首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high molecular weight protein phosphatase (phosphatase H-II) was isolated from rabbit skeletal muscle. The enzyme had a Mr = 260,000 as determined by gel filtration and possessed two types of subunit, of Mr = 70,000 and 35,000, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On ethanol treatment, the enzyme was dissociated to an active species of Mr = 35,000. The purified phosphatase dephosphorylated lysine-rich histone, phosphorylase a, glycogen synthase, and phosphorylase kinase. It dephosphorylated both the alpha- and beta-subunit phosphates of phosphorylase kinase, with a preference for the dephosphorylation of the alpha-subunit phosphate over the beta-subunit phosphate of phosphorylase kinase. The enzyme also dephosphorylated p-nitrophenyl phosphate at alkaline pH. Phosphatase H-II is distinct from the major phosphorylase phosphatase activities in the muscle extracts. Its enzymatic properties closely resemble that of a Mr = 33,500 protein phosphatase (protein phosphatase C-II) isolated from the same tissue. However, despite their similarity of enzymatic properties, the Mr = 35,000 subunit of phosphatase H-II is physically different from phosphatase C-II as revealed by their different sizes on sodium dodecyl sulfate-gel electrophoresis. On trypsin treatment of the enzyme, this subunit is converted to a form which is a similar size to phosphatase C-II.  相似文献   

2.
A simplified procedure for the purification of low molecular weight phosphoprotein phosphatase acting on muscle phosphorylase a has been described from rabbit heart. The enzyme was purified to homogeneity by acid precipitation, ethanol treatment, and chromatography on Sephadex G-75 and Sepharose-histone. The purified enzyme showed a single band when examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; the molecular weight calculated by this method was 34 000. The S20, W value and Stokes radius for the enzyme was 3.35 and 24.0 A(1 A = 0.1 nm), respectively. Using these two values, a molecular weight of 35 000 was calculated. Purified enzyme showed a wide substrate specificity and catalyzed the dephosphorylation of phosphorylase a, glycogen synthase D, phosphorylated histone, and phosphorylated casein. Kinetic studies revealed the lowest Km with glycogen synthase D and maximum Vmax for the reaction with phosphorylase a.  相似文献   

3.
Glycogen-bound protein phosphatase G from rat liver was transferred from glycogen to beta-cyclodextrin (cycloheptaamylose) linked to Sepharose 6B. After removal of the catalytic subunit and of contaminating proteins with 2 M NaCl, elution with beta-cyclodextrin yielded a single protein on native polyacrylamide gel electrophoresis and two polypeptides (161 and 54 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several lines of evidence indicate that the latter polypeptides are subunits of the protein phosphatase G holoenzyme. First, these polypeptides were also present, together with the catalytic subunit, in the extensively purified holoenzyme. Also, polyclonal antibodies against these polypeptides were able to bind the holoenzyme. Further, while bound to cyclodextrin-Sepharose, the polypeptides were able to recombine with separately purified type-1 (AMD) catalytic subunit, but not with type-2A (PCS) catalytic subunit. The characteristics of the reconstituted enzyme resembled those of the nonpurified protein phosphatase G. At low dilutions, the spontaneous phosphorylase phosphatase activity of the reconstituted enzyme was about 10 times lower than that of the catalytic subunit, but it was about 1000-fold more resistant to inhibition by the modulator protein (inhibitor-2). In contrast with the free catalytic subunit, the reconstituted enzyme co-sedimented with glycogen, and it was able to activate purified liver glycogen synthase b. Also, the synthase phosphatase activity was synergistically increased by a cytosolic phosphatase and inhibited by physiological concentrations of phosphorylase alpha and of Ca2+.  相似文献   

