首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single-solvent extraction step high-performance liquid chromatographic method is described for quantitating cocaine and its three metabolites in rat serum microsamples (50 μl). The separation used a 2.1-mm I.D. reversed-phase Brownlee C18 column with an isocratic mobile phase consisting of methanol–acetonitrile–25.8 mM sodium acetate buffer, pH 2.2, containing 1.29·10−4M tetrabutylammonium phosphate (12.5:10:77.5, v/v/v). The detection limit was 2.5 ng/ml for all the compounds using an ultraviolet detector operated at 235 nm. The method was used to study the pharmacokinetics of cocaine after an intravenous (i.v.) bolus dose (4 mg/kg).  相似文献   

2.
A single solvent extraction step high-performance liquid chromatographic method is described for quantitating clozapine and its metabolite, N-desmethylclozapine, in rat serum microsamples (50 μl). The separation used a 2.1-mm I.D. reversed-phase Symmetry C18 column with an isocratic mobile phase consisting of methanol–acetonitrile–28.6 mM sodium acetate buffer, pH 2.6 (10:20:70, v/v/v). The detection limit was 2.5 ng/ml for all the compounds using an ultraviolet detector operated at 230 nm. The method was used to study the pharmacokinetics of clozapine after an intravenous bolus dose (2.5 mg/kg).  相似文献   

3.
A single-solvent extraction step high-performance liquid chromatographic method is described for quantitating zolpidem in rat serum microsamples (50 μl). The separation used a 2.1 mm I.D. reversed-phase OD-5-100 C18 column, 5 μm particle size with an isocratic mobile phase consisting of methanol–acetonitrile–26 mM sodium acetate buffer (adjusted to pH 2.0 with 40% phosphoric acid) containing 0.26 mM tetrabutylammonium phosphate (13:10:77, v/v/v). The detection limit was 3 ng/ml for zolpidem using an ultraviolet detector operated at 240 nm. The recovery was greater than 87% with analysis performed in 12 min. The method is simple, rapid, and applicable to pharmacokinetic studies of zolpidem after administering two intravenous bolus doses (1 and 4 mg/kg) in rats.  相似文献   

4.
An automated reversed-phase high-performance liquid chromatographic (RP-HPLC) method, using a linear gradient elution, is described for the simultaneous analysis of caffeine and metabolites according to their elution order: 7-methyluric acid, 1-methyluric acid, 7-methylxanthine, 3-methylxanthine, 1-methylxanthine, 1,3-dimethyluric acid, theobromine, 1,7-dimethyluric acid, paraxanthine and theophylline. The analytical column, an MZ Kromasil C4, 250×4 mm, 5 μm, was operated at ambient temperature with back pressure values of 80–110 kg/cm2. The mobile phase consisted of an acetate buffer (pH 3.5)–methanol (97:3, v/v) changing to 80:20 v/v in 20 min time, delivered at a flow-rate of 1 ml/min. Paracetamol was used as internal standard at a concentration of 6.18 ng/μl. Detection was performed with a variable wavelength UV–visible detector at 275 nm, resulting in detection limits of 0.3 ng per 10-μl injection, while linearity held up to 8 ng/μl for most of analytes, except for paraxanthine and theophylline, for which it was 12 ng/μl and for caffeine for which it was 20 ng/μl. The statistical evaluation of the method was examined performing intra-day (n=6) and inter-day calibration (n=7) and was found to be satisfactory, with high accuracy and precision results. High extraction recoveries from biological matrices: blood serum and urine ranging from 84.6 to 103.0%, were achieved using Nexus SPE cartridges with hydrophilic and lipophilic properties and methanol–acetate buffer (pH 3.5) (50:50, v/v) as eluent, requiring small volumes, 40 μl of blood serum and 100 μl of urine.  相似文献   

5.
A new high-performance liquid chromatograhic procedure for simultaneous determination of pyrazinamide (PZA) and its three metabolites 5-hydroxypyrazinamide (5-OH-PZA), pyrazinoic acid (PA), and 5-hydroxypyrazinoic acid (5-OH-PA), in rat urine was developed. 5-OH-PZA and 5-OH-PA standards were obtained by enzymatic synthesis (xanthine oxidase) and checked by HPLC and GC–MS. Chromatographic separation was achieved in 0.01 M KH2PO4 (pH 5.2), circulating at 0.9 ml/min, on a C18 silica column, at 22°C. The limits of detection were 300 μg/l for PZA, 125 μg/l for PA, 90 μg/l for 5-OH-PZA and 70 μg/l for 5-OH-PA. Good linearity (r2>0.99) was observed within the calibration ranges studied: 0.375–7.50 mg/l for PZA, 0.416–3.33 mg/l for PA, 0.830–6.64 mg/l for 5-OH-PZA and 2.83–22.6 mg/l for 5-OHPA. Accuracy was always lower than ±10.8%. Precision was in the range 0.33–5.7%. The method will constitute a useful tool for studies on the influence of drug interactions in tuberculosis treatment.  相似文献   

