首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria maintain numerous energy‐consuming processes in pancreatic acinar cells, yet characteristics of pancreatic mitochondrial oxidative phosphorylation in native conditions are poorly studied. Besides, it is not known which type of solution is most adequate to preserve functions of pancreatic mitochondria in situ. Here we propose a novel experimental protocol suitable for in situ analysis of pancreatic mitochondria metabolic states. Isolated rat pancreatic acini were permeabilized with low doses of digitonin. Different metabolic states of mitochondria were examined in KCl‐ and sucrose‐based solutions using Clark oxygen electrode. Respiration of digitonin‐treated, unlike of intact, acini was substantially intensified by succinate or mixture of pyruvate plus malate. Substrate‐stimulated respiration rate did not depend on solution composition. In sucrose‐based solution, oligomycin inhibited State 3 respiration at succinate oxidation by 65.4% and at pyruvate plus malate oxidation by 60.2%, whereas in KCl‐based solution, by 32.0% and 36.1%, respectively. Apparent respiratory control indices were considerably higher in sucrose‐based solution. Rotenone or thenoyltrifluoroacetone severely inhibited respiration, stimulated by pyruvate plus malate or succinate, respectively. This revealed low levels of non‐mitochondrial oxygen consumption of permeabilized acinar cells. These results suggest a stronger coupling between respiration and oxidative phosphorylation in sucrose‐based solution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Mitochondria as an energy generating cell device are very sensitive to oxidative damage. Our previous findings obtained in hepatocytes demonstrated that Complex I of the respiratory chain is more sensitive to oxidative damage than other respiratory chain complexes. We present additional data on isolated mitochondria showing that palmityl carnitine oxidation is strongly depressed at a low (200 microM) tert-butyl hydroperoxide (tBHP) concentration, while oxidation of the flavoprotein-dependent substrate - succinate is not affected and neither is ATP synthesis inhibited by tBHP. In the presence of tBHP, the respiratory control index for palmityl carnitine oxidation is strongly depressed, but when succinate is oxidized the respiratory control index remains unaffected. Our findings thus indicate that flavoprotein-dependent substrates could be an important nutritional factor for the regeneration process in the necrotic liver damaged by oxidative stress.  相似文献   

3.
Mitochondrial metabolism depends on movement of hydrophilic metabolites through the mitochondrial outer membrane via the voltage-dependent anion channel (VDAC). Here we assessed VDAC permeability of intracellular mitochondria in cultured hepatocytes after plasma membrane permeabilization with 8 μM digitonin. Blockade of VDAC with Koenig’s polyanion inhibited uncoupled and ADP-stimulated respiration of permeabilized hepatocytes by 33% and 41%, respectively. Tenfold greater digitonin (80 μM) relieved KPA-induced inhibition and also released cytochrome c, signifying mitochondrial outer membrane permeabilization. Acute ethanol exposure also decreased respiration and accessibility of mitochondrial adenylate kinase (AK) of permeabilized hepatocytes membranes by 40% and 32%, respectively. This inhibition was reversed by high digitonin. Outer membrane permeability was independently assessed by confocal microscopy from entrapment of 3 kDa tetramethylrhodamine-conjugated dextran (RhoDex) in mitochondria of mechanically permeabilized hepatocytes. Ethanol decreased RhoDex entrapment in mitochondria by 35% of that observed in control cells. Overall, these results demonstrate that acute ethanol exposure decreases mitochondrial outer membrane permeability most likely by inhibition of VDAC.  相似文献   