4.
Glycogen synthase has been purified from the obliquely striated muscle of the swine parasite Ascaris suum. The muscle contains a concentration of glycogen synthase and glycogen which is 20-fold and 15-fold, respectively, greater than rabbit skeletal muscle. The enzyme could not be solubilized with salivary amylase, but partial solubilization was achieved by activation of endogenous phosphorylase. The enzyme was purified to 85-90% homogeneity (specific activity = 4.3 units/mg) by DEAE-cellulose, Sepharose 4B, and glucosamine 6-phosphate chromatography. The purified glycogen synthase was substantially similar to rabbit skeletal muscle enzyme with respect to Mr (gel electrophoresis and gel filtration), pH dependence, aggregation properties, temperature dependence, and kinetic constants for substrates and activators. Glycogen synthase I was converted to glycogen synthase D by the cyclic AMP-dependent protein kinase. The cyclic AMP-dependent protein kinase catalyzed the incorporation of 1.3 mol of phosphate into each glycogen synthase I subunit and the concomitant interconversion to glycogen synthase D. Since glycogen is the sole fuel utilized by this organism during nonfeeding periods of the host, the characterization of this enzyme provides further insight into the regulatory mechanisms which determine glycogen turnover.  相似文献   

5.
The MgATP-dependent phosphorylase phosphatase was found to have a broad substrate specificity. Its activity against all phosphoproteins tested was dependent upon preincubation with the activating factor FA and MgATP. The enzyme dephosphorylated and inactivated phosphorylase kinase and inhibitor 1, and dephosphorylated and activated glycogen synthase and acetyl-CoA carboxylase. Glycogen synthase was dephosphorylated at similar rates whether it had been phosphorylated by cyclic-AMP-dependent protein kinase, phosphorylase kinase or glycogen synthase kinase 3. The enzyme also catalysed the dephosphorylation of ATP citrate lyase, initiation factor eIF-2, and troponin I. The properties of the MgATP-dependent protein phosphatase from either dog liver or rabbit skeletal muscle showed a remarkable similarity to highly purified preparations of protein phosphatase 1 from rabbit skeletal muscle. The relative activities of the two enzymes against all phosphoproteins tested was very similar. Both enzymes dephosphorylated the beta-subunit of phosphorylase kinase 40-fold faster than the alpha-subunit, and both enzymes were inhibited by identical concentrations of the two proteins termed inhibitor 1 and inhibitor 2, which inhibit protein phosphatase 1 specifically. These results demonstrate that the MgATP-dependent protein phosphatase is a type-1 protein phosphatase, and is distinct from type-2 protein phosphatases which dephosphorylate the alpha-subunit of phosphorylase kinase and are unaffected by inhibitor 1 and inhibitor 2. The possibility that the MgATP-dependent protein phosphatase is an inactive form of protein phosphatase 1 and that both proteins share the same catalytic subunit is discussed.  相似文献   

6.
1. The phosphorylase phosphatase and glycogen-synthase phosphatase activities associated with the glycogen particles from rat liver were progressively inhibited by incubation with modulator protein. However, the phosphorylase phosphatase activity of the catalytic subunit was entirely recovered after destruction of the modulator and the regulatory subunit(s) by trypsin. 2. Inhibition of protein phosphatase G by modulator was associated with a translocation of the phosphorylase phosphatase activity (measured after incubation with trypsin) from glycogen to the soluble fraction. The degree of inhibition of phosphatase G corresponded closely to the extent to which the phosphorylase phosphatase activity was released from the glycogen particles. Incubation of glycogen-free protein phosphatase G with modulator did not change the affinity of the enzyme for added glycogen, but decreased the amount of phosphatase that could be bound to glycogen. 3. The phosphorylase phosphatase activity that was released from the glycogen particles by modulator migrated on gel filtration as a complex (Mr 106,000) of the catalytic subunit with modulator. Phosphorylase phosphatase activity could be transferred from glycogen-bound protein phosphatase G to modulator that was covalently bound to Sepharose. After elution from the column, the enzyme was identified as the free catalytic subunit (Mr 37,000).  相似文献   