6.
A method is described for the analysis of amino acids, monoamines and metabolites by high-performance liquid chromatography with electrochemical detection (HPLC–ED) from individual brain areas. The chromatographic separations were achieved using microbore columns. For amino acids we used a 100×1 mm I.D. C8, 5 μm column. A binary mobile phases was used: mobile phase A consisted of 0.1 M sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (69:24:7, v/v) and mobile phase B consisted of sodium acetate buffer (pH 6.8)–methanol–dimethylacetamide (15:45:40, v/v). The flow-rate was maintained at 150 μl/min. For monoamines and metabolites we used a 150×1 mm I.D. C18 5 μm reversed-phase column. The mobile phase consisted of 25 mM monobasic sodium phosphate, 50 mM sodium citrate, 27 μM disodium EDTA, 10 mM diethylamine, 2.2 mM octane sulfonic acid and 10 mM sodium chloride with 3% methanol and 2.2% dimethylacetamide. The potential was +700 mV versus Ag/AgCl reference electrode for both the amino acids and the biogenic amines and metabolites. Ten rat brain regions, including various cortical areas, the cerebellum, hippocampus, substantia nigra, red nucleus and locus coeruleus were microdissected or micropunched from frozen 300-μm tissue slices. Tissue samples were homogenized in 50 or 100 μl of 0.05 M perchloric acid. The precise handling and processing of the tissue samples and tissue homogenates are described in detail, since care must be exercised in processing such small volumes while preventing sample degradation. An aliquot of the sample was derivatized to form the tert.-butylthiol derivatives of the amino acids and γ-aminobutyric acid. A second aliquot of the same sample was used for monamine and metabolite analyses. The results indicate that the procedure is ideal for processing and analyzing small tissue samples.  相似文献   

7.
An automated, internal standard high-performance liquid chromatographic method for the simultaneous quantitation of felbamate and its three metabolites in adult and neonatal rat brain and heart tissue homogenates was developed and validated. The homogenates prepared from one part of the tissue and four parts of water were extracted with ethyl acetate, and the extract was evaporated to dryness and redissolved in mobile phase. Separation was accomplished on a Waters Resolve C18, 5 μm, 300 mm × 3.9 mm I.D. column with a mobile phase consisting of 0.01 M phosphate buffer, pH 6.8—acetonitrile—methanol (800:150:50, v/v/v). Eluting peaks were monitored with an ultraviolet detector at 210 nm. The linear range of the assay for felbamate and the metabolites was 0.20–50.00 μg/ml of homogenate or 1–250 μg/g of brain or heart tissue. The lower limit of quantitation for all four analytes was 0.20 μg/ml of homogenate or 1.00 μg/g of tissue.  相似文献   

8.
An isocratic high-performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous determination of clozapine and its two major metabolites in human plasma is described. Analytes are concentrated from alkaline plasma by liquid–liquid extraction with n-hexane–isoamyl alcohol (75:25, v/v). The organic phase is back-extracted with 150 μl of 0.1 M dibasic phosphate (pH 2.2 with 25% H3PO4). Triprolidine is used as internal standard. For the chromatographic separation the mobile phase consisted of acetonitrile–0.06 M phosphate buffer, pH 2.7 with 25% phosphoric acid (48:52, v/v). Analytes are eluted at a flow-rate of 1.0 ml/min, separated on a 250×4.60 mm I.D. analytical column packed with 5 μm C6 silica particles, and measured by UV absorbance detection at 254 nm. The separation requires 7 min. Calibration curves for the three analytes are linear within the clinical concentration range. Mean recoveries were 92.7% for clozapine, 82.0% for desmethylclozapine and 70.4% for clozapine N-oxide. C.V. values for intra- and inter-day variabilities were ≤13.8% at concentrations between 50 and 1000 ng/ml. Accuracy, expressed as percentage error, ranged from −19.8 to 2.8%. The method was specific and sensitive with quantitation limits of 2 ng/ml for both clozapine and desmethylclozapine and 5 ng/ml for clozapine N-oxide. Among various psychotropic drugs and their metabolites, only 2-hydroxydesipramine caused significant interference. The method is applicable to pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