4.
The effect of exogenous cytochrome c on respiration rate of the rat and human heart mitochondria was assessed in situ, using permeabilized fibers. It was (i) much more pronounced in State 2 and 4 than in State 3 with all the respiratory substrates (pyruvate+malate, succinate, palmitoyl-CoA+carnitine and octanoyl-L-carnitine), (ii) different with different substrates, (iii) much higher after ischemia in both metabolic states, particularly in the case of succinate oxidation compared to pyruvate+malate, (iv) the highest in State 4 with succinate as a substrate. Similar results were obtained with the isolated rat and rabbit heart mitochondria. The differences in the degree of stimulation of mitochondrial respiration by cytochrome c and, thus, sensitivity of cytochrome c test in evaluation of the intactness/injury of outer mitochondrial membrane are probably determined by the differences in the cytochrome c role in the control of mitochondrial respiration in the above-described conditions.  相似文献   

5.
Statins, the widely prescribed cholesterol-lowering drugs for the treatment of cardiovascular disease, cause adverse skeletal muscle side effects ranging from fatigue to fatal rhabdomyolysis. The purpose of this study was to determine the effects of simvastatin on mitochondrial respiration, oxidative stress, and cell death in differentiated primary human skeletal muscle cells (i.e., myotubes). Simvastatin induced a dose-dependent decrease in viability of proliferating and differentiating primary human muscle precursor cells, and a similar dose-dependent effect was noted in differentiated myoblasts and myotubes. Additionally, there were decreases in myotube number and size following 48 h of simvastatin treatment (5 μM). In permeabilized myotubes, maximal ADP-stimulated oxygen consumption, supported by palmitoylcarnitine+malate (PCM, complex I and II substrates) and glutamate+malate (GM, complex I substrates), was 32-37% lower (P<0.05) in simvastatin-treated (5 μM) vs control myotubes, providing evidence of impaired respiration at complex I. Mitochondrial superoxide and hydrogen peroxide generation were significantly greater in the simvastatin-treated human skeletal myotube cultures compared to control. In addition, simvastatin markedly increased protein levels of Bax (proapoptotic, +53%) and Bcl-2 (antiapoptotic, +100%, P<0.05), mitochondrial PTP opening (+44%, P<0.05), and TUNEL-positive nuclei in human skeletal myotubes, demonstrating up-regulation of mitochondrial-mediated myonuclear apoptotic mechanisms. These data demonstrate that simvastatin induces myotube atrophy and cell loss associated with impaired ADP-stimulated maximal mitochondrial respiratory capacity, mitochondrial oxidative stress, and apoptosis in primary human skeletal myotubes, suggesting that mitochondrial dysfunction may underlie human statin-induced myopathy.  相似文献   

6.
The effect of the antiepileptic drug valproic acid (VPA) on mitochondrial oxidative phosphorylation (OXPHOS) was investigated in vitro. Two experimental approaches were used, in the presence of selected respiratory-chain substrates: (1) formation of ATP in digitonin permeabilized rat hepatocytes and (2) measurement of the rate of oxygen consumption by polarography in rat liver mitochondria. VPA (0.1-1.0 mM) was found to inhibit oxygen consumption and ATP synthesis under state 3 conditions with glutamate and 2-oxoglutarate as respiratory substrates. No inhibitory effect on OXPHOS was observed when succinate (plus rotenone) was used as substrate. We tested the hypothesis that dihydrolipoyl dehydrogenase (DLDH) might be a direct target of VPA, especially its acyl-CoA intermediates. Valproyl-CoA (0.5-1.0 mM) and valproyl-dephosphoCoA (0.5-1.0 mM) both inhibited the DLDH activity, acting apparently by different mechanisms. The decreased activity of DLDH induced by VPA metabolites may, at least in part, account for the impaired rate of oxygen consumption and ATP synthesis in mitochondria if 2-oxoglutarate or glutamate were used as respiratory substrates, thus limiting the flux of these substrates through the citric acid cycle.  相似文献   