7.
A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian cells.  相似文献   

8.
The major Mn2+-activated phosphoprotein phosphatase of the human erythrocyte has been purified to homogeneity from the cell hemolysate. It is sensitive to both inhibitors 1 and 2 of rabbit skeletal muscle, preferentially dephosphorylates the beta subunit of the phosphorylase kinase, and dephosphorylates a broad range of substrates including phosphorylase a, p-nitro-phenyl phosphate, phosphocasein, the regulatory subunit of cyclic AMP-dependent protein kinase, and both spectrin (Km = 10 microM) and pyruvate kinase (Km = 18 microM) purified from the human erythrocyte. The purified enzyme is stimulated by Mn2+ and to a lesser extent by higher concentrations of Mg2+. The purification procedure was selected to avoid any change in molecular weight, hence subunit composition, between the crude and purified enzyme. Maintenance of the original structure is demonstrated by non-denaturing gel electrophoresis and gel filtration chromatography. Gel filtration of the purified holoenzyme shows a single active component with a Stokes radius of 58 A at a molecular weight position of 180,000. Sedimentation velocity in a glycerol gradient gives a value of 6.1 for S20, w. Together these data indicate a molecular weight of about 135,000. Two bands of equal intensity appear on sodium dodecyl sulfate-gel electrophoresis at molecular weights of 61,700 and 36,300, suggesting a subunit composition of two 36,000 and one 62,000 subunits. The 36-kDa catalytic subunit can be isolated by freezing and thawing the holoenzyme or by hydrophobic chromatography of the holoenzyme. The catalytic subunit shows unchanged substrate and inhibitor specificity but altered metal ion activation.  相似文献   

9.
An ATP x Mg-dependent protein phosphatase (FC) was purified to near homogeneity from rabbit muscle. The enzyme was completely devoid of any spontaneous activity but could be activated by a protein activator (FA) in the presence of ATP and Mg ions. The inactive phosphatase migrated as a single protein band on sodium dodecyl sulfate-gel electrophoresis, and in discontinuous gel electrophoresis, where the potential phosphatase activity was located in the main protein band. The molecular weight determined by sodium dodecyl sulfate electrophoresis or by sucrose density centrifugation was found to be 70,000. FC migrated on gel filtration as a 140,000 molecular weight species. The activation by FA was not paralleled by an incorporation of [32P]-phosphate into the ATP x Mg-dependent phosphatase, and from the kinetics of activation a protein-protein interaction with ATP x Mg as a necessary factor, can be inferred as the mechanism of activation. After activation by FA and ATP X Mg, the purified enzyme had a specific activity of 10,000 units/mg of protein, and a Km for rabbit muscle phosphorylase a of approximately 1.0 mg/ml. The activated enzyme did not release [32P]phosphate from 32[-labeled rabbit muscle synthase b, prepared from glucagon-treated dogs. It did, however, remove all the 32P label from phosphorylase b kinase, autophosphorylated to the level of 2.0 mol/mol of 1.3 X 10(6) molecular weight.  相似文献   

10.
Glycogen synthase I was purified from rat skeletal muscle. On sodium dodecyl sulfate polyacrylamide gel electrophoresis, the enzyme migrated as a major band with a subunit Mr of 85,000. The specific activity (24 units/mg protein), activity ratio (the activity in the absence of glucose-6-P divided by the activity in the presence of glucose-6-P X 100) (92 +/- 2) and phosphate content (0.6 mol/mol subunit) were similar to the enzyme from rabbit skeletal muscle. Phosphorylation and inactivation of rat muscle glycogen synthase by casein kinase I, casein kinase II (glycogen synthase kinase 5), glycogen synthase kinase 3 (kinase FA), glycogen synthase kinase 4, phosphorylase b kinase, and the catalytic subunit of cAMP-dependent protein kinase were similar to those reported for rabbit muscle synthase. The greatest decrease in rat muscle glycogen synthase activity was seen after phosphorylation of the synthase by casein kinase I. Phosphopeptide maps of glycogen synthase were obtained by digesting the different 32P-labeled forms of glycogen synthase by CNBr, trypsin, or chymotrypsin. The CNBr peptides were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and the tryptic and chymotryptic peptides were separated by reversed-phase HPLC. Although the rat and rabbit forms of synthase gave similar peptide maps, there were significant differences between the phosphopeptides derived from the N-terminal region of rabbit glycogen synthase and the corresponding peptides presumably derived from the N-terminal region of rat glycogen synthase. For CNBr peptides, the apparent Mr was 12,500 for rat and 12,000 for the rabbit. The tryptic peptides obtained from the two species had different retention times. A single chymotryptic peptide was produced from rat skeletal muscle glycogen synthase after phosphorylation by phosphorylase kinase whereas two peptides were obtained with the rabbit enzyme. These results indicate that the N-terminus of rabbit glycogen synthase, which contains four phosphorylatable residues (Kuret et al. (1985) Eur. J. Biochem. 151, 39-48), is different from the N-terminus of rat glycogen synthase.  相似文献   

