首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 977 毫秒
1.
Predation of annual grass weed seeds in arable field margins   总被引:2,自引:0,他引:2  
Seeds of three species of annual grass weeds (Alopecurus myosuroides, Avena fatua and Bromus sterilis) were placed in field margins around arable fields in a randomised block split-plot design experiment. The field margin vegetation was either sown or naturally regenerated and either cut or uncut. The seeds were either placed in cages designed to exclude small mammals and birds or were uncaged. The proportion of seeds removed was monitored on 10 occasions and mean seed loss was analysed. In general, a greater proportion of weed seeds was removed from uncaged trays in uncut swards, suggesting predation by small mammals, which inhabit tall grass. This effect was mainly due to removal of seeds of the two large-seeded species (A. fatua and B. sterilis), with A. fatua being especially favoured. It is therefore likely that small mammals play a role in the population dynamics of major crop weeds by feeding on their seeds in field margins, especially when these are dense and uncut.  相似文献   

2.
Many carabid beetles (Coleoptera: Carabidae) are known to feed on plant seeds, but the level of specialization on this food differs. This is the first study in which seed consumption is assessed for all larval instars and adults of ground beetles. Three species of Amara with syntopic occurrence, Amara aenea (DeGeer), Amara familiaris (Duftschmid) and Amara similata (Gyllenhal), were examined. Larvae of all three instars and adults were fed seeds of Stellaria media (L.) Vill., Capsella bursa‐pastoris (L.) Med. and Taraxacum officinale Wick. ex Wigg. in a laboratory no‐choice experiment. In general, larvae, particularly the first instar, showed greater differences in seed consumption than the adults, although the latter showed similar but less marked pattern. Amara aenea consumed all offered seed diets in all life stages. All three larval instars of granivorous A. familiaris almost exclusively fed on seeds of S. media and the adults also ate significantly more of this than other seeds. Amara similata consumed mostly seeds of C. bursa‐pastoris in the first instar and adult stages, whereas the larvae of the later instars seemed to be unspecialized on particular seed diet. Differences in seed‐specific consumption between larval instars in granivorous carabids are reported for the first time. The results provide further support for the parallel evolution of various degrees of granivory in the genus Amara, which may ultimately facilitate species coexistence. The daily seed consumption by the larvae was comparable or (in case of the third instar) even higher than that by the adults. Hence, we suggest that larvae may be the important consumers of seed in the field and should not be forgotten when seed predation is assessed.  相似文献   

3.
Post‐dispersal seed predation and endozoochorous seed dispersal are two antagonistic processes in relation to plant recruitment, but rely on similar preconditions such as feeding behavior of seed consumers and seed traits. In agricultural landscapes, rodents are considered important seed predators, thereby potentially providing regulating ecosystem services in terms of biological weed control. However, their potential to disperse seeds endozoochorously is largely unknown. We exposed seeds of arable plant species with different seed traits (seed weight, nutrient content) and different Red List status in an experimental rye field and assessed seed removal by rodents. In a complementary laboratory experiment, consumption rates, feeding preferences, and potential endozoochory by two vole species (Microtus arvalis and Myodes glareolus) were tested. Seed consumption by rodents after 24 h was 35% in the field and 90% in the laboratory. Both vole species preferred nutrient‐rich over nutrient‐poor seeds and M. glareolus further preferred light over heavy seeds and seeds of common over those of endangered plants. Endozoochory by voles could be neglected for all tested plant species as no seeds germinated, and only few intact seeds could be retrieved from feces. Synthesis and applications. Our results suggest that voles can provide regulating services in agricultural landscapes by depleting the seed shadow of weeds, rather than facilitating plant recruitment by endozoochory. In the laboratory, endangered arable plants were less preferred by voles than noxious weeds, and thus, our results provide implications for seed choice in restoration approaches. However, other factors such as seed and predator densities need to be taken into account to reliably predict the impact of rodents on the seed fate of arable plants.  相似文献   