7.
High resolution respirometry in combination with the skinned fiber technique offers the possibility to study mitochondrial function routinely in small amounts of human muscle. During a period of 2 years, we investigated mitochondrial function in skeletal muscle tissue of 13 patients (average age = 5.8 years). In all of them, an open muscle biopsy was performed for diagnosis of their neuromuscular disorder. Mitochondrial oxidation rates were measured with a highly sensitive respirometer. Multiple substrate-inhibitor titration was applied for investigation of mitochondrial function. About 50 mg fibers were sufficient to obtain maximal respiratory rates for seven different substrates (pyruvate/malate, glutamate/malate, octanoylcarnitine/malate, palmitoylcarnitine /malate, succinate, durochinol and ascorbate/TMPD). Decreased respiration rates with reference to the wet weight of the permeabilized fiber could immediately be detected during the course of measurements.In 4 patients with mitochondrial encephalomyopathy (MEM) the respiration pattern indicated a specific mitochondrial enzyme defect, which was confirmed in every patient by measurements of the individual enzymes (one patient with PDHC deficiency, one with complex I deficiency and two patients with combined complex I and IV deficiency). In the 6 patients with spinal muscular atrophy (SMA) oxidation rates were found to be decreased to 23 ± 5% of controls. The normalized respiration pattern was comparable to that of the controls indicating a decreased content of mitochondria in SMA muscle with normal functional properties. Also in the 3 patients with Duchenne muscular dystrophy (DMD) decreased oxidation rates (42 ± 5%) were detected. In addition a low RCI (1.2) indicated a loose coupling of oxidative phosphorylation in the mitochondria of these patients.It is concluded that investigation of mitochondrial function in saponin skinned muscle fibers using high resolution respirometry in combination with multiple substrate titration offers a valuable tool for evaluation of mitochondrial alterations in muscle biopsies of children suffering from neuromuscular disorders. (Mol Cell Biochem 174: 71–78, 1997)  相似文献   

8.
The effect of the antiepileptic drug valproic acid (VPA) on mitochondrial oxidative phosphorylation (OXPHOS) was investigated in vitro. Two experimental approaches were used, in the presence of selected respiratory-chain substrates: (1) formation of ATP in digitonin permeabilized rat hepatocytes and (2) measurement of the rate of oxygen consumption by polarography in rat liver mitochondria. VPA (0.1-1.0 mM) was found to inhibit oxygen consumption and ATP synthesis under state 3 conditions with glutamate and 2-oxoglutarate as respiratory substrates. No inhibitory effect on OXPHOS was observed when succinate (plus rotenone) was used as substrate. We tested the hypothesis that dihydrolipoyl dehydrogenase (DLDH) might be a direct target of VPA, especially its acyl-CoA intermediates. Valproyl-CoA (0.5-1.0 mM) and valproyl-dephosphoCoA (0.5-1.0 mM) both inhibited the DLDH activity, acting apparently by different mechanisms. The decreased activity of DLDH induced by VPA metabolites may, at least in part, account for the impaired rate of oxygen consumption and ATP synthesis in mitochondria if 2-oxoglutarate or glutamate were used as respiratory substrates, thus limiting the flux of these substrates through the citric acid cycle.  相似文献   

9.
Hepatic mitochondrial and peroxisomal oxidative capacities were studied in young (4-5 weeks old) and adult (6-9 months old) lean and obese ob/ob mice that were fed or starved for 24 or 48 h. The adult obese mice showed elevated capacity for mitochondrial oxidation (ng-atoms of O consumed/min per mg of protein) of lipid and non-lipid substrates, with the exception of pyruvate + malate, and elevated activities of citrate synthase and total carnitine palmitoyltransferase. Oxidative rates and enzyme activities were not affected by starvation of lean or obese mice, and both males and females responded similarly. Peroxisomal palmitoyl-CoA oxidation (nmol/min per mg of peroxisomal protein) was also increased in livers of adult obese mice and did not change with starvation. In young mice, hepatic mitochondrial and peroxisomal oxidative capacities in lean and obese mice were comparable. The increased mitochondrial and peroxisomal oxidative capacities appear to develop with maturation in obese ob/ob mice.  相似文献   

