首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The human body contains numerous long-lived proteins which deteriorate with age, typically by racemisation, deamidation, crosslinking and truncation. Previously we elucidated one reaction responsible for age-related crosslinking, the spontaneous formation of dehydroalanine (DHA) intermediates from phosphoserine and cysteine. This resulted in non-disulphide covalent crosslinks. The current paper outlines a novel posttranslational modification (PTM) in human proteins, which involves the addition of dehydroalanylglycine (DHAGly) to Lys residues.

Methods

Human lens digests were examined by mass spectrometry for the presence of (DHA)Gly (+144.0535?Da) adducts to Lys residues. Peptide model studies were undertaken to elucidate the mechanism of formation.

Results

In the lens, this PTM was detected at 18 lysine sites in 7 proteins. Using model peptides, a pathway for its formation was found to involve initial formation of the glutathione degradation product, γ-Glu(DHA)Gly from oxidised glutathione (GSSG). Once the Lys adduct formed, the Glu residue was lost in a hydrolytic mechanism apparently catalysed by the ε-amino group of the Lys.

Conclusions

This discovery suggests that within cells, the functional groups of amino acids in proteins may be susceptible to modification by reactive metabolites derived from GSSG.

General significance

Our finding demonstrates a novel +144.0535?Da PTM arising from the breakdown of oxidised glutathione.  相似文献   

2.
Mammalian species differ up to 100‐fold in their aging rates and maximum lifespans. Long‐lived mammals appear to possess traits that extend lifespan and healthspan. Genomic analyses have not revealed a single pro‐longevity function that would account for all longevity effects. In contrast, it appears that pro‐longevity mechanisms may be complex traits afforded by connections between metabolism and protein functions that are impossible to predict by genomic approaches alone. Thus, metabolomics and proteomics studies will be required to understand the mechanisms of longevity. Several examples are reviewed that demonstrate the naked mole rat (NMR) shows unique proteomic signatures that contribute to longevity by overcoming several hallmarks of aging. SIRT6 is also discussed as an example of a protein that evolves enhanced enzymatic function in long‐lived species. Finally, it is shown that several longevity‐related proteins such as Cip1/p21, FOXO3, TOP2A, AKT1, RICTOR, INSR, and SIRT6 harbor posttranslational modification (PTM) sites that preferentially appear in either short‐ or long‐lived species and provide examples of crosstalk between PTM sites. Prospects of enhancing lifespan and healthspan of humans by altering metabolism and proteoforms with drugs that mimic changes observed in long‐lived species are discussed.  相似文献   

3.
Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome‐wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary phosphopeptide enrichment techniques coupled with high‐accuracy mass spectrometry. Using unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides with 2172 high‐confidence, unique phosphorylation sites from 1346 proteins. The distribution of phosphoserine, phosphothreonine, and phosphotyrosine sites was 85.0, 10.7, and 4.3%. Although typical tyrosine‐specific protein kinases are absent in Arabidopsis, the proportion of phosphotyrosines among the phospho‐residues in Arabidopsis is similar to that in humans, where over 90 tyrosine‐specific protein kinases have been identified. In addition, the tyrosine phosphoproteome shows features distinct from those of the serine and threonine phosphoproteomes. Taken together, we highlight the extent and contribution of tyrosine phosphorylation in plants.  相似文献   

4.
The centre of the human lens, which is composed of proteins that were synthesized prior to birth, is an ideal model for the evaluation of long‐term protein stability and processes responsible for the degradation of macromolecules. By analysing the sequences of peptides present in human lens nuclei, characteristic features of intrinsic protein instability were determined. Prominent was the cleavage on the N‐terminal side of serine residues. Despite accounting for just 9% of the amino acid composition of crystallins, peptides with N‐terminal Ser represented one‐quarter of all peptides. Nonenzymatic cleavage at Ser could be reproduced by incubating peptides at elevated temperatures. Serine residues may thus represent susceptible sites for autolysis in polypeptides exposed to physiological conditions over a period of years. Once these sites are cleaved, other chemical processes result in progressive removal or ‘laddering’ of amino acid residues from newly exposed N‐ and C‐termini. As N‐terminal Ser peptides originated from several crystallins with unrelated sequences, this may represent a general feature of long‐lived proteins.  相似文献   