4.
Abstract Ants generally disperse seeds while feeding on fruits or structures attached to the seed. Seed dispersal as a by‐product of seed predation (dyszoochory) was recognized in specialized harvester ants, but not in ants predating seeds opportunistically. Leafcutting ants are the main herbivores in much of the Neotropics, and they have been reported to remove fruits and seeds, but their role as seed predators and dispersers has not been acknowledged. Prosopis flexuosa D.C. (Fabaceae, Mimosoideae) is the most abundant tree species in the central Monte Desert, Argentina, and it is likely to depend on secondary animal dispersal. Mammalian frugivores are usually considered its main dispersers, but the opportunity for dispersal may be small since the removal of fruits and seeds by seed predators is very intense. The objective of this study was to identify which ant species interact with P. flexuosa fruits and to evaluate their relative importance as seed predators and dispersers. In a field experiment, whole and segmented pods were offered and several ant species exploiting the fruits were identified. Additionally, all pod segments remaining around nests of the three ant species able to remove them (the leafcutters Acromyrmex lobicornis Emery and Acromyrmex striatus Roger, and Pheidole bergi Mayr) were examined during and after the P. flexuosa primary dispersal season. Up to 753 pod segments and 90 sound seeds were found accumulated in a circle of 1 m radius over nests of A. lobicornis, and even more in an examined trail. Acromyrmex striatus left a smaller proportion of sound seeds and P. bergi left a smaller number of pod segments. All tendencies were similar during shorter known periods of accumulation. Leafcutting ants are acting as important seed predators, and ‘by mistake’ may be dispersing a key non‐myrmecochorous tree. This is an unexplored path in the seed dispersal cycle of P. flexuosa that challenges the tendency to predict interactions based on classifications made with other goals.  相似文献   

5.
Aim This study aims to evaluate the relative importance of birds, small mammals, and ants as seed predators at a semi‐arid site in northern Chile. Location Northern Chile, in Parque Nacional Bosque Fray Jorge (30°41′ N, 71°40′ W, c. 80 m elevation). Methods We studied the relative abilities of birds, small mammals, and ants to find and remove millet seeds either singly (i.e. background seed removal) or in bulk. Single seeds were set in shallow depressions in Plexiglas trays which were established in long and arbitrary transects, and were available either to birds (diurnally) or small mammals (nocturnally) or were covered by hardware cloth and therefore available only to ants. Bulk removal was evaluated with seeds in Petri dishes that also were established in long and arbitrary transects, and trays were either open diurnally (birds) or nocturnally (small mammals); a third set of trays was covered with hardware cloth cages to excluded vertebrates, and ants were given access to Petri dishes with twigs that were arranged across the edge of the dishes. All experiments lasted four days and nights, and trays and dishes were checked and replenished as needed in the morning and evening. In the former study vertebrate consumption was determined as the mean number of seeds removed from trays (within a given transect) minus the number removed from ant‐only trays. Because ants were rarely seen in vertebrate access Petri dishes, however, we did not correct consumption there. Treatments were compared using repeated measures mixed model analysis of variance. In addition to evaluating patterns within this community, we compared our results against those obtained in similar studies in various arid regions. Results Diurnal seed consumption was significantly greater than nocturnal seed consumption, which in turn was significantly greater than consumption by ants. Diurnal consumption was highly seasonal, evidently corresponding to the seasonal arrival and departure of migratory birds. In general, South American sites exhibit much lower levels of seed predation than sites in the northern hemisphere, but removal at our site appears to be much greater and more strongly avian‐dominated than at other sites in South America. Our results are consistent with predictions based on a hypothesis relating precipitation to seed predictability. Main conclusions Both birds and small mammals were much more important seed consumers at our site than elsewhere in South America, whereas ants have been relatively unimportant at all South American sites studied to date. Although the dominant seed consumers differ across sites, overall levels of seed removal appear similar in South America and Australia, and substantially lower than reported from sites in the northern hemisphere and Africa.  相似文献   

