首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Biosynthesis of high density lipophorin (HDLp) was studied in larvae and adults of the migratory locust, Locusta migratoria. In an in vitro system, fat bodies were incubated in a medium containing a mixture of tritiated amino acids. Using SDS-PAGE and immunoblotting, it was shown that larval and adult fat bodies secreted both HDLp apoproteins, apolipophorin I (apoLp-I) and apolipophorin II (apoLp-II). Radiolabel was recovered in both apoproteins, indicative of de novo synthesis. The density of the fractions containing the apoproteins synthesized and secreted by larval and adult fat bodies was determined by density gradient ultracentrifugation. A radiolabeled protein fraction was found at density 1.12 g/ml. Using an enzyme-linked immunosorbent assay for detecting apoLp-I and apoLp-II, it was demonstrated that both apoproteins were present in this fraction, which had a density identical to that of circulating HDLp in hemolymph. Lipid analysis revealed that it contained phospholipid, diacylglycerol, sterol, and hydrocarbons. From these results it is concluded that the fat body of the locust synthesizes both apoLp-I and apoLp-II, which are combined with lipids to a lipoprotein particle that is released into the medium as HDLp.  相似文献   

2.
The insect lipophorin receptor (LpR), an LDL receptor (LDLR) homologue that is expressed during restricted periods of insect development, binds and endocytoses high-density lipophorin (HDLp). However, in contrast to LDL, HDLp is not lysosomally degraded, but recycled in a transferrin-like manner, leaving a function of receptor-mediated uptake of HDLp to be uncovered. Since a hallmark of circulatory HDLp is its ability to function as a reusable shuttle that selectively loads and unloads lipids at target tissues without being endocytosed or degraded, circulatory HDLp can exist in several forms with respect to lipid loading. To investigate whether lipid content of the lipoprotein affects binding and subsequent endocytosis by LpR, HDLp was partially delipidated in vitro by incubation with α-cyclodextrin, yielding a particle of buoyant density 1.17 g/mL (HDLp-1.17). Binding experiments demonstrated that LpR bound HDLp-1.17 with a substantially higher affinity than HDLp both in LpR-transfected Chinese hamster ovary (CHO) cells and isolated insect fat body tissue endogenously expressing LpR. Similar to HDLp, HDLp-1.17 was targeted to the endocytic recycling compartment after endocytosis in CHO(LpR) cells. The complex of HDLp-1.17 and LpR appeared to be resistant to endosomal pH, as was recently demonstrated for the LpR–HDLp complex, corroborating that HDLp-1.17 is recycled similar to HDLp. This conclusion was further supported by the observation of a significant decrease with time of HDLp-1.17-containing vesicles after endocytosis of HDLp-1.17 in LpR-expressing insect fat body tissue. Collectively, our results indicate that LpR favors the binding and subsequent endocytosis of HDLp-1.17 over HDLp, suggesting a physiological role for LpR in selective endocytosis of relatively lipid-unloaded HDLp particles, while lipid reloading during their intracellular itinerary might result in decreased affinity for LpR and thus allows recycling.  相似文献   

3.
Spleen lymphocytes from mice immunized with locust native low-density lipophorin A+ (LDLp) were fused with nonproducing myeloma cells, strain Sp 2/0. Hybridomas that were isolated from the fused cells produced antibodies specific for LDLp and the high-density lipophorin Ayellow (HDLp). Monoclonal strains were generated through cloning by limiting dilution from those hybridomas synthesizing antibodies specific for apolipophorins (apoLp)-I, -II, and -III of LDLp. Additionally, a hybridoma strain that was obtained after fusion of lymphocytes from mice immunized with apoLp-III produced antibodies that bind to apoLp-III and native LDLp. Some features of LDLp and HDLp were studied using these antibodies. It could be demonstrated that apoLp-I and apoLp-II are not immunochemically identical and are exposed in the native particle of both LDLp and HDLp. It was also shown that in both lipophorins apoLp-II is less exposed than apoLp-I, whereas in LDLp apoLp-III is mainly exposed; some apoLp-III could also be detected in HDLp. Tween-20, a nonionic detergent, appears to affect the binding of anti-apoLp-I, -II, and -III to both LDLp and HDLp. The monoclonal antibodies specific for locust apolipophorins do not bind to the respective apoproteins of lipophorins from other insects.  相似文献   