11.
1. Phosphoprotein phosphatase IB is a form of rat liver phosphoprotein phosphatase, distinguished from the previously studied phosphoprotein phosphatase II [Tamura et al. (1980) Eur. J. Biochem. 104, 347-355] by earlier elution from DEAE-cellulose, by higher molecular weight on gel filtration (260000) and by lower activity toward phosphorylase alpha. This enzyme was purified to apparent homogeneity by chromatography on DEAE-cellulose, aminohexyl--Sepharose-4B, histone--Sepharose-4B, protamine--Sepharose-4B and Sephadex G-200. 2. The molecular weight of purified phosphatase IB was 260000 by gel filtration and 185000 from S20,W and Stokes' radius. Using histone phosphatase activity as the reference for comparison, the phosphorylase phosphatase activity of purified phosphatase IB was only one-fifth that of phosphatase II. 3. Sodium dodecyl sulfate gel electrophoresis revealed that phosphatase IB contains three types of subunit, namely alpha, beta and gamma, whose molecular weights are 35000, 69000 and 58000, respectively. The alpha subunit is identical to the alpha subunit of phosphatase II. While the beta subunit is also identical or similar to the beta subunit of phoshatase II, the gamma subunit appears to be unique to phosphatase IB. 4. When purified phosphatase IB was treated with 2-mercaptoethanol at -20 degrees C, the enzyme was dissociated to release the catalytically active alpha subunit. Along with this dissociation, there was a 7.4-fold increase in phosphorylase phosphatase activity; but histone phosphatase activity increased only 1.6-fold. The possible functions of the gamma subunit are discussed in relation to this activation of enzyme.  相似文献   

12.
The predominant form of phosphorylase phosphatase activity in porcine renal cortical extracts was a polycation-stimulated protein phosphatase. This activity was present in extracts in a high-molecular-weight form which could be converted to a free catalytic subunit by treatment with ethanol, urea, or freezing and thawing in the presence of beta-mercaptoethanol. The catalytic subunit of the polycation-stimulated phosphatase was purified by chromatography on DEAE-Sephacel, heparin-Sepharose, and Sephadex G-75. The phosphatase appeared to be homogeneous on SDS-polyacrylamide gel electrophoresis. The enzyme had an apparent Mr of 35 000 on gel filtration and SDS-polyacrylamide gel electrophoresis. The purified phosphatase could be stimulated by histone H1, protamine, poly(D-lysine), poly(L-lysine) or polybrene utilizing phosphorylase a as the substrate. It preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. The phosphatase was highly sensitive to inhibition by ATP. These results suggest that the renal polycation-stimulated phosphatase catalytic subunit is very similar to or identical with the skeletal muscle phosphatase form which has been previously designated phosphatase-2Ac.  相似文献   