6.
Understanding the functional role of animal species in seed dispersal is central to determining how biotic interactions could be affected by anthropogenic drivers. In the Monte Desert, mammals play different functional roles in Prosopis flexuosa seed dispersal, acting as opportunistic frugivores (endozoochorous medium‐sized and large mammals) or seed hoarders (some small sigmodontine rodents). Our objective was assessing the functional role of Microcavia australis, a small hystricognathi rodent, in the fruit removal and seed deposition stages of P. flexuosa seed dispersal, compared to sympatric sigmodontine rodents. In situ, we quantified fruit removal by small rodents during non‐fruiting and fruiting periods, and determined the distance seeds were transported, particularly by M. australis. In laboratory experiments, we analysed how M. australis stores seeds (through scatter‐ or larder‐hoarding) and how many seeds are left in caches as living seeds, relative to previous data on sigmodontine rodents. To conduct field studies, we established sampling stations under randomly chosen P. flexuosa trees at the Ñacuñán Man and Biosphere Reserve. We analysed fruit removal by small rodents and seed dispersal distance by M. australis using camera traps focused on P. flexuosa fruits covered with wire screen, which only allowed entry of small animals. In laboratory trials, we provided animals with a known number of fruits and assessed seed conditions after removal. Small rodents removed 75.7% of fruit supplied during the non‐fruiting period and 53.2% during the fruiting period. Microcavia australis and Graomys griseoflavus were the main fruit removers. Microcavia australis transported seeds to a mean distance of 462 cm and cached seeds mainly in scatter‐hoards, similarly as Eligmodontia typus. All transported seeds were left in fruit segments or covered only by the endocarp, never as predated seeds. Microcavia australis disperses P. flexuosa seeds by carrying fruits away from a source to consume them and then by scatter‐hoarding fruits and seeds.  相似文献   

7.
Forest restoration in urban areas often occurs in isolation from remnant forest, limiting the chances for recolonization by native species. Plants with bird‐dispersed seeds can be particularly vulnerable to dispersal limitation and regeneration can be further impeded by non‐native seed predators. We used a factorial experiment to investigate broadcast seeding as a method to reintroduce trees with large seeds and fleshy fruits into early successional forests. We assessed rates of seed and fruit loss, germination and seedling establishment in three seed treatments: (1) caging to exclude introduced mammalian seed predators; (2) removal of fleshy fruit pericarp; and (3) placing seeds in nutritionally enriched clay balls. Across all species (Beilschmiedia tawa, Elaeocarpus dentatus, and Litsea calicaris) seeds and fruits accessible to mammalian predators suffered significantly greater loss (58%) than those protected by cages (4%). However, seed and fruit loss in the presence of predators was reduced to only 35% across all species by the treatment combining the removal of fruit flesh and clay ball application to seeds. Establishment of B. tawa seedlings after 1 year was significantly enhanced by the clay ball treatment (12% of seeds sown vs. 6% without clay balls). Very low establishment rates were recorded for E. dentatus and L. calicaris. Broadcast seeding was found to be a viable method of improving regeneration of large‐seeded late successional trees and may be a cost‐effective alternative to planting saplings. Seedling establishment can be improved with fruit flesh removal and clay ball treatments, especially in the presence of mammalian seed predators.  相似文献   

8.
Seed sowing is a common early step in restoration, but seed consumers can impede plant establishment and alter community structure. Moreover, seed consumers vary in feeding behaviors and the relative importance of different seed consumer groups during restoration are not well understood. At 12 first‐year prairie restorations in Michigan, we studied seed predation using seed removal trays to ask: What is the relative magnitude of seed removal by insects and mammals? Do seed removal rates change over the growing season? Do habitat edges influence seed removal? At what rates are 10 prairie plant species' seeds removed by mammals and insects? Seed removal depended on consumer type, time of year, and seed species. Insects accounted for the majority of seed removal, contrary to previous research in similar systems. In May, insects removed 1.8 times more seeds than mammals, while in August, they removed 5.1 times more. There was greater seed removal in August. During May 28% of seeds were removed, compared to 54% of seeds removed during August, an increase driven by insects. Edge proximity did not influence seed removal. Certain seed species were removed more than others. For example, Lespedeza capitata (round‐headed bush clover) was always removed at high rates, whereas Coreopsis lanceolata (lance‐leaved coreopsis) and Andropogon gerardii (big bluestem) were always removed at low rates. Mammals and insects showed different preferences for several species. This research suggests a prominent role of seed predation, particularly by insects, for early prairie restoration dynamics, with influences varying temporally and among species.  相似文献   