4.
Summary The mechanism of long-distance flight in insects was investigated by comparing lipid mobilization and transport in gregarious- and solitary-phase locusts and in the American cockroach. Unlike the gregarious-phase locust, both the American cockroach and the solitary locust were unable to form low-density lipophorin (loaded with increased amount of diacylglycerol) even when injected with adipokinetic hormone (AKH). The cockroach fat body responded to AKH. However, not only does the American cockroach lack apolipophorin-III (apoLp-III) in the haemolymph, but the fat body contains only an extremely small amount of diacylglycerol and a relatively large triacylglycerol pool. By contrast, the solitary-phase locust had apoLp-III in the haemolymph, but the fat body was only one-seventh or less in weight of the fat body of the gregarious locust. Furthermore, the fat body of the solitary locust contains a very small amount of triacylglycerol (1/20 or less of that of the gregarious locust) with only a trace of diacylglycerol. It was concluded that in the American cockroach and the solitary locust, the stores of fuel in the fat body are insufficient to maintain prolonged flight.Abbreviations AKII adipokinetic hormone - apoLp-III apolipophorin III - HDLp high-density lipophorin - LDLp low-density lipophorin - LTP lipid transfer particle - MW molecular weight - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

5.
A novel member of the low density lipoprotein (LDL) receptor family was identified, which is expressed in locust oocytes, fat body, brain, and midgut. This receptor appeared to be a homolog of the mammalian very low density lipoprotein receptor as it contains eight cysteine-rich repeats in its putative ligand-binding domain. When transiently expressed in COS-7 or stably expressed in LDL receptor-deficient CHO cells, the receptor mediates endocytic uptake of high density lipophorin (HDLp), an abundant lipoprotein in the circulatory compartment of insects. Moreover, in the latter cell line, we demonstrated that an excess of unlabeled HDLp competed with fluorescent labeled HDLp for uptake whereas an excess of human LDL did not affect uptake. Expression of the receptor mRNA in fat body cells is down-regulated during adult development, which is consistent with the previously reported down-regulation of receptor-mediated endocytosis of lipophorins in fat body tissue (Dantuma, N. P., M.A.P. Pijnenburg, J. H. B. Diederen, and D. J. Van der Horst. 1997. J. Lipid Res. 38: 254-265). The expression of this receptor in various tissues that internalize circulating lipophorins and its capability to mediate endocytosis of HDLp indicate that this novel member of the LDL receptor family may function as an endocytic lipophorin receptor in vivo.  相似文献   

6.
The mobilization of carbohydrate and lipid reserves from the insect fat body as fuels for migratory flight activity is controlled by adipokinetic hormone (AKH), of which in Locusta migratoria three different forms occur: AKH-I, -II and -III. In fat body in vitro, each AKH is capable of activating glycogen phosphorylase and of stimulating cAMP production, but only in the presence of extracellular Ca2+. The hormones stimulate both the influx and the efflux of Ca2+, the higher influx probably causing an increase in intracellular [Ca2+]. AKH enhances the production of inositol phosphates among which inositol 1,4,5-triphosphate may mediate the mobilization of Ca2+ from intracellular stores. Evidence is presented in favor of the occurrence of a capacitative calcium entry mechanism. Results suggest that transduction of the AKH signal occurs through stimulatory G protein-coupled receptor(s). A tentative model is presented for the interactions between the AKH signaling pathways in the locust fat body cell. AKH-induced lipid mobilization during flight requires the presence in the insect blood of high-density lipophorin (HDLp) particles and apolipophorin III (apoLp-III). Both protein components are synthesized in the fat body. In the locust, the two integral, nonexchangeable HDLp apolipophorins (apoLp-I and -II) were shown to originate from a common precursor; an mRNA of 10.3 kb seems to code for this precursor protein. The models proposed for lipophorin assembly and secretion in a number of insects are not in agreement. The exchangeable apoLp-III may occur in two or more isoforms; locust apoLp-III is secreted from the fat body as one of the two isoforms and in the hemolymph converted into the truncated second one. The rationale for this process is as yet unknown.  相似文献   