10.
Digitonin solubilizes mitochondrial membrane, breaks the integrity of the respiratory chain and releases two mobile redox-active components: coenzyme Q (CoQ) and cytochrome c (cyt c). In the present study we report the inhibition of glycerol-3-phosphate- and succinate-dependent oxygen consumption rates by digitonin treatment. Our results show that the inhibition of oxygen consumption rates is recovered by the addition of exogenous synthetic analog of CoQ idebenone (hydroxydecyl-ubiquinone; IDB) and cyt c. Glycerol-3-phosphate oxidation rate is recovered to 148 % of control values, whereas succinate-dependent oxidation rate only to 68 %. We find a similar effect on the activities of glycerol-3-phosphate and succinate cytochrome c oxidoreductase. Our results also indicate that succinate-dependent oxidation is less sensitive to digitonin treatment and less activated by IDB in comparison with glycerol-3-phosphate-dependent oxidation. These findings might indicate the different mechanism of the electron transfer from two flavoprotein-dependent dehydrogenases (glycerol-3-phosphate dehydrogenase and succinate dehydrogenase) localized on the outer and inner face of the inner mitochondrial membrane, respectively.  相似文献   

11.
The purpose of this study was to examine hepatocyte mitochondrion respiratory chain in rats subjected to ethanol and CCl4 administration within 4 weeks to induce an experimental hepatitis. Oxygen consumption was determined as a measure of mitochondrion respiration chain function. The development of liver pathology was accompanied by fat accumulation, fibrosis, triglycerides and lipid peroxidation increase. Respiratory chain characteristics damage was found. Endogenous oxygen consumption by hepatocytes isolated from pathological liver was found 34% higher compared to control. Exogenous malate and pyruvate substrates delivery didn't stimulate cell respiration. Rotenone (the inhibitor of the I complex) decreased 27% oxygen consumption by pathological hepatocytes while dinitrophenol produced 37% cell respiration increase. States 3 (V3) and 4 (V4) mitochondrial respiration with malate + glutamate as substrates were found to be 70 and 56% higher accordingly compared to control level. V3 and Vd (dinitrophenol respiration) for mitochondria from pathological liver didn't differ from control when being tested with malate + glutamate or succinate as substrates. Cytochrome c oxidase activity increased (+ 80%) as compared to control. Administration of hypolipidemic agent simvastatin simultaneously with ethanol and CC14 resulted in decrease liver fat accumulation, fibrosis and peroxidation products. Simvastatin administration caused hepatocyte endogenous respiration decrease while malate + pyruvate, dinitrophenol or rotenone delivery produced oxygen consumption alterations similar to control. However, when isolated mitochondria from liver of simvastatin treated animals being tested the decrease of oxidative phosphorylation coupling for substrates malate + glutamate was found. While simvastatin did not cause changes in cytochrome c oxidase activity. We propose the hypothesis that the NCCR complex in rat mitochondria with experimental toxic hepatitis works extensively on superoxydanion production. Alterations of SCCR, Coenzyme Q-cytochrome c-reductase, cytochrome c oxidase and ATP-synthase activities have an adaptive nature to compensate for impaired NCCR function.  相似文献   

12.
This report describes the isolation procedure and properties of tightly coupled flight muscle mitochondria of the bumblebee Bombus terrestris (L.). The highest respiratory control index was observed upon oxidation of pyruvate, whereas the highest respiration rates were registered upon oxidation of a combination of the following substrates: pyruvate + malate, pyruvate + proline, or pyruvate + glutamate. The respiration rates upon oxidation of malate, glutamate, glutamate + malate, or succinate were very low. At variance with flight muscle mitochondria of a number of other insects reported earlier, B. terrestris mitochondria did not show high rates of respiration supported by oxidation of proline. The maximal respiration rates were observed upon oxidation of α-glycerophosphate. Bumblebee mitochondria are capable of maintaining high membrane potential in the absence of added respiratory substrates, which was completely dissipated by the addition of rotenone, suggesting high amount of intramitochondrial NAD-linked oxidative substrates. Pyruvate and α-glycerophosphate appear to be the optimal oxidative substrates for maintaining the high rates of oxidative metabolism of the bumblebee mitochondria.  相似文献   