9.
The effectiveness of chimpanzees as seed dispersers may be influenced by the secondary removal and/or dispersal of seeds by other taxa. This study documents species involvement and their influences on seed treatments (fresh seed, dry seed and seeds rubbed in fresh chimpanzee faeces). Field experiments conducted on ten large‐seed species consumed by chimpanzees in a Nigerian montane forest showed that secondary seed removal after 24 h varied between species. After 96‐h, seed removal still varied between species, but no previous significant differences were observed among treatments, which suggested treatment becomes insignificant with time. Dispersal by chimpanzees may be more important for some large‐seeded species than others. The taxa removing seeds varied across seed species but were mainly restricted to rodents.  相似文献   

10.
Biotic resistance has been invoked as a major barrier to woody species invasion, although the role of resident generalist consumers and their interaction with seed availability in a local community has received little attention. We assessed tree seed consumption by rodents under two different scenarios: (i) We documented in field spatio‐temporal patterns of seed predation by native rodents on two exotic tree species, Gleditsia triacanthos or ‘honey locust’ and Robinia pseudoacacia or ‘white locust’ (family Leguminosae), in five grassland habitats of the Inland Pampa, Argentina. (ii) We conducted laboratory feeding trials to evaluate tree seed consumption in the presence (cafeteria‐style feeding trials) and in the absence (non‐choice feeding trials) of alternative food supplies. Seed predation was generally higher for Robinia than for Gleditsia seeds, both in field and laboratory conditions. For both tree species, seed predation varied between habitats and seasons and was higher in the native tussock grassland than in the remaining studied communities, whereas the crop field showed the lowest levels of consumption along with the absence of captured rodents. Seed consumption of Gleditsia and Robinia among the four grassland communities (which did not differ in rodent abundance) was negatively associated with the availability of alternative food. Laboratory feeding trials showed a higher consumption of Gleditsia seeds in the non‐choice than in the cafeteria‐style feeding trials, while the consumption of Robinia seeds did not differ in the absence or presence of alternative seeds. These patterns indicate that the contribution of resident granivores to invasion resistance might depend on colonizer species identity, recipient community type and season of the year. We suggest that rodent preferences for different invader seeds will interact with the availability of alternative food in the local habitat in influencing the amount of predator‐mediated biotic resistance to invasion.  相似文献   

11.
Ellen Andresen 《Biotropica》1999,31(1):145-158
Primary seed dispersal by two species of monkeys and the effects of rodents and dung beetles on the fate of dispersed seeds are described for a rain forest in southeastern Perú. During the six-month study period (June–November 1992) spider monkeys (Ateles paniscus) dispersed the seeds of 71 plant species, whereas howler monkeys (Alouatta seniculus) dispersed seeds of 14 species. Spider and howler monkeys also differed greatly in their ranging behavior and defecation patterns, and as a consequence, produced different seed rain patterns. Monkey defecations were visited by 27 species of dung beetles (Scarabaeidae). Dung beetles buried 41 percent of the seeds in the dung, but the number of seeds buried varied greatly, according to seed size. Removal rates of unburied seeds by rodents varied between 63–97 percent after 30 d for 8 plant species. The presence of fecal material increased the percentage of seeds removed by seed predators, but this effect became insignificant with time. Although seed predators found some seeds buried in dung balls (mimicking burial by dung beetles), depth of burial significantly affected the fate of these seeds. Less than 35 percent of Brosimum lactescens seeds buried inside dung balls at a depth of 1 cm remained undiscovered by rodents, whereas at least 75 percent of the seeds escaped rodent detection at a depth of 3 cm and 96 percent escaped at 5 cm. Both dung beetles and rodents greatly affected the fate of seeds dispersed by monkeys. It is thus important to consider postdispersal factors affecting the fate of seeds when assessing the effectiveness of frugivores as seed dispersers.  相似文献   

12.