7.
Triglyceride-lipase (TGL) is a major fat body lipase in Manduca sexta. The knowledge of how TGL activity is regulated is very limited. A WWE domain, presumably involved in protein–protein interactions, has been previously identified in the N-terminal region of TGL. In this study, we searched for proteins partners that interact with the N-terminal region of TGL. Thirteen proteins were identified by mass spectrometry, and the interaction with four of these proteins was confirmed by immunoblot. The oxidoreductase lipoamide-dehydrogenase (LipDH) and the apolipoprotein components of the lipid transporter, HDLp, were among these proteins. LipDH is the common component of the mitochondrial α-keto acid dehydrogenase complexes whereas HDLp occurs in the hemolymph. However, subcellular fractionation demonstrated that these two proteins are relatively abundant in the soluble fraction of fat body adipocytes. The cofactor lipoate found in typical LipDH substrates was not detected in TGL. However, TGL proved to have critical thiol groups. Additional studies with inhibitors are consistent with the notion that LipDH acting as a diaphorase could preserve the activity of TGL by controlling the redox state of thiol groups. On the other hand, when TG hydrolase activity of TGL was assayed in the presence of HDLp, the production of diacylglycerol (DG) increased. TGL-HDLp interaction could drive the intracellular transport of DG. TGL may be directly involved in the lipoprotein assembly and loading with DG, a process that occurs in the fat body and is essential for insects to mobilize fatty acids. Overall the study suggests that TGL occurs as a multi-protein complex supported by interactions through the WWE domain.  相似文献   

8.
Binding of high-density lipophorin (HDLp) to a plasma membrane preparation of locust flight muscle tissue was studied using a radiolabelled ligand binding assay and ligand blotting techniques. Analysis at 33 degrees C of the concentration-dependent total binding of tritium-labelled HDLp ([3H]HDLp) to the membrane preparation revealed the presence of a single specific binding site with an equilibrium dissociation constant of Kd = 9 (+/- 2) X 10(-7) M and a maximal binding capacity of 84 (+/- 10) ng X (micrograms protein)-1. Unlabelled HDLp as well as unlabelled low-density lipophorin (LDLp) competed with [3H]HDLp for binding to the identified binding site. In addition, ligand blotting demonstrated that both HDLp and LDLp bind specifically to a 30-kDa protein in the plasma membrane preparation, suggesting the involvement of this protein in the binding of lipophorins to the isolated membranes. A possible relationship between the identified binding of lipophorins and the observed co-purification of lipophorin lipase activity with the plasma membranes is discussed.  相似文献   

9.
High-density lipophorin (HDLp) in the circulation of insects is able to selectively deliver lipids to target tissues in a nonendocytic manner. In Locusta migratoria, a member of the LDL receptor family has been identified and shown to mediate endocytosis of HDLp in mammalian cells transfected with the cDNA of this receptor. This insect lipophorin receptor (iLR) is temporally expressed in fat body tissue of young adult as well as larval locusts, as shown by Western blot analysis. Fluorescence microscopy revealed that fat body cells internalize fluorescently labeled HDLp and human receptor-associated protein only when iLR is expressed. Expression of iLR is down-regulated on Day 4 after an ecdysis. Consequently, HDLp is no longer internalized. By starving adult locusts immediately after ecdysis, we were able to prolong iLR expression. In addition, expression of the receptor was induced by starving adults after down-regulation of iLR. These results suggest that iLR mediates endocytosis of HDLp in fat body cells, and that expression of iLR is regulated by the demand of fat body tissue for lipids.  相似文献   