13.
In isolated hepatocytes from normal fed rats, the subcellular distribution of malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH has been determined by a modified digitonin method. Incubation with various substrates (lactate, pyruvate, alanine, oleate, oleate plus lactate, ethanol and aspartate) markedly changed the total cellular amounts of metabolites, but their distribution between the cytosolic and mitochondrial compartments was kept fairly constant. In the presence of lactate, pyruvate or alanine, about 90% of cellular aspartate, malate and oxaloacetate, and 50% of citrate was located in the cytosol. The changes in acetyl-CoA in the cytosol were opposite to those in the mitochondrial space, the sum of both remaining nearly constant. The mitochondrial acetyl-CoA/CoASH ratio ranged from 0.3-0.9 and was positively correlated with the rate of ketone body formation. The mitochondrial/cytosolic (m/c) concentration gradients for malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH averaged from hepatocytes under different substrate conditions were determined to be 1.0, 8.8, 1.6, 2.2, 0.5, 0.7, 13 and 40, respectively. From the distribution of citrate, a pH difference of 0.3 across the inner mitochondrial membrane was calculated, yet lower values resulted from the m/c gradients of 2-oxoglutarate, glutamate and malate. The mass action ratios for citrate synthase and mitochondrial aspartate aminotransferase have been calculated from the metabolite concentrations measured in the mitochondrial pellet fraction. A comparison with the respective equilibrium constants indicates that in intact hepatocytes, neither enzyme maintains its reactants at equilibrium. On the assumption that mitochondrial malate dehydrogenase and 3-hydroxybutyrate dehydrogenase operate near equilibrium, the concentration of free oxaloacetate appears to be 0.3-2 micron, depending on the substrate used. Plotting the calculated free mitochondrial oxaloacetate concentration against the citrate concentration measured in the mitochondrial pellet yielded a hyperbolic saturation curve, from which an apparent Km of citrate synthase for oxaloacetate in the intact cells of 2 micron can be derived, which is comparable to the value determined with purified rat liver citrate synthase. The results are discussed with respect to the supply of substrates and effectors of anion carriers and of key enzymes of the tricarboxylic acid cycle and fatty acid biosynthesis.  相似文献   

14.
We report here a new mitochondrial regulation occurring only in intact cells. We have investigated the effects of dimethylbiguanide on isolated rat hepatocytes, permeabilized hepatocytes, and isolated liver mitochondria. Addition of dimethylbiguanide decreased oxygen consumption and mitochondrial membrane potential only in intact cells but not in permeabilized hepatocytes or isolated mitochondria. Permeabilized hepatocytes after dimethylbiguanide exposure and mitochondria isolated from dimethylbiguanide pretreated livers or animals were characterized by a significant inhibition of oxygen consumption with complex I substrates (glutamate and malate) but not with complex II (succinate) or complex IV (N,N,N',N'-tetramethyl-1, 4-phenylenediamine dihydrochloride (TMPD)/ascorbate) substrates. Studies using functionally isolated complex I obtained from mitochondria isolated from dimethylbiguanide-pretreated livers or rats further confirmed that dimethylbiguanide action was located on the respiratory chain complex I. The dimethylbiguanide effect was temperature-dependent, oxygen consumption decreasing by 50, 20, and 0% at 37, 25, and 15 degrees C, respectively. This effect was not affected by insulin-signaling pathway inhibitors, nitric oxide precursor or inhibitors, oxygen radical scavengers, ceramide synthesis inhibitors, or chelation of intra- or extracellular Ca(2+). Because it is established that dimethylbiguanide is not metabolized, these results suggest the existence of a new cell-signaling pathway targeted to the respiratory chain complex I with a persistent effect after cessation of the signaling process.  相似文献   

