limit further developmental damage, cognitive loss, and improve long-term therapeutic outcomes. The neurophysiological and neuroprotective actions of L-C and ALC on cellular processes in the central and peripheral nervous system show such effects. Indeed, many studies have shown improvement in processes, such as memory and learning, and are discussed in this review.  相似文献   

11.
The peroxisomal beta oxidation of very long chain fatty acids (VLCFA) leads to the formation of medium chain acyl-CoAs such as octanoyl-CoA. Today, it seems clear that the exit of shortened fatty acids produced by the peroxisomal beta oxidation requires their conversion into acyl-carnitine and the presence of the carnitine octanoyltransferase (CROT). Here, we describe the consequences of an overexpression and a knock down of the CROT gene in terms of mitochondrial and peroxisomal fatty acids metabolism in a model of hepatic cells. Our experiments showed that an increase in CROT activity induced a decrease in MCFA and VLCFA levels in the cell. These changes are accompanied by an increase in the level of mRNA encoding enzymes of the peroxisomal beta oxidation. In the same time, we did not observe any change in mitochondrial function. Conversely, a decrease in CROT activity had the opposite effect. These results suggest that CROT activity, by controlling the peroxisomal amount of medium chain acyls, may control the peroxisomal oxidative pathway.  相似文献   

12.
Ketone bodies become major body fuels during fasting and consumption of a high-fat, low-carbohydrate (ketogenic) diet. Hyperketonemia is associated with potential health benefits. Ketone body synthesis (ketogenesis) is the last recognizable step of lipid energy metabolism, a pathway that links dietary lipids and adipose triglycerides to the Krebs cycle and respiratory chain and has three highly regulated control points: (1) adipocyte lipolysis, (2) mitochondrial fatty acids entry, controlled by the inhibition of carnitine palmityl transferase I by malonyl coenzyme A (CoA) and (3) mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase, which catalyzes the irreversible first step of ketone body synthesis. Each step is suppressed by an elevated circulating insulin level or insulin/glucagon ratio. The utilization of ketone bodies (ketolysis) also determines circulating ketone body levels. Consideration of ketone body metabolism reveals the mechanisms underlying the extreme fragility of dietary ketosis to carbohydrate intake and highlights areas for further study.  相似文献   

13.
Oxygen consumption was depressed in mitochondria isolated from halothane sensitive pig (HP) muscle. The calculation of the respiratory control ratio (RCR) indicated that mitochondria were more affected at the site-I level of the respiratory chain. Calcium accumulation in these mitochondria was not altered when driven by the oxidation of succinate. This process was abolished when linked to ATP as a source of energy. ATP transport was completely inhibited in (HP) mitochondria.  相似文献   

14.
The majority of toxic agents act either fully or partially via oxidative stress, the liver, specifically the mitochondria in hepatocytes, being the main target. Maintenance of mitochondrial function is essential for the survival and normal performance of hepatocytes, which have a high energy requirement. Therefore, greater understanding of the role of mitochondria in hepatocytes is of fundamental importance. Mitochondrial function can be analysed in several basic models: hepatocytes cultured in vitro; mitochondria in permeabilised hepatocytes; and isolated mitochondria. The aim of our study was to use all of these approaches to evaluate changes in mitochondria exposed in vitro to a potent non-specific peroxidating agent, tert-butylhydroperoxide (tBHP), which is known to induce oxidative stress. A decrease in the mitochondrial membrane potential (MMP) was observed in cultured hepatocytes treated with tBHP, as illustrated by a significant reduction in Rhodamine 123 accumulation and by a decrease in the fluorescence of the JC-1 molecular probe. Respiratory Complex I in the mitochondria of permeabilised hepatocytes showed high sensitivity to tBHP, as documented by high-resolution respirometry. This could be caused by the oxidation of NADH and NADPH by tBHP, followed by the disruption of mitochondrial calcium homeostasis, leading to the collapse of the MMP. A substantial decrease in the MMP, as determined by tetraphenylphosphonium ion-selective electrode measurements, also confirmed the dramatic impact of tBHP-induced oxidative stress on mitochondria. Swelling was observed in isolated mitochondria exposed to tBHP, which could be prevented by cyclosporin A, which is evidence for the role of mitochondrial permeability transition. Our results demonstrate that all of the above-mentioned models can be used for toxicity assessment, and the data obtained are complementary.  相似文献   

15.
Inhibition of mitochondrial oxidative phosphorylation by adriamycin   总被引:2,自引:0,他引:2  
The antitumour antibiotic, adriamycin, inhibited oxidative phosphorylation in freshly prepared mitochondria from the heart, liver and kidney of the rat. It abolished respiratory control and stimulated ATPase activity. Succinate oxidation by heart mitochondria was extremely sensitive to the drug when hexokinase was present in the reaction medium. The sensitive site has been identified to lie in the region between the succinate dehydrogenase flavoprotein and ubiquinone of the respiratory chain.  相似文献   