5.
Alkali treated membranes were isolated from mature bovine lenses and incubated with different sugars for 3 weeks to study the effect of glycation on the lens intrinsic membrane proteins, MP26 and MP22. The obtained results show that a) [1-14C] ascorbic acid (ASA) was able to glycate the intrinsic membrane proteins as rapidly as soluble lens proteins; b) on 15% acrylamide gels in SDS, glucose, fructose, galactose and ribose exhibited low activity for crosslinking membrane proteins; whereas ASA, dehydroascorbate (DHA), diketogulonate (DKG), xylosone and threose, all showed not only the formation of protein multimers, but also highly crosslinked products, which did not enter the spacer gel; c) except glycated MP22, all of the crosslinks of MP26 or MP22, and also the glycated MP26, showed cross reactivity with polyclonal MP26 antibody; d) the extent of crosslinking correlated with an equal loss of lysine and arginine contents by amino acid analysis.  相似文献   

6.
Post‐translational modifications (PTMs) are critical regulators of protein function, and nearly 200 different types of PTM have been identified. Advances in high‐resolution mass spectrometry have led to the identification of an unprecedented number of PTM sites in numerous organisms, potentially facilitating a more complete understanding of how PTMs regulate cellular behavior. While databases have been created to house the resulting data, most of these resources focus on individual types of PTM, do not consider quantitative PTM analyses or do not provide tools for the visualization and analysis of PTM data. Here, we describe the Functional Analysis Tools for Post‐Translational Modifications (FAT‐PTM) database ( https://bioinformatics.cse.unr.edu/fat-ptm/ ), which currently supports eight different types of PTM and over 49 000 PTM sites identified in large‐scale proteomic surveys of the model organism Arabidopsis thaliana. The FAT‐PTM database currently supports tools to visualize protein‐centric PTM networks, quantitative phosphorylation site data from over 10 different quantitative phosphoproteomic studies, PTM information displayed in protein‐centric metabolic pathways and groups of proteins that are co‐modified by multiple PTMs. Overall, the FAT‐PTM database provides users with a robust platform to share and visualize experimentally supported PTM data, develop hypotheses related to target proteins or identify emergent patterns in PTM data for signaling and metabolic pathways.  相似文献   

7.
Protein phosphorylation and acetylation are the two most abundant post‐translational modifications (PTMs) that regulate protein functions in eukaryotes. In plants, these PTMs have been investigated individually; however, their co‐occurrence and dynamics on proteins is currently unknown. Using Arabidopsis thaliana, we quantified changes in protein phosphorylation, acetylation and protein abundance in leaf rosettes, roots, flowers, siliques and seedlings at the end of day (ED) and at the end of night (EN). This identified 2549 phosphorylated and 909 acetylated proteins, of which 1724 phosphorylated and 536 acetylated proteins were also quantified for changes in PTM abundance between ED and EN. Using a sequential dual‐PTM workflow, we identified significant PTM changes and intersections in these organs and plant developmental stages. In particular, cellular process‐, pathway‐ and protein‐level analyses reveal that the phosphoproteome and acetylome predominantly intersect at the pathway‐ and cellular process‐level at ED versus EN. We found 134 proteins involved in core plant cell processes, such as light harvesting and photosynthesis, translation, metabolism and cellular transport, that were both phosphorylated and acetylated. Our results establish connections between PTM motifs, PTM catalyzing enzymes and putative substrate networks. We also identified PTM motifs for further characterization of the regulatory mechanisms that control cellular processes during the diurnal cycle in different Arabidopsis organs and seedlings. The sequential dual‐PTM analysis expands our understanding of diurnal plant cell regulation by PTMs and provides a useful resource for future analyses, while emphasizing the importance of analyzing multiple PTMs simultaneously to elucidate when, where and how they are involved in plant cell regulation.  相似文献   

8.
Post-translational modifications of lens proteins play a crucial role in the formation of cataract during ageing. The aim of our study was to analyze protein composition of the cataractous lenses by electrophoretic and high-performance liquid chromatographic (HPLC) methods.