15.
Incubation of isolated hepatocytes with CCl4 results in early reduction of the intracellular calcium content, mostly due to loss from the mitochondrial compartment. CCl4 treatment directly affects mitochondrial functions as indicated by the inhibition of Ca2+ uptake in cells permeabilized to the ion by digitonin exposure and by the reduction of intracellular ATP content in hepatocytes incubated in a glucose-free medium. Such mitochondrial damage is not caused by CCl4-induced stimulation of lipid peroxidation since it is not prevented by alpha-tocopherol, used at a concentration able to inhibit completely peroxidative reactions without interfering with CCl4 activation. All data together are in favour of a direct action of CCl4-reactive metabolites on liver cell calcium homeostasis.  相似文献   

16.
Respiration, oxidative phosphorylation. and the corresponding changes in membrane potential (deltapsi) of Trypanosoma cruzi epimastigotes grown either in liver infusion-tryptose (LIT) or brain heart infusion (BHI) culture medium were assayed in situ using digitonin to render their plasma membrane permeable to succinate, ADP, safranine O, and other small molecules. When the cells were permeabilized with 64 microM digitonin, a concentration previously used with epimastigotes, the ability of the cells grown in LIT medium to sustain oxidative phosphorylation was demonstrated by the detection of an oligomycin-sensitive decrease in mitochondrial membrane potential induced by ADP. In contrast, the cells grown in BHI medium were not able to sustain a stable membrane potential and did not respond to ADP addition. Analyses of oxygen consumption by these permeabilized cells indicated that the rate of basal respiration, which was similar in both cell types, was significantly decreased by 64 microM digitonin. Addition of ADP to the permeabilized cells grown in LIT medium promoted an oligomycin-sensitive transition from resting to phosphorylating respiration in contrast to the cells grown in BHI medium, whose respiration decreased steadily and did not respond either to ADP or CCCP. Titration of the cells grown in BHI medium with different digitonin concentrations indicated that their mitochondria have higher sensitivity to digitonin than those grown in LIT medium. Analysis of the sterol composition of epimastigotes grown in the two different media showed a higher percentage of cholesterol in total and mitochondrial extracts of epimastigotes grown in BHI medium as compared to those grown in LIT medium, suggesting the involvement of this sterol in their increased sensitivity to digitonin-permeabilization.  相似文献   

17.
The influence of piperine on the enzymes and bioenergetic functions in isolated rat liver mitochondria and hepatocytes was studied. Piperine at lower concentrations (<50 μM) did not affect the RCR and ADP:O ratios, state 4 and 3 respirations supported by site-specific substrates, viz. glutamate + malate, succinate, and ascorbate + TMPD. The site-specific effects became significantly apparent only at higher concentrations. Only the state 3 respiration supported by NAD-linked substrates was impaired equipotently in mitochondria and permeabilized hepatocytes; the effect appeared to be localized at energy-coupling site 1. In hypotonic treated mitochondria, respiration supported by three kinds of substrates was not affected. Among the respiratory chain-linked enzymes, the activity of NADH-dehydrogenase registered a significant decrease of about 25, 42, and 53% at 100, 150, and 180 μM piperine, respectively. The activity of Mg++-ATPase, however, was stimulated at concentrations above 150 μM. Among the matrix enzymes, only malate and succinate dehydrogen-ases were studied. Malate dehydrogenase only showed a strong concentration-related inhibition in both the forward and backward directions. Enzyme kinetics indicated noncompetitive inhibition with a very low Ki of 10 μM. The presence of unsaturated double bonds in the side chain of piperine appeared essential for producing this strong inhibition. The studies suggested that piperine produces concentration related site-specific effects on mitochondrial bioenergetics and enzymes of energy metabolism.  相似文献   