9.
A reversed-phase high-performance liquid chromatographic method using acetonitrile–methanol–1 M perchloric acid–water (25:9:0.8:95, v/v/v) at a flow-rate of 1.0 ml min−1 on LiChrospher 100 RP 18 column (250×4 mm; 5 μm) with UV (254 nm) detection has been developed for the determination of sulfalene in plasma and blood cells after oral administration of the antimalarial drug metakelfin. Calibration curves were linear in the range 0.5–100 μg ml−1. The limit of quantification was 50 ng ml−1. Within-day and day-to-day coefficients of variation averaged 3.84 and 5.31%, respectively. Mean extraction recoveries of sulfalene from plasma and blood cells were 87.21 and 84.65%, respectively. Mean concentrations of sulfalene in plasma of P. falciparum cases on days 2, 7 and 15 were 44.58, 14.90 and 1.70 μg ml−1, respectively; in blood cells concentrations of sulfalene were 7.77, 3.25 and 0.75 μg ml−1, respectively, after oral treatment with two tablets (1000 mg) of metakelfin. Significant difference was recorded on day 2 for sulfalene concentration in blood cells of healthy and P. falciparum cases (t=9.49; P<0.001).  相似文献   

10.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantitation of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma, using clozapine as internal standard. After sample alkalinization with 1 ml of NaOH (2 M) the test compounds were extracted from plasma using diisopropyl ether–isoamylalcohol (99:1, v/v). The organic phase was back-extracted with 150 μl potassium phosphate (0.1 M, pH 2.2) and 60 μl of the acid solution was injected into a C18 BDS Hypersil analytical column (3 μm, 100×4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.05 M, pH 3.7 with 25% H3PO4)–acetonitrile (70:30, v/v), and was delivered at a flow-rate of 1.0 ml/min. The peaks were detected using a UV detector set at 278 nm and the total time for a chromatographic separation was about 4 min. The method was validated for the concentration range 5–100 ng/ml. Mean recoveries were 98.0% for risperidone and 83.5% for 9-hydroxyrisperidone. Intra- and inter-day relative standard deviations were less than 11% for both compounds, while accuracy, expressed as percent error, ranged from 1.6 to 25%. The limit of quantitation was 2 ng/ml for both analytes. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it has successfully been applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

11.
A bioanalytical method for the determination of atovaquone in 100 μl blood-spots by solid-phase extraction and high-performance liquid chromatography has been developed and validated. Atovaquone was extracted from the sampling paper in 0.2 M phosphoric acid and a structurally similar internal standard was added with acetonitrile before being loaded onto a C8 end-capped solid-phase extraction column. Atovaquone and internal standard were analysed by high-performance liquid chromatography on a C18 J’Sphere ODS-M80 (150×4.0 mm) column with mobile phase acetonitrile–phosphate buffer, 0.01 M, pH 7.0 (65:35, v/v) and UV detection at 277 nm. The intra-assay precision was 2.7% at 12.00 μM and 13.5% at 1.00 μM. The inter-assay precision was 3.3% at 12.00 μM and 15.6% at 1.00 μM. The lower limit of quantification was 1.00 μM. The limit of detection was 0.50 μM.  相似文献   

12.
A simple procedure for the simultaneous determination of modafinil, its acid and sulfone metabolites in plasma is described. The assay involved an extraction of the drug, metabolites and internal standard from plasma with a solid-phase extraction using C18 cartridges. These compounds were eluted by methanol. The extract was evaporated to dryness at 40°C under a gentle stream of nitrogen. The residue was redissolved in 250 μl of mobile-phase and a 30 μl aliquot was injected via an automatic sampler into the liquid chromatograph and eluted with the mobile-phase (26%, v/v acetonitrile in 0.05 M orthophosphoric acid buffer adjusted to pH 2.6) at a flow-rate of 1.1 ml/min on a C8 Symmetry cartridge column (5 μm, 150 mm×3.9 mm, Waters) at 25°C. The eluate was detected at 225 nm. Intra-day coefficients of variation ranged from 1.0 to 2.9% and inter-day coefficients from 0.9 to 6.1%. The limits of detection and quantitation of the assay were 0.01 μg/ml and 0.10 μg/ml respectively.  相似文献   