Samples were obtained after extracapsular cataract surgery performed by phacoemulsification technique from cataract patients with type 2 diabetes mellitus (DM CAT, n = 22) and cataract patients without diabetes (non-DM CAT, n = 20), while non-diabetic non-cataractous lenses obtained from cadaver eyes served as controls (CONTR, n = 17). Lens fragments were derived from the surgical medium by centrifugation. Samples were homogenized in a buffered medium containing protease inhibitor. Soluble and insoluble protein fractions were separated by centrifugation. The electrophoretic studies were performed according to Laemmli on equal amounts of proteins and were followed by silver intensification. Oxidized amino acid and Phe content of the samples were also analyzed by HPLC following acid hydrolysis of proteins.

Our results showed that soluble proteins represented a significantly lower portion of the total protein content in cataractous lenses in comparison with the control group (CONTR, 71.25%; non-DM CAT, 32.00%; DM CAT, 33.15%; p < 0.05 vs CONTR for both). Among the proteins, the crystallin-like proteins with low-molecular weight can be found both in the soluble and insoluble fractions, and high-molecular weight aggregates were found mainly in the total homogenates. In our HPLC analysis, oxidatively modified derivatives of phenylalanine were detected in cataractous samples. We found higher levels of m-Tyr, o-Tyr and DOPA in the total homogenates of cataractous samples compared to the supernatants. In all three groups, the median Phe/protein ratio of the total homogenates was also higher than that of the supernatants (total homogenates vs supernatants, in the CONTR group 1102 vs 633 μmol/g, in the DM CAT group 1187 vs 382 μmol/g and in the non-DM CAT group 967 vs 252 μmol/g; p < 0.05 for all).

In our study we found that oxidized amino acids accumulate in cataractous lenses, regardless of the origin of the cataract. The accumulation of the oxidized amino acids probably results from oxidation of Phe residues of the non-water soluble lens proteins. We found the presence of high-molecular weight protein aggregates in cataractous total homogenates, and a decrease of protein concentration in the water-soluble phase of cataractous lenses. The oxidation of lens proteins and the oxidative modification of Phe residues in key positions may lead to an altered interaction between protein and water molecules and thus contribute to lens opacification.  相似文献   

9.
Formation of lanthionine, a dehydroalanine crosslink, is associated with aging of the human lens and cataractogenesis. In this study we investigated whether modification of lens proteins by glutathione could proceed through an alternative pathway: that is, by the formation of a nonreducible thioether bond between protein and glutathione. Direct ELISA of the reduced water-soluble and water-insoluble lens proteins from human cataractous, aged and bovine lenses showed a concentration-dependent immunoreactivity toward human nonreducible glutathionyl-lens proteins only. The reduced water-insoluble cataractous lens proteins showed the highest immunoreactivity, while bovine lens protein exhibited no reaction. These data were confirmed by dot-blot analysis. The level of this modification ranged from 0.7 to 1.6 nmol/mg protein in water-insoluble proteins from aged and cataractous lenses. N-terminal amino acid determination in the reduced and alkylated lens proteins, performed by derivatization of these preparations with dansyl chloride followed by an exhaustive dialysis, acid hydrolysis and fluorescence detection of dansylated amino acids by RP-HPLC, showed that N-terminal glutamic acid was present in concentration of approximately 0.2 nmol/mg of lens protein. This evidence points out that at least some of the N-terminal amino groups of nonreducible glutathione in the reduced human lens proteins are not involved in a covalent bond formation. Since disulfides were not detected in the reduced and alkylated human lens proteins, GSH is most likely attached to lens proteins through thioether bonds. These results provide, for the first time, evidence that glutathiolation of human lens proteins can occur through the formation of nonreducible thioether bonds.  相似文献   

10.
Kim JS  Kim J  Oh JM  Kim HJ 《Analytical biochemistry》2011,414(2):211-296
Determination of the phosphorylation site in peptides by conventional tandem mass spectrometry is subject to ambiguity due to the neutral loss of the phosphate groups, especially in multiphosphorylated peptides. To prevent the neutral loss, the phosphate groups in phosphoserine or phosphothreonine peptides were replaced by p-bromobenzyl mercaptan via β-elimination and Michael addition. The unique isotopic signature of the Br introduced facilitated definitive localization of phosphorylation sites in multiphosphorylated peptides with highly adjacent serine or threonine residues. This method could be used to confirm phosphorylation sites determined by conventional tandem mass spectrometry after phosphopeptide enrichment.  相似文献   