10.
The insect low-density lipoprotein (LDL) receptor (LDLR) homolog, lipophorin receptor (LpR), mediates endocytic uptake of the single insect lipoprotein, high-density lipophorin (HDLp), which is structurally related to LDL. However, in contrast to the fate of LDL, which is endocytosed by LDLR, we previously demonstrated that after endocytosis, HDLp is sorted to the endocytic recycling compartment and recycled for re-secretion in a transferrin-like manner. This means that the integrity of the complex between HDLp and LpR is retained under endosomal conditions. Therefore, in this study, the ligand-binding and ligand-dissociation capacities of LpR were investigated by employing a new flow cytometric assay, using LDLR as a control. At pH 5.4, the LpR-HDLp complex remained stable, whereas that of LDLR and LDL dissociated. Hybrid HDLp-binding receptors, containing either the beta-propeller or both the beta-propeller and the hinge region of LDLR, appeared to be unable to release ligand at endosomal pH, revealing that the stability of the complex is imparted by the ligand-binding domain of LpR. The LpR-HDLp complex additionally appeared to be EDTA-resistant, excluding a low Ca(2+) concentration in the endosome as an alternative trigger for complex dissociation. From binding of HDLp to the above hybrid receptors, it was inferred that the stability upon EDTA treatment is confined to LDLR type A (LA) ligand-binding repeats 1-7. Additional (competition) binding experiments indicated that the binding site of LpR for HDLp most likely involves LA-2-7. It is therefore proposed that the remarkable stability of the LpR-HDLp complex is attributable to this binding site. Together, these data indicate that LpR and HDLp travel in complex to the endocytic recycling compartment, which constitutes a key determinant for ligand recycling by LpR.  相似文献   

11.
Stadler F  Hales D 《Proteomics》2002,2(9):1347-1353
In this paper, we describe methods for isolation, purification and solubilization of insect proteins from various tissues, including lipid-rich fat body. An Australian locust, Oedaleus australis, and its associated dipteran parasite, Trichopsidea oestracea, provided the protein samples. Protein samples of locust fat body, haemolymph and body wall as well as parasite whole-body extracts were isolated and purified of lipids and salts using chloroform-methanol extraction. Proteins were solubilized using two types of enhanced solubilizing solutions and arrayed using two-dimensional electrophoresis. We demonstrated substantial differences between the body wall protein spectra of normal locusts and those parasitized by T. oestracea. Proteins more abundant in parasitized locusts include two 70 kDa proteins with an isoelectric point (pI) of about 5.5, one approximately 55 kDa protein cluster with a pI of about 4.7 and three 40 kDa proteins with pI values of around 5.6. Proteins that decreased in parasitized locusts include a group of 45 kDa proteins with pI values between 6 and 6.8, and a cluster of 22 to 23 kDa proteins with pI values of approximately 5.4 and 5.6.  相似文献   

12.
The mature flightless grasshopper Barytettix psolus shows a very small adipokinetic response when injected with extracts of its own corpora cardiaca, although the fat body contains enough lipid for a strong response. When these extracts were injected into Melanoplus differentialis, a grasshopper capable of flight, or the moth Manduca sexta, much stronger adipokinetic responses were observed. Upon analysis of B. psolus extracts by HPLC, two components with adipokinetic activity were obtained. The major component appears to be identical to locust adipokinetic hormone (AKH) I. Extracts of B. psolus corpora cardiaca also activated fat body glycogen phosphorylase in B. psolus. This activation, however, did not result in an increase in hemolymph sugar, probably because of low levels of glycogen in the fat body. B. psolus hemolymph contains a high-density lipophorin (HDLp) consisting of the apolipophorins (apoLp) I and II and lipid. Both apoproteins are glycosylated. The hemolymph also contains apoLp-III, although this apoprotein apparently does not associate with HDLp to form a low-density lipophorin (LDLp) following AKH or corpora cardiaca extract injections. When B. psolus lipophorin and AKH were injected into Schistocerca americana, lipophorin took up lipids and combined with apoLp-III, forming LDLp. ApoLp-III from B. psolus injected into S. americana can also form LDLp, demonstrating that the components are functional. A lipid transfer particle isolated from M. sexta and injected into B. psolus does not improve the adipokinetic response. Thus, it appears that the adipokinetic response of B. psolus is not deficient because of the lack of AKH or functional lipophorins, but may be caused by the lack of a full response to AKH by fat body or the deficiency in hemolymph of some as yet unknown factor.  相似文献   