13.
A high-performance liquid chromatography (HPLC) analytical method for the determination of oxolinic acid and flumequine in Artemia nauplii is described. The samples were extracted and cleaned up by a solid-phase extraction (SPE) procedure using SPE C18 cartridges. Oxolinic acid and flumequine were determined by reversed-phase HPLC using a mobile phase of methanol–0.1 M phosphate buffer, pH 3 (45:55, v/v) and a UV detection wavelength of 254 nm. Calibration curves were linear for oxolinic acid in the range of 0.2–50 μg/g (r2=0.9998) and for flumequine in the range of 0.3–50 μg/g (r2=0.9994). Mean recoveries amounted to 100.8% and 98.4% for oxolinic acid and flumequine, respectively. The quantification limit was 0.2 μg/g for oxolinic acid and 0.3 μg/g for flumequine. Quantitative data from an in vivo feeding study indicated excellent uptake of both drugs by Artemia nauplii.  相似文献   

14.
A sensitive, specific and precise HPLC–UV assay was developed to quantitate cocaine (COC) and its metabolites benzoylecgonine (BE), norcocaine (NC) and cocaethylene (CE) in rat plasma. After adding 50 μl of the internal standard solution (bupivacaine, 8 μg/ml) and 500 μl of Sørensen's buffer (pH 6) to 100 μl of rat plasma sample, the mixture was extracted with 10 ml of chloroform. The organic layer was transferred to a clean test tube and was evaporated under nitrogen. The residue was reconstituted in 100 μl of mobile phase and 35 μl was injected onto the HPLC column. The mobile phase consisted of methanol–acetonitrile–50 mM monobasic ammonium phosphate (5:7:63, v/v/v) and was maintained at a flow-rate of 0.4 ml/min. Separation of COC and its metabolites was achieved using a Supelcosil ABZ+plus deactivated reversed-phase column (250×2.1 mm I.D., 5 μm). Calibration curves were linear over the range of 25–5000 ng/ml for COC and its three metabolites. The absolute extraction efficiencies for BE, COC, NC, CE and bupivacaine were 56.6%, 78.6%, 61.1%, 76.4% and 67.0%, respectively. COC and its metabolites were stable in mobile phase for 24 h at room temperature and in rat plasma for 2 weeks at −20°C. The limits of detection for BE, COC, NC and CE were 20, 24, 15 and 12.9 ng/ml, respectively. These values correspond to 0.70, 0.84, 0.525 and 0.452 ng of the according compound being injected on column. The within-day coefficient of variation for the four compounds ranged from 3.0% to 9.9% while the between-day precision varied from 3.6% to 14%. This method was used to analyze rat plasma samples after administration of COC alone and in combination with alcohol. The pharmacokinetic profiles of COC and its metabolites in these rats are also described.  相似文献   

15.
An isocratic reversed-phase HPLC method was developed to determine cefepime levels in plasma and vitreous fluid. Cefepime and the internal standard cefadroxil were separated on a Shandon Hypersil BDS C18 column by using a mobile phase of 25 mM sodium dihydrogen phosphate monohydrate (pH 3) and methanol (87:13, v/v). Ultraviolet detection was carried out at 270 nm. The retention times were 4.80 min for cefepime and 7.70 min for cefadroxil. This fast procedure which involves an efficient protein precipitation step (addition of HClO4), allows a quantification limit of 2.52 μg ml−1 and a detection limit of 0.83 μg ml−1. Recoveries and absolute recoveries of cefepime from plasma were 96.13–99.44% and 94–102.5% respectively. The intra-day and inter-day reproducibilities were less than 2% for cefepime at 10, 30, 50 μg ml−1 (n=10).The method was proved to be suitable for determining cefepime levels in human plasma and was modified to measure vitreous fluid samples.  相似文献   

16.
17.
Achiral and chiral HPLC methods were developed for clinafloxacin, a quinolone antimicrobial agent. For achiral assay, analytes were isolated from plasma by precipitating plasma proteins. Separation was achieved on a C18 column using an isocratic eluent of ion pairing solution–acetonitrile (80:20, v/v) at 1.0 ml/min with UV detection at 340 nm. The ion pairing solution was 0.05 M citric acid, 1.15 mM tetrabutylammonium hydroxide and 0.1% ammonium perchlorate. Inter-assay accuracy was within 4.9% with an inter-assay precision of 3.7% over a quantitation range of 0.025 to 10.0 μg/ml. For chiral assay, analytes were isolated from plasma by solid-phase extraction. Separation was achieved on a Crownpak CR(+) column using an isocratic eluent of water–methanol (88:12, v/v) containing 0.1 mM decylamine at 1.0 ml/min with UV detection at 340 nm. Perchloric acid was added to adjust pH to 2. Inter-assay accuracy was within 3.5% with a inter-assay precision of 5.4% over a quantitation range of 0.040 to 2.5 μg/ml.  相似文献   