11.
Age‐related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long‐lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface‐exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen‐deuterium exchange, and susceptibility to disulfide cross‐linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light‐scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide‐linked aggregates. The lens‐specific chaperone αA‐crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS‐crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses.  相似文献   

12.
Post‐translational modifications (PTMs) represent an important regulatory layer influencing the structure and function of proteins. With broader availability of experimental information on the occurrences of different PTM types, the investigation of a potential “crosstalk” between different PTM types and combinatorial effects have moved into the research focus. Hypothesizing that relevant interferences between different PTM types and sites may become apparent when investigating their mutual physical distances, we performed a systematic survey of pairwise homo‐ and heterotypic distances of seven frequent PTM types considering their sequence and spatial distances in resolved protein structures. We found that actual PTM site distance distributions differ from random distributions with most PTM type pairs exhibiting larger than expected distances with the exception of homotypic phosphorylation site distances and distances between phosphorylation and ubiquitination sites that were found to be closer than expected by chance. Random reference distributions considering canonical acceptor amino acid residues only were found to be shifted to larger distances compared to distances between any amino acid residue type indicating an underlying tendency of PTM‐amenable residue types to be further apart than randomly expected. Distance distributions based on sequence separations were found largely consistent with their spatial counterparts suggesting a primary role of sequence‐based pairwise PTM‐location encoding rather than folding‐mediated effects. Our analysis provides a systematic and comprehensive overview of the characteristics of pairwise PTM site distances on proteins and reveals that, predominantly, PTM sites tend to avoid close proximity with the potential implication that an independent attachment or removal of PTMs remains possible. Proteins 2016; 85:78–92. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Proteins in basement membrane (BM) are long‐lived and accumulate chemical modifications during aging; advanced glycation endproduct (AGE) formation is one such modification. The human lens capsule is a BM secreted by lens epithelial cells. In this study, we have investigated the effect of aging and cataracts on the AGE levels in the human lens capsule and determined their role in the epithelial‐to‐mesenchymal transition (EMT) of lens epithelial cells. EMT occurs during posterior capsule opacification (PCO), also known as secondary cataract formation. We found age‐dependent increases in several AGEs and significantly higher levels in cataractous lens capsules than in normal lens capsules measured by LC‐MS/MS. The TGFβ2‐mediated upregulation of the mRNA levels (by qPCR) of EMT‐associated proteins was significantly enhanced in cells cultured on AGE‐modified BM and human lens capsule compared with those on unmodified proteins. Such responses were also observed for TGFβ1. In the human capsular bag model of PCO, the AGE content of the capsule proteins was correlated with the synthesis of TGFβ2‐mediated α‐smooth muscle actin (αSMA). Taken together, our data imply that AGEs in the lens capsule promote the TGFβ2‐mediated fibrosis of lens epithelial cells during PCO and suggest that AGEs in BMs could have a broader role in aging and diabetes‐associated fibrosis.  相似文献   

14.
Post‐translational modifications (PTMs) of proteins are central in any kind of cellular signaling. Modern mass spectrometry technologies enable comprehensive identification and quantification of various PTMs. Given the increased numbers and types of mapped protein modifications, a database is necessary that simultaneously integrates and compares site‐specific information for different PTMs, especially in plants for which the available PTM data are poorly catalogued. Here, we present the Plant PTM Viewer (http://www.psb.ugent.be/PlantPTMViewer), an integrative PTM resource that comprises approximately 370 000 PTM sites for 19 types of protein modifications in plant proteins from five different species. The Plant PTM Viewer provides the user with a protein sequence overview in which the experimentally evidenced PTMs are highlighted together with an estimate of the confidence by which the modified peptides and, if possible, the actual modification sites were identified and with functional protein domains or active site residues. The PTM sequence search tool can query PTM combinations in specific protein sequences, whereas the PTM BLAST tool searches for modified protein sequences to detect conserved PTMs in homologous sequences. Taken together, these tools help to assume the role and potential interplay of PTMs in specific proteins or within a broader systems biology context. The Plant PTM Viewer is an open repository that allows the submission of mass spectrometry‐based PTM data to remain at pace with future PTM plant studies.  相似文献   