13.
Circulatory transport of neutral lipids (fat) in animals relies on members of the large lipid transfer protein (LLTP) superfamily, including mammalian apolipoprotein B (apoB) and insect apolipophorin II/I (apoLp-II/I). Latter proteins, which constitute the structural basis for the assembly of various lipoproteins, acquire lipids through microsomal triglyceride transfer protein (MTP)—another LLTP family member—and bind them by means of amphipathic structures. Comparative research reveals that LLTPs have evolved from the earliest animals and additionally highlights the structural and functional adaptations in these lipid carriers. For instance, in contrast to mammalian apoB, the insect apoB homologue, apoLp-II/I, is post-translationally cleaved by a furin, resulting in their appearance of two non-exchangeable apolipoproteins in the insect low-density lipoprotein (LDL) homologue, high-density lipophorin (HDLp). An important difference between mammalian and insect lipoproteins relates to the mechanism of lipid delivery. Whereas in mammals, endocytic uptake of lipoprotein particles, mediated via members of the LDL receptor (LDLR) family, results in their degradation in lysosomes, the insect HDLp was shown to act as a reusable lipid shuttle which is capable of reloading lipid. Although the recent identification of a lipophorin receptor (LpR), a homologue of LDLR, reveals that endocytic uptake of HDLp may constitute an additional mechanism of lipid delivery, the endocytosed lipoprotein appears to be recycled in a transferrin-like manner. Binding studies indicate that the HDLp–LpR complex, in contrast to the LDL–LDLR complex, is resistant to dissociation at endosomal pH as well as by treatment with EDTA mimicking the drop in Ca2+ concentration in the endosome. This remarkable stability of the ligand–receptor complex may provide a crucial key to the recycling mechanism. Based on the binding and dissociation capacities of mutant and hybrid receptors, the specific binding interaction of the ligand-binding domain of the receptor with HDLp was characterized. These structural similarities and functional adaptations of the lipid transport systems operative in mammals and insects are discussed from an evolutionary perspective.  相似文献   

14.
The function of Triatoma infestans very-high-density lipoprotein (VHDL) as a free fatty acid transport protein was analyzed. Lipophorin (HDLp) and VHDL are the unique hemolymphatic proteins able to transport free fatty acids (FFA). The transfer of this lipid species between HDLp and VHDL was studied using 14C-palmitic acid-labeled VHDL or 14C-palmitic acid-labeled HDLp as donor substrate and the same unlabeled lipoproteins as acceptor substrate. The VHDL is more effective as acceptor of 14C-FFA from HDLp rather than donor of 14C-FFA to HDLp. When 14C-palmitic acid-labeled VHDL was incubated with either fat body or testicle, it was observed that the 14C-palmitic acid was taken up by both tissues and incorporated into their lipid components.  相似文献   