Aim

Poa annua L. (annual bluegrass) is presently the sole invasive vascular plant species to have successfully established in Maritime Antarctica, where it poses a significant conservation threat to native plant species. However, the reasons for its success in the region have yet to be established. Here, we determined whether the invasiveness of P. annua, and its competitiveness with the native Antarctic hairgrass Deschampsia antarctica, is influenced by symbioses formed with seed fungal endophytes, and whether plants derived from seeds from four global regions differ in their performance.

Locations

Four regions (Maritime Antarctica, sub-Antarctica, South America and Europe).

Methods

Endophyte frequency was measured in P. annua seeds collected from the four regions. The germination, survival, biomass accumulation, flowering and competitiveness with D. antarctica of P. annua plants grown from endophyte-uncolonised and uncolonised seeds was determined in the laboratory. The effects of endophytes on P. annua seed germination and survival and seedling osmoprotection were also assessed in the Maritime Antarctic natural environment using locally-sourced seeds.

Results

Endophytes were at least twice as frequent in seeds from Maritime Antarctica than in those from other regions. A higher proportion of endophyte-colonized seeds germinated and survived than did uncolonised seeds, but only when they originated from Maritime Antarctica. Seed endophytes increased the competitiveness of P. annua with D. antarctica, but only for plants grown from Maritime Antarctic seeds. In the field, endophyte-colonized seeds from Maritime Antarctica germinated and survived more frequently than uncolonised seeds, and osmoprotection was higher in seedlings grown from colonized seed.

Main Conclusions

The findings indicate beneficial effects of seed endophytes on invasion-related traits of P. annua, such as survival, germination success and flowering. Together with vegetative and reproductive traits facilitating the colonization process, the seed-fungal endophyte symbiosis can be invoked as an important factor explaining the invasiveness of P. annua in Maritime Antarctica.  相似文献   

13.
Abstract Granivory (seed feeding) evolved in many animal groups. Field observations hint at the existence of granivory in terrestrial isopods (Crustacea: Isopoda: Oniscidea), for which it was previously unknown. In this paper granivory in terrestrial isopods is addressed for the first time, focusing on (i) seed acceptance in the presence of plant litter and (ii) size as a constraint for acceptance and consumption. In a laboratory choice experiment, Armadillidium vulgare consumed seeds of Capsella bursa‐pastoris and Poa annua when plant litter was present. In a no‐choice experiment, seeds of seven plant species were offered to four isopod species giving 13 combinations in total [A. vulgare (seven species of seeds), Oniscus asellus (two), Porcellio scaber (two), and Porcellionides pruinosus (two)]. The tested isopods differed in their acceptance (proportion of individuals consuming seeds) and consumption (both number and amount of seeds eaten) of seed species. Size as a constraint was demonstrated in A. vulgare offered Cirsium arvense seed, since the probability that this large seed was eaten increased with body size of the isopod. In the other 10 seed–isopod pairs, seed consumption increased linearly with isopod body size. Granivory is thus widespread in terrestrial isopods, although the tendency to eat seeds differs between species.  相似文献   