15.
16.
We describe the isolation and molecular characterization of a novel glucose-lysine dimer crosslink 1,3-bis-(5-amino-5-carboxypentyl)-4-(1′,2′,3′,4′-tetrahydroxybutyl)-3H-imidazolium salt, named GLUCOLD. GLUCOLD was easily formed from the Amadori product (fructose–lysine). However, when BSA was incubated with 100 mM glucose for 25 days, the levels of the lysine-lysine glucose crosslinks GLUCOLD and CROSSLINE were only 21 and <1 pmol/mg, respectively, compared to 611 pmol/mg protein for the lysine-arginine GLUCOSEPANE crosslink, in spite of more than 20 potential lysine-lysine crosslinking sites in the protein. Mechanistic investigation revealed that metal-free phosphate ions catalyzed formation of fructose–lysine and all three crosslinks from amino acids, while cationic MOPS buffer had an opposite effect. This together with the rapid formation of N 6-1,4-dideoxy-5,6-dioxoglucosone derivatives by dicarbonyl trapping agents, such as 1,2-diaminobenzene or γ-guanidinobutyric acid, strongly suggests that enolization of the Amadori product and trapping of the 5,6-dioxo derivative by arginine residues constitutes the major pathway for glucose-mediated crosslinking in proteins.  相似文献   

17.
Summary. Two Lys–Lys crosslinks, 1,3-bis-(5-amino-5-carboxypentyl)-1H-imidazolium (GOLD) and 1,3-bis(5-amino-5-carboxypentyl)-4-methyl-1H-imidazolium (MOLD) salts, have been synthesized by the reaction of imidazole or 4(5)-methyl imidazole with 5-(4-bromobutyl)-hydantoin followed by the hydrolysis of 1,3-substituted imidazolium derivatives by 6.0 N HCL at 110 °C. Treatment of GOLD and MOLD with hydrogen peroxide in acetic acid leads to MOLD oxidation only. The oxidation product of MOLD was detected in cataractous lens proteins.  相似文献   

18.
Various post‐translational modifications (PTMs) fine‐tune the functions of almost all eukaryotic proteins, and co‐regulation of different types of PTMs has been shown within and between a number of proteins. Aiming at a more global view of the interplay between PTM types, we collected modifications for 13 frequent PTM types in 8 eukaryotes, compared their speed of evolution and developed a method for measuring PTM co‐evolution within proteins based on the co‐occurrence of sites across eukaryotes. As many sites are still to be discovered, this is a considerable underestimate, yet, assuming that most co‐evolving PTMs are functionally associated, we found that PTM types are vastly interconnected, forming a global network that comprise in human alone >50 000 residues in about 6000 proteins. We predict substantial PTM type interplay in secreted and membrane‐associated proteins and in the context of particular protein domains and short‐linear motifs. The global network of co‐evolving PTM types implies a complex and intertwined post‐translational regulation landscape that is likely to regulate multiple functional states of many if not all eukaryotic proteins.  相似文献   

19.
With age, long-lived proteins in the human body deteriorate, which can have consequences both for aging and disease. The aging process is often associated with the formation of covalently crosslinked proteins. Currently our knowledge of the mechanism of formation of these crosslinks is limited. In this study, proteomics was used to characterize sites of covalent protein-protein crosslinking and identify a novel mechanism of protein-protein crosslinking in the adult human lens. In this mechanism, Lys residues are crosslinked to C-terminal Asp residues that are formed by non-enzymatic protein truncation. Ten different crosslinks were identified in major lens proteins such as αA-crystallin, αB-crystallin and AQP0. Crosslinking in AQP0 increased significantly with age and also increased significantly in cataract lenses compared with normal lenses. Using model peptides, a mechanism of formation of the Lys-Asp crosslink was elucidated. The mechanism involves spontaneous peptide cleavage on the C-terminal side of Asp residues which can take place in the pH range 5–7.4. Cleavage appears to involve attack by the side chain carboxyl group on the adjacent peptide bond, resulting in the formation of a C-terminal Asp anhydride. This anhydride intermediate can then either react with water to form Asp, or with a nucleophile, such as a free amine group to form a crosslink. If an ε-amino group of Lys or an N-terminal amine group attacks the anhydride, a covalent protein-protein crosslink will be formed. This bi-phasic mechanism represents the first report to link two spontaneous events: protein cleavage and crosslinking that are characteristic of long-lived proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号