16.
The quinonoid anthracycline, doxorubicin (Adriamycin) is a potent anti-neoplastic agent whose clinical use is limited by severe cardiotoxicity. Mitochondrial damage is a major component of this cardiotoxicity, and rival oxidative and non-oxidative mechanisms for inactivation of the electron transport chain have been proposed. Using bovine heart submitochondrial preparations (SMP) we have now found that both oxidative and non-oxidative mechanisms occur in vitro, depending solely on the concentration of doxorubicin employed. Redox cycling of doxorubicin by Complex I of the respiratory chain (which generates doxorubicin semiquinone radicals, O2-, H2O2, and .OH) caused a 70% decrease in the Vmax. for NADH dehydrogenase during 15 min incubation of SMP, and an 80% decrease in NADH oxidase activity after 2 h incubation. This inactivation required only 25-50 microM-doxorubicin and represents true oxidative damage, since both NADH (for doxorubicin redox cycling) and oxygen were obligatory participants. The damage appears localized between the NADH dehydrogenase flavin (site of doxorubicin reduction) and iron-sulphur centre N-1. Succinate dehydrogenase, succinate oxidase, and cytochrome c oxidase activities were strongly inhibited by higher doxorubicin concentrations, but this phenomenon did not involve doxorubicin redox cycling (no NADH or oxygen requirement). Doxorubicin concentrations of 0.5 mM were required for 50% decreases in these activities, except for cytochrome c oxidase which was only 30% inhibited following incubation with even 1.0 mM-doxorubicin. Our results indicate that low concentrations of doxorubicin (50 microM or less) can catalyse a site-specific oxidative damage to the NADH oxidation pathway. In contrast, ten-fold higher doxorubicin concentrations (or more) are required for non-oxidative inactivation of the electron transport chain; probably via binding to cardiolipin and/or generalized membrane chaotropic effects. The development of agents to block doxorubicin toxicity in vivo will clearly require detailed clinical studies of doxorubicin uptake in the heart.  相似文献   

17.
Abstract

Low amplitude swelling in isolated pea mitochondria. — The authors have studied the volume changes of isolated pea internode mitochondria occurring in a medium which allows the oxidative activity to proceed. With succinate as substrate respiratory control ratios as high as 9 have been obtained. They can be taken as an index of a tight coupling of mitochondria. The adding of succinate induces on the other hand a slight but continuous swelling which is strongly enhanced by ADP or ATP. Inhibitors of the respiratory chain like antimycin A and of the phosphorylation reactions like atractylate or oligomycin block completely the ADP or ATP-induced swelling. 2,4-dinitrophenol at 5×10?6 M concentration exerts a strong inhibitory action on succinate oxidation and on swelling. Both actions of 2,4-DNP can be reversed by ATP. It can be concluded from these findings that the substances which slow down or abolish the oxidative and phosphorylative reactions inhibit also mitochondrial swelling. This type of volume changes appears therefore to be strictly energy-dependent.  相似文献   

18.
Lipid oxidation is reduced in obese human skeletal muscle   总被引:1,自引:0,他引:1  
The purpose of this study was to discern cellular mechanisms that contribute to the suppression of lipid oxidation in the skeletal muscle of obese individuals. Muscle was obtained from obese [body mass index (BMI), 38.3 +/- 3.1 kg/m(2)] and lean (BMI, 23.8 +/- 0.9 kg/m(2)) women, and fatty acid oxidation was studied by measuring (14)CO(2) production from (14)C-labeled fatty acids. Palmitate oxidation, which is at least partially dependent on carnitine palmitoyltransferase-1 (CPT-1) activity, was depressed (P < 0.05) by approximately 50% with obesity (6.8 +/- 2.2 vs. 13.7 +/- 1.4 nmole CO(2).g(-1).h(-1)). The CPT-1-independent event of palmitoyl carnitine oxidation was also depressed (P < 0.01) by approximately 45%. There were significant negative relationships (P < 0.05) for adiposity with palmitate (r = -0.76) and palmitoyl carnitine (r = -0.82) oxidation. Muscle CPT-1 and citrate synthase activity, an index of mitochondrial content, were also significantly (P < 0.05) reduced ( approximately 35%) with obesity. CPT-1 (r = -0.48) and citrate synthase (r = -0.65) activities were significantly (P < 0.05) related to adiposity. These data suggest that lesions at CPT-1 and post-CPT-1 events, such as mitochondrial content, contribute to the reduced reliance on fat oxidation evident in human skeletal muscle with obesity.  相似文献   

19.

Background

Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results

Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 μM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP.

Conclusions

Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.  相似文献   

20.
The mechanism of the effect of tert-butyl hydroperoxide (tBHP) on the kinetics of decrease in liver mitochondrial ΔΨ (transmembrane electric potential) in response to successive additions of tBHP in low concentrations has been studied. FeSO4 was found to increase significantly the damaging effect of tBHP; this effect was shown to increase in the presence of low concentrations of Ca2+ starting from 2 μM CaCl2. Cyclosporin A prevents these effects. The data show that the damaging effect of low concentrations of tBHP in the course of pyruvate oxidation in isolated liver mitochondria is caused by the opening of the nonspecific Ca2+-dependent cyclosporin A-sensitive pore in the inner mitochondrial membrane. Application of a method of studying oxidative stress regulators, developed in this work, is illustrated by an example of the prooxidant action of ascorbate. This method is proposed for studying mitochondria in hemochromatosis, a pathology caused by excessive accumulation of iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号