15.
Insect flight involves mobilization, transport and utilization of endogenous energy reserves at extremely high rates. Peptide adipokinetic hormones (AKHs), synthesized and stored in neuroendocrine cells, integrate flight energy metabolism. The complex multifactorial control mechanism for AKH release in the locust includes both stimulatory and inhibitory factors. The AKHs are synthesized continuously, resulting in an accumulation of AKH-containing secretory granules. Additionally, secretory material is stored in large intracisternal granules. Although only a limited part of these large reserves appears to be readily releasable, this strategy allows the adipokinetic cells to comply with large variations in secretory demands; changes in secretory activity do not affect the rate of hormone biosynthesis. AKH-induced lipid release from fat body target cells has revealed a novel concept for lipid transport during exercise. Similar to sustained locomotion of mammals, insect flight activity is powered by oxidation of free fatty acids derived from endogenous reserves of triacylglycerol. However, the transport form of the lipid in the circulatory system is diacylglycerol (DAG) that is delivered to the flight muscles associated with lipoproteins. While DAG is loaded onto the multifunctional insect lipoprotein, high-density lipophorin (HDLp) and multiple copies of the exchangeable apolipoprotein III (apoLp-III) associate reversibly with the expanding particle. The resulting low-density lipophorin (LDLp) specifically shuttles DAG to the working muscles. Following DAG hydrolysis by a lipophorin lipase, apoLp-III dissociates from the particle, regenerating HDLp that is re-utilized for lipid uptake at the fat body cells, thus functioning as an efficient lipid shuttle mechanism. Many structural elements of the lipoprotein system of insects appear to be similar to their counterparts in mammals; however, the functioning of the insect lipoprotein in energy transport during flight activity is intriguingly different.  相似文献   

16.
High density lipophorin (HDLp) from the hemolymph of the German cockroach, Blattella germanica (L.) (Family Blattellidae), has an apparent molecular weight of 670kDa, with an isoelectric point of 7.0 and a density of 1.109g/ml. It is composed of two subunits, apolipoprotein-I (212kDa) and apolipoprotein-II (80kDa), and consists of 51.4% lipid, 46.2% protein and 2.4% carbohydrate. Hydrocarbons constitute 42.2% of the total lipids which also contain diacylglycerol, cholesterol and phospholipid. Lipophorin is rich in the amino acids glutamic acid, aspartic acid, lysine, valine, and leucine. Specificity of a polyclonal antibody was demonstrated by Western blotting and Ouchterlony immunodiffusion: the antiserum recognized native HDLp and apolipoprotein-I, but not apolipoprotein-II, purified vitellin, or other hemolymph proteins. It also recognized a protein in the hemolymph of Supella longipalpa (Blattellidae) but did not cross-react with hemolymph proteins from Periplaneta americana (Blattidae) or Diploptera punctata (Blaberidae). An enzyme-linked immunosorbent assay was developed to measure the HDLp titer in the hemolymph of adult females. The titer of HDLp, a juvenile hormone binding protein, exhibited no clear relationship to the changing titer of juvenile hormone in hemolymph. The hemolymph titer of hydrocarbon, which is also carried by HDLp, showed some functional relation to the concentration of HDLp in the hemolymph. Because it concurrently serves multiple functions in insect development and reproduction, lipophorin titer might covary with the titers of lipid ligands that occur at high concentrations and require extensive shuttling through the hemolymph.  相似文献   

17.
《Insect Biochemistry》1991,21(6):679-687
The occurrence of lipophorin (HDLp) and a very high density lipoprotein (VHDL) throughout the last nymphal and adult stages of male T. infestans was followed by quantitative immunodiffusion using specific antisera derived from the purified lipoproteins of adult male insects. Significant changes on the concentration of these hemolymph lipoproteins (Lps) occurred during the mentioned developmental stages. These changes include the following. A great accumulation of hemolymph proteins and Lps, particularly VHDL, during the nymphal stage. This increase reached a peak just before the last molt, where the concentration of VHDL and HDLp were 74 and 42 mg/ml hemolymph, respectively. A sharp decline in the Lps concentration just after the molt and during the first 2 weeks of adult life. These changes imply a six-fold decrease on the VHDL and a two-fold decrease in the HDLp concentrations. Another increase in the protein concentration that begins around the third week of the adult stage affecting both Lps, but mainly the HDLp. From its hexameric structure, amino acid composition and high concentration in nymphal stages, the VHDL of T. infestans could be considered a storage protein. The fact that VHDL persists in a considerable concentration in the hemolymph of adult insects differenciates this VHDL from this protein. The distribution of 14C free fatty acid (FFA) among the hemolymph proteins of T. infestans shows that the FFA are associated only with VHDL and HDLp. The developmental changes of the Lps pattern are accompanied by changes in the relative distribution of FFA between these Lps. The VHDL is the principal carrier of FFA during the fifth-nymph stage while HDLp is the main protein and FFA-carrier in adult life.  相似文献   