14.
Secondary seed dispersal by ants (myrmecochory) is an important process in semi‐arid environments where seeds are transported from the soil surface to an ant nest. Microsites from which ants often remove seeds are the small pits and depressions made by native and exotic animals that forage in the soil. Previous studies have demonstrated greater seed retention in the pits of native than exotic animals, but little is known about how biotic factors such as secondary seed dispersal by ants affect seed removal and therefore retention in these foraging pits. We used an experimental approach to examine how the morphology of burrowing bettong (Bettongia lesueur), greater bilby (Macrotis lagotis), short‐beaked echidna (Tachyglossus aculeatus) and European rabbit (Oryctolagus cuniculus) foraging pits and ant body size influenced ant locomotion and seed removal from pits along an aridity gradient. Ants took 3.7‐times longer to emerge from echidna pits (19.6 s) and six‐times longer to emerge from bettong pits (30.5 s) than from rabbit pits (5.2 s), resulting in lower seed removal from bettong pits than other pit types. Fewer seeds were removed from pits when cages were used to exclude large body‐sized (>2 mm) ants. Few seeds were removed from the pits or surface up to aridity values of 0.5 (humid and dry sub‐humid), but removal increased rapidly in semi‐arid and arid zones. Our study demonstrates that mammal foraging pit morphology significantly affects ant locomotion, the ability of ants to retrieve seeds, and therefore the likelihood that seeds will be retained within foraging pits.  相似文献   

15.
In Neotropical forests, mammals act as seed dispersers and predators. To prevent seed predation and promote dispersal, seeds exhibit physical or chemical defenses. Collared peccaries (Pecari tajacu) cannot eat some hard seeds, but can digest chemically defended seeds. Central American agoutis (Dasyprocta punctata) gnaw through hard‐walled seeds, but cannot consume chemically defended seeds. The objectives of this study were to determine relative peccary and agouti abundances within a lowland forest in Costa Rica and to assess how these two mammals affect the survival of large seeds that have no defenses (Iriartea deltoidea, Socratea exorrhiza), physical defenses (Astrocaryum alatum, Dipteryx panamensis), or chemical defenses (Mucuna holtonii) against seed predators. Mammal abundances were determined over 3 yrs from open‐access motion‐detecting camera trap photos. Using semi‐permeable mammal exclosures and thread‐marked seeds, predation and dispersal by mammals for each seed species were quantified. Abundances of peccaries were up to six times higher than those of agoutis over 3 yrs, but neither peccary nor agouti abundances differed across years. Seeds of A. alatum were predominantly dispersed by peccaries, which did not eat A. alatum seeds, whereas non‐defended and chemically defended seeds suffered high levels of predation, mostly by peccaries. Agoutis did not eat M. holtonii seeds. Peccaries and agoutis did not differ in the distances they dispersed seeds. This study shows that seed fates are contingent upon many factors such as seed defenses, frugivore–granivore abundances, and seed‐handling capabilities. Mammal–seed interactions are complex; the outcomes of these interactions depend on the inherent characteristics of seeds and their potential dispersers.  相似文献   

16.
Wild flower seed predation by Pterostichus madidus (Carabidae: Coleoptera)   总被引:2,自引:0,他引:2  
The objective of the study was to investigate the ability of Pterostichus madidus, one of the most abundant carabid beetles in the United Kingdom, to consume wildflower seeds. The plant species chosen are commonly included in wildflower seed mixes sown to enhance the biodiversity of arable field margins, and hence any seed predation could potentially reduce successful seedling establishment. The study combined cafeteria style laboratory feeding experiments with predation studies in an established field margin. In laboratory studies the Pterostichus madidus consumed both unimbibed and imbibed seeds of Centaurea scabiosa, Galium verum, Leucanthemum vulgare and Primula veris. Seed consumption was still evident when Drosophila pupae were also supplied, although there was significant preference for the pupae. Placement of seeds in the field showed high levels of seed consumption, although part of this was attributed to slugs. Carabid beetles may have a significant role as wild flower seed predators and thus may affect establishment of re‐seeded flower‐rich meadows.  相似文献   