18.
Trypanosoma brucei procyclic trypomastigotes were made permeable by using digitonin (0-70 micrograms/mg of protein). This procedure allowed exposure of coupled mitochondria to different substrates. Only succinate and glycerol phosphate (but not NADH-dependent substrates) were capable of stimulating oxygen consumption. Fluorescence studies on intact cells indicated that addition of succinate stimulates NAD(P)H oxidation, contrary to what happens in mammalian mitochondria. Addition of malonate, an inhibitor of succinate dehydrogenase, stimulated NAD(P)H reduction. Malonate also inhibited intact-cell respiration and motility, both of which were restored by further addition of succinate. Experiments carried out with isolated mitochondrial membranes showed that, although the electron transfer from succinate to cytochrome c was inhibitable by antimycin, NADH-cytochrome c reductase was antimycin-insensitive. We postulate that the NADH-ubiquinone segment of the respiratory chain is replaced by NADH-fumarate reductase, which reoxidizes the mitochondrial NADH and in turn generates succinate for the respiratory chain. This hypothesis is further supported by the inhibitory effect on cell growth and respiration of 3-methoxyphenylacetic acid, an inhibitor of the NADH-fumarate reductase of T. brucei.  相似文献   

19.
Oligomycin and uncoupler of oxidative phosphorylation have been studied for their effect on the respiration activity of hepatocytes in rats. The respiration rate in the presence of oligomycin and uncoupler is higher than it is with the respiration uncoupled in the absence of oligomycin. Exogenic succinate makes endogenic respiration of hepatocytes in the presence of digitonin 5 times more intensive. The obtained results evidence for the fact that the uncoupled respiration is limited by the concentration of substrates able to be oxidized in the respiration chain of mitochondria. Oligomycin induces accumulation of substrates and following addition of the disconnector evokes their fast oxidation.  相似文献   

20.
Beffa, T., Pezet, R. and Turian, G. 1987. Multiple-site inhibition by colloidal elemental sulfur (S°) of respiration by mitochondria from young dormant α spores of Phomopsis viticola. Mitochondria from young dormant α spores of Phomopsis viticola Sacc. (ATCC 44940) were isolated by grinding and differential centrifugation. They presented a good integrity of their inner and outer membranes as measured by biochemical assays. Electron microscopic analysis revealed an homogenous population. The highest respiratory activities were observed with NADH and ascorbate + tetra-methyl-p-phenylenediamine (TMPD). Malate stimulated the oxidation of pyruvate, citrate or α-ketoglutarate. The coupling of respiration to oxidative phosphorylation appeared at the time of spore germination. The respiratory activities of mitochondria isolated from young dormant α spores of P. viticola were strongly inhibited by S°. The sensitivity of mitochondrial oxidation of different substrates (NADH, pyruvate + malate, succinate and ascorbate + TMPD) to S° was heterogenous and indicated multiple-site action. Thus preincubation of mitochondria with 30 μM S° before addition of substrates fully prevented NADH oxidation (>98%), and strongly inhibited oxidation of pyruvate + malate (85%), succinate (60%) and ascorbate + TMPD (74%). S° inhibited more rapidly the oxidation of succinate than that of other substrates. In the presence of dithiothreitol (DTT), S°-inhibited oxidation of all substrates (except ascorbate + TMPD) could only be transiently and weakly reestablished. The inhibitory action of S° on the oxidation of NADH, pyruvate + malate and succinate was higher than that observed with sulfhydryl group reagents such as mersalyl, Hg-acetate or p - chloromercuribenzoate. In contrast to S° these SH-group reagents could not inhibit oxidation of ascorbate + TMPD. S°, by its dual capacity to oxidize the SH-groups and to self-reduce, probably at the level of cytochrome c oxidase, could produce a modification of the oxidation state of the respiratory complexes thereby disturbing the electron flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号