13.
Glycogen synthase (labelled in sites-3) and glycogen phosphorylase from rabbit skeletal muscle were used as substrates to investigate the nature of the protein phosphatases that act on these proteins in the glycogen and microsomal fractions of rat liver. Under the assay conditions employed, glycogen synthase phosphatase and phosphorylase phosphatase activities in both subcellular fractions could be inhibited 80-90% by inhibitor-1 or inhibitor-2, and the concentrations required for half-maximal inhibition were similar. Glycogen synthase phosphatase and phosphorylase phosphatase activities coeluted from Sephadex G-100 as broad peaks, stretching from the void volume to an apparent molecular mass of about 50 kDa. Incubation with trypsin decreased the apparent molecular mass of both activities to about 35 kDa, and decreased their I50 for inhibitors-1 and -2 in an identical manner. After tryptic digestion, the I50 values for inhibitors-1 and -2 were very similar to those of the catalytic subunit of protein phosphatase-1 from rabbit skeletal muscle. The glycogen and microsomal fractions of rat liver dephosphorylated the beta-subunit of phosphorylase kinase much faster than the alpha-subunit and dephosphorylation of the beta-subunit was prevented by the same concentrations of inhibitor-1 and inhibitor-2 that were required to inhibit the dephosphorylation of phosphorylase. The same experiments performed with the glycogen plus microsomal fraction from rabbit skeletal muscle revealed that the properties of glycogen synthase phosphatase and phosphorylase phosphatase were very similar to the corresponding activities in the hepatic glycogen fraction, except that the two activities coeluted as sharp peaks near the void volume of Sephadex G-100 (before tryptic digestion). Tryptic digestion of the hepatic glycogen and microsomal fractions increased phosphorylase phosphatase about threefold, but decreased glycogen synthase phosphatase activity. Similar results were obtained with the glycogen plus microsomal fraction from rabbit skeletal muscle or the glycogen-bound form of protein phosphatase-1 purified to homogeneity from the same tissue. Therefore the divergent effects of trypsin on glycogen synthase phosphatase and phosphorylase phosphatase activities are an intrinsic property of protein phosphatase-1. It is concluded that the major protein phosphatase in both the glycogen and microsomal fractions of rat liver is a form of protein phosphatase-1, and that this enzyme accounts for virtually all the glycogen synthase phosphatase and phosphorylase phosphatase activity associated with these subcellular fractions.  相似文献   

14.
A high molecular weight protein phosphatase (Mr = 260K) has been isolated from rabbit skeletal muscle. The enzyme has a very low activity towards phosphorylase a isolated from the same tissue, but its activity towards this substrate is stimulated several fold after dissociation by 2-mercaptoethanol treatment. The purified phosphatase shows one major protein staining band on non denaturing polyacrylamide gel electrophoresis, and contains four subunits with molecular weights of 95K, 75K, 65K and 38K. The catalytic activity resides in the Mr = 38K subunit and is not sensitive to inhibition by the heat stable protein phosphatase inhibitor-1 or modulator protein. Polyamines stimulate the holoenzyme in a dose dependent, biphasic manner, but inhibit the activity of the dissociated Mr = 38K catalytic subunit.  相似文献   

15.
The phosphoprotein phosphatase(s) acting on muscle phosphorylase a was purified from rabbit liver by acid precipitation, high speed centrifugation, chromatography on DEAE-Sephadex A-50, Sephadex G-75, and Sepharose-histone. Enzyme activity was recovered in the final step as two distinct peaks tentatively referred to as phosphoprotein phosphatases I and II. Each phosphatase showed a single broad band when examined by sodium dodecyl sulfate gel electrophoresis; the molecular weights derived by this method were approximately 30,500 for phosphoprotein phosphatase I and 34,000 for phosphoprotein phosphatase II. The s20, w value for each enzyme was 3.40. Using this value and values for the Stokes radii, the molecular weight for each enzyme was calculated to be 34,500. Both phosphatases, in addition to catalyzing the conversion of phosphorylase a to b, also catalyzed the dephosphorylation of glycogen synthase D, activated phosphorylase kinase, phosphorylated histone, phosphorylated casein, and the phosphorylated inhibitory component of troponin (TN-I). The relative activities of the phosphatases with respect to phosphorylase a, glycogen synthase D, histone, and casein remained essentially constant throughout the purification. The activities of both phosphatases with different substrates decreased in parallel when they were denatured by incubation at 55 degrees and 65 degrees. The Km values of phosphoprotein phosphatase I for phosphorylase a, histone, and casein were lower than the values obtained for phosphoprotein phosphatase II. With glycogen synthase D as substrate, each enzyme gave essentially the same Km value. Utilizing either enzyme, it was found that activity toward a given substrate was inhibited competitively by each of the alternative substrates. The results suggest that phosphoprotein phosphatases I and II are each active toward all of the substrates tested.  相似文献   