17.
Predator-mediated interactions among the seeds of desert plants   总被引:2,自引:0,他引:2  
J. A. Veech 《Oecologia》2000,124(3):402-407
In theory, seed predators are capable of inducing indirect interactions among the seeds they consume. However, empirical evidence of predator-mediated interactions among seeds is rare. Rodents in the Heteromyidae are highly granivorous and therefore likely to induce indirect interactions among the seeds of desert plants. The indirect interactions may be in the form of apparent competition and apparent mutualism between seeds within a patch. Apparent competition exists when the survival of seeds of a focal species is lessened because of the presence of additional seeds of other species in the patch. Apparent mutualism exists when the presence of the other seeds results in an increase in survival of seeds of the focal species. By measuring seed removal from trays placed in the field, apparent competition between the seeds of several plant species was detected. Apparent mutualism might also exist, but there was no strong evidence of it. Apparent competition appeared most likely to occur among the species whose seeds were the most heavily predated. For instance, predation on seeds of Astragalus cicer, Oryzopsis hymenoides, and Sphaeralcea coccinea was substantial with more than 50% of the seeds removed from the trays, on average. The intensity of apparent competition (measured by the indirect effect, IS) between these species and two others was significant; IS ranged from –0.02 to –0.39 on a scale of 0 to –1. This indicates that, in some communities, indirect effects are most likely to exist when direct effects are strong. Received: 5 August 1999 / Accepted: 2 March 2000  相似文献   

18.
The large ateline primates are efficient seed dispersers in Neotropical forests and hunting is driving their populations to extinction, but we do not know whether other frugivores could substitute primates in their ecological role as seed dispersers. In this study we test this possibility using a potential keystone species (Bursera inversa) at Tinigua Park, Colombia. This plant species allows us to compare seed removal rates between emergent, isolated trees, without primate visitors and trees with connected crowns. We used traps to estimate fruit production and seed removal rates in six different trees, and fruiting trees were observed during 2 yr to quantify the number of seeds manipulated by different animal species. We carried out seed predation experiments to test if seed removal by predators was affected by distance or density effects. We found that the most productive trees attracted more visiting species and seed removal rates differed among trees, the lowest corresponding to trees without primate access. Seed removal rates from the ground by predators were not higher below parental trees than away from them, but the distribution of saplings in the forest suggests that seed dispersal is advantageous. Although it is likely that the effect of primate extinctions will vary depending on tree species traits, conserving the populations of primate seed dispersers is critical to maintain the ecological processes in this forest.  相似文献   

19.
The quality of seed treatment by frugivores has an effect on seed removal after dispersal, seed germination and tree recruitment. We provide information on postdispersal seed removal, germination and subsequent recruitment in tropical forest tree species Antiaris toxicaria in Ghana. We tested whether postdispersal seed removal and germination rates were differentially affected by the following seed treatments: seeds that were spat out by monkeys with all fruit pulp removed and spitting seeds with fruit pulp partially removed as observed in some birds and bats. We used seeds of intact ripened fruits as control. Frugivore seed treatment and distance from bole affected seed removal patterns, whereas intact seeds were significantly removed from all seed stations. The germination success was greater for seeds that were spat out by monkeys and poor for seeds with fruit pulp partially removed and intact fruits. More recruits were recorded at the edge of the adult A. toxicaria canopy radius. There was weak relationship (r2 = 0.042) between the number of recruits and distance away from the adult tree. Results suggest that the subsequent recruitment in tropical forest tree species may be enhanced by some frugivore fruit‐handling behaviour where fruit pulp is removed from the seeds without destroying the seeds.  相似文献   

20.
Seed dispersal is a central process in plant ecology with consequences for species composition and habitat structure. Some bird species are known to disperse the seeds they ingest, whereas others, termed ‘seed predators’, digest them and apparently play no part in dispersal, but it is not clear if these are discrete strategies or simply the ends of a continuum. We assessed dispersal effectiveness by combining analysis of faecal samples and bird density. The droppings of seed dispersers contained more entire seeds than those of typical seed predators, but over a quarter of the droppings of seed predators contained whole seeds. This effect was further magnified when bird density was taken into account, and was driven largely by one frequent interaction: the Chaffinch Fringilla coelebs, a typical seed predator and the most abundant bird species in the area and dispersed seeds of Leycesteria formosa, a non‐native plant with berry‐like fruits. These results suggest the existence of a continuum between seed predators and seed dispersers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号