18.
Tamoxifen (TAM) is a triphenylethylene anti-oestrogen, commonly used in the treatment of breast cancer. Patients receiving tamoxifen therapy may experience both de novo and acquired resistance. As one of the mechanisms for this may be extensive peripheral bio-transformation of tamoxifen, there has been considerable interest in the pharmacokinetics and metabolism of tamoxifen. A reversed-phase high-performance liquid chromatography separation has been developed to determine the levels of tamoxifen and its major metabolites in human plasma. The method is highly sensitive (2 ng/ml) and selective for tamoxifen, cis-tamoxifen (CIS), 4-hydroxytamoxifen (4-OH) and desmethyltamoxifen (DMT). A μBondapak C18 10 μm column (30 cm × 3.9 mm I.D.) was used, with a mobile phase of methanol-1% triethylamine at pH 8 (89:11, v/v). Sample preparation was carried out using a C2 (500 mg sorbent, 3 ml reservoirs) solid phase extraction method, and extraction efficiencies were approximately 60% for TAM and its metabolites. Accuracy and precision, as determined by spiking plasma samples with a mixture of tamoxifen and its metabolites, ranged from 85–110% (± 5–10%) at 1 μg/ml, 101–118% (± 8–20%) at 0.1 μg/ml and 111–168% (± 43–63%) at 0.01 μg/ml. Results from 59 patients show mean values of 54 ng/ml for 4-OH; 190 ng/ml for DMT; 93 ng/ml for TAM and 30 ng/ml for CIS (detected in three patients only). This methodology can be applied routinely to the determination of TAM and its metabolites in plasma from patients undergoing therapy.  相似文献   

19.
A new sensitive and rapid capillary electrophoresis (CE) assay for measuring reduced and oxidized thiols in human plasma has been developed. To prevent oxidation of the thiols, whole blood was immediately centrifuged after collection and the plasma proteins were precipitated with perchloric acid. The reduced thiols in the supernatant were derivatized quantitatively at 25°C, pH 7.5 with a fluorescent reagent, fluorescein-5-maleimide (FM). The total plasma concentration of thiols, including the fraction coupled to proteins, was assayed after an initial reduction of the disulfide linkage in plasma with dithiothreitol. The separation of FM-thiols was performed in an acetonitrile/10 mM sodium phosphate–50 mM SDS buffer [25:75 (v/v); pH 7.0] using a fused-silica capillary (57 cm×75 μm I.D.) at 45°C. A 3-mW argon-ion laser (λex 488 nm/λem 520 nm) was employed for FM-thiol detection. With the electric field of 530 V/cm, the time needed for the separation of FM-homocysteine, FM-glutathione and FM-N-acetylcysteine was less than 8 min. The lower limit of detection was 3 μM for the total thiols and 10 nM for the reduced thiols. The method was applied to the determination of homocysteine levels in plasma from patients with end-stage renal disease.  相似文献   

20.
This study describes a sensitive HPLC–electrochemical detection method for the analysis of ceftazidime, a third-generation cephalosporin, in human plasma. The extraction procedure involved protein precipitation with 30% trichloroacetic acid. The separation was achieved on a reversed-phase column (250×4.6 mm I.D., 5 μm) packed with C18 Kromasil with isocratic elution and a mobile phase consisting of acetonitrile–25 mM KH2PO4–Na2HPO4 buffer, pH 7.4 (10:90, v/v). The proposed analytical method is selective, reproducible and reliable. The assay has a precision of 0.2–15.1% (C.V.) in the range of 5–200 μg ml−1. (corresponding to 0.5 to 20 ng of ceftazidime injected onto the column), and is optimised for assaying 50 μl of plasma. The extraction recovery from plasma was approximately 100%. The method was highly specific for ceftazidime and there was no interference from either commonly administered drugs or endogenous compounds. This assay was used to measure ceftazidime in elderly patients for therapeutic drug monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号