16.
Three peaks of protein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) activity (fractions a, b and c) acting on muscle phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) were separated by DEAE-cellulose chromatography of yeast extracts. In contrast to fractions a and b, only fraction c was able to liberate phosphate from 32P-labelled inactivated yeast phosphorylase. The activity of fraction c on both substrates was totally dependent on the presence of bivalent metal ions (Mg2+, Mn2+), and was activated by Mg . ATP. Following freezing in the presence of mercaptoethanol, fractions a and b were also able to dephosphorylate yeast phosphorylase. Rabbit muscle phosphoprotein phosphatase inhibitors 1 and 2 showed that yeast phosphatases acting on muscle phosphorylase were inhibited by inhibitor 2 but not by inhibitor 1. The action of fraction c on yeast phosphorylase was not inhibited by either inhibitor. The native yeast phosphorylase phosphatase (EC 3.1.3.17) was purified 8000-fold by ion-exchange chromatography, casein-Sepharose chromatography and Sephadex G-200 gel filtration. The purified enzyme was unable to dephosphorylate rabbit muscle phosphorylase a, but acted on casein phosphate (Km 3.3 mg/ml). Molecular weight was estimated to be 78 000 and pH optimum 6.5-7.5. Activity of the enzyme was dependent on bivalent metal ions (Mg2+, Mn2+) and was inhibited by fluoride (Ki 20 mM) and succinate (Ki 10 mM).  相似文献   

17.
Three forms of protein phosphatase-1 were isolated from rabbit skeletal muscle that had Mr values of 37 000, 34 000 and 33 000 determined by sodium dodecyl sulphate (SDS) gel electrophoresis. Each species dephosphorylated the beta-subunit of phosphorylase kinase very much faster than the alpha-subunit, was inhibited by inhibitors 1 and 2 with equal potency, and was converted to a form dependent on glycogen synthase kinase-3 and Mg-ATP for activity by incubation with inhibitor-2. Digestion with cyanogen bromide or Staphylococcus aureus proteinase followed by SDS gel electrophoresis showed a very similar pattern of cleavage products for all three forms. The Mr-37 000 and Mr-34 000 species were converted to the Mr-33 000 form by incubation with chymotrypsin. It is concluded that the Mr-33 000 and Mr-34 000 forms are derived from the Mr-37 000 component by limited proteolysis. Conversion of the Mr-37 000 to the Mr-33 000 form was accompanied by a two-fold increase in activity, indicating that an Mr-4000 fragment at one end of the polypeptide is an inhibitory domain that decreases enzyme activity. The catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle had an Mr of 36 000 determined by SDS gel electrophoresis and its specific activity (3 kU/mg) was much lower than that of the Mr-37 000 (15-20 kU/mg) or Mr-33/34 000 (40-50 kU/mg) forms of protein phosphatase-1. It dephosphorylated the alpha-subunit of phosphorylase kinase 4-5-fold faster than the beta-subunit, was unaffected by inhibitor-1 or inhibitor-2, and preincubation with the latter protein did not result in the production of a glycogen synthase kinase-3 and Mg-ATP-dependent form of the enzyme. Digestion with chymotrypsin did not alter the electrophoretic mobility of protein phosphatase 2A under conditions that caused quantitative conversion of the Mr-37 000 form of protein phosphatase-1 to the Mr-33 000 species. Digestion with cyanogen bromide or S. aureus proteinase, followed by SDS gel electrophoresis, showed a quite different pattern of cleavage products to those observed with protein phosphatase 1. Antibody to protein phosphatase-2A raised in sheep did not cross-react with any of the forms of protein phosphatase-1, as judged by immunoelectrophoretic and immunotitration experiments. It is concluded that protein phosphatase-1 and protein phosphatase-2A are distinct gene products.  相似文献   

18.
Sarcoplasmic phosphorylase phosphatase extracted from ground skeletal muscle was recovered in a high molecular weight from (Mr = 250000). This enzyme has been purified from extracts by anion-exchange and gel chromatography to yield a preparation with three major protein components of Mr 83000, 72000, and 32000 by sodium dodecyl sulfate gel electrophoresis. The phosphorylase phosphatase activity of the complex form was activated more than 10-fold by Mn2+, with a K0.5 of 10(-5) M, but not by Mg2+ or Ca2+. Manganese activation occurred over a period of several minutes and resulted primarily in an increase in Vmax of a phosphatase that was sensitive to trypsin. Activation persisted after gel filtration, and the active form of the enzyme did not contain bound manganese measured by using 54Mn2+. A contaminating p-nitrophenylphosphatase was activated by either Mn2+ (K0.5 of 10(-4) M) or Mg2+ (K0.5 of 10(-3) M). Unlike the protein phosphatase this enzyme was inactive following removal of the metal ions by gel filtration. The phosphatase complex could be dissociated into its component subunits by precipitation with 50% acetone at 20 degrees C in the presence of an inert divalent cation, reducing agent, and bovine serum albumin. Two catalytic subunits were quantitatively recovered; one of Mr 83000 was a trypsin-sensitive manganese-activated phosphatase and the second of Mr 32000 was trypsin-stable and metal ion dependent. Both enzymes were effective in catalyzing the dephosphorylation of either phosphorylase a or the regulatory subunit of adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase, but neither subunit possessed p-nitrophenylphosphatase activity.  相似文献   

19.
1. Phosphatase II is a form of phosphoprotein phosphatase originally found in rat liver extract; it has a molecular weight of 160 000 by gel filtration and is highly active towards phosphorylase alpha. This phosphatase has been purified 1800-fold by using DEAE-cellulos (DE-52), aminohexyl--Sepharose-4B, protamine--Sepharose-4B and Sephadex G-200 chromatography. Throughout the purification steps, the original molecular weight and substrate specificity of phosphatase II were almost perfectly preserved. 2. The product of the final purification step migrated predominantly as a single protein band on non-denaturing gel electrophoresis. Sodium dodecyl sulfate gel electorphoresis revealed that the enzyme contains two types of subunit, alpha and beta, with molecular weights of 35 000 and 69 000, respectively. When treated with 0.2 M 2-mercaptoethanol at -20 degrees C, phosphatase II was dissociated to release the catalytically active alpha subunit. The beta subunit may be catalytically inactive but interacts with the alpha subunit so that phosphatase II becomes much less susceptible than the alpha subunit to inactivation by ATP or pyrophosphate.  相似文献   

20.
The catalytic subunit of rabbit skeletal muscle protein phosphatase-1 was expressed in Escherichia coli. Expression of phosphatase-1 in the pET3a vector, which is based on the use of the T7 promoter, resulted in the expression of the enzyme as an insoluble aggregate. The insoluble enzyme could be renatured by high dilutions of the urea-solubilized protein in buffers containing dithiothreitol, Mn2+, and high NaCl concentrations. However, under all conditions tested, only partial (less than 5%) renaturation was achieved. A second attempt was made using a vector with the trp-lac hybrid promoter. In this case it was possible to express the enzyme as a soluble protein at levels of 3-4% of the soluble E. coli protein. The recombinant enzyme was purified by DEAE-Sepharose and heparin-Sepharose chromatography. Approximately 20 mg of purified enzyme was reproducibly obtained from the cells derived from 2 liters of culture. The purified enzyme had a specific activity toward phosphorylase alpha comparable to that reported for the authentic protein and had an Mr of 37,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The recombinant enzyme displayed similar sensitivities to inhibition by inhibitor-2, okadaic acid, and microcystin-LR as for the protein isolated from rabbit muscle. At all stages of purification the recombinant phosphatase behaved as an essentially inactive enzyme that required the presence of microM Mn2+ for full expression of its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号