18.
To identify integral and peripheral membrane proteins, highly purified coated vesicles from bovine brain were exposed to solutions of various pH, ionic strength, and concentrations of the nonionic detergent Triton X-100. At pH 10.0 or above most major proteins were liberated, but four minor polypeptides sedimented with the vesicles. From quantitative analysis of phospholipids in the pellet and extract, we determined that at a pH of up to 12 all phospholipids could be recovered in the pellet. Electron microscopic examination of coated vesicles at pH 12.0 showed all vesicles devoid of coat structures. Treatment with high ionic strength solutions (0-1.0 M KCl) at pH 6.5-8.5 also liberated all major proteins, except tubulin, which remained sedimentable. The addition of Triton X-100 to coated vesicles or to stripped vesicles from which 90% of the clathrin had been removed resulted in the release of four distinct polypeptides of approximate Mr 38,000, 29,000, 24,000 and 10,000. The 38,000-D polypeptide (pK approximately 5.0), which represents approximately 50% of the protein liberated by Triton X-100, appears to be a glycoprotein on the basis of its reaction with periodic acid-Schiff reagent. Extraction of 90% of the clathrin followed by extraction of 90% of the phospholipids with Triton X-100 produced a protein residue that remained sedimentable and consisted of structures that appeared to be shrunken stripped vesicles. Together our data indicate that most of the major polypeptides of brain coated vesicles behave as peripheral membrane proteins and at least four polypeptides behave as integral membrane proteins. By use of a monoclonal antibody, we have identified one of these polypeptides (38,000 mol wt) as a marker for a subpopulation of calf brain coated vesicles.  相似文献   

19.
Juvenile hormone (JH) binding components from the fat body of the African migratory locust were analyzed in a search for a potential nuclear JH receptor. Biosynthetically prepared 10R[3H]JH III gave a high proportion of specific binding to isolated nuclei and extracted proteins; data obtained with the JH analogs, [3H]methoprene and [3H]pyriproxyfen, on the other hand, were obscured by abundant non-specific binding. The vast majority of the high affinity JH III binding activity present in cytosolic and nuclear extracts was due to a high molecular weight JH binding protein (JHBP) which has previously been identified in locust hemolymph. This protein has several chromatographic forms which interfered in the search for a nuclear JH receptor. When specific antiserum was used to remove JHBP from nuclear extracts, a novel JH binding activity (NBP) was detected. NBP could be separated from JHBP by precipitation with ammonium sulfate. NBP displayed a high affinity for JH III (Kd = 0.25 nM) and JH I and JH II competed strongly for JH III binding, whereas methoprene and pyriproxyfen showed apparent competition when present in 1,000-fold excess. NBP was present in nuclear extracts at approximately 25,000 sites per cell; levels were similar in male and female locusts and were not greatly affected by the presence or absence of JH. The characteristics of NPB make it a strong candidate for a nuclear JH receptor. © 1995 Wiley-Liss, Inc.  相似文献   

20.
A lipid transfer particle (LTP) from the hemolymph of adult male locusts, Locusta migratoria, was isolated and purified. The locust LTP exhibited its capacity to catalyze the exchange of diacylglycerol between low density lipophorin (LDLp) and high density lipophorin (HDLp). Contrary to the LTP reported for the tobacco hornworm, M. sexta, the locust LTP appeared to lack the capacity to promote net transfer of diacylglycerol to form an intermediate density lipophorin, although it seems premature to conclude the complete lack of such a capacity in locust LTP. The original concentration of LTP in hemolymph is assumed to be extremely low compared to that of lipophorin; only a catalytic amount of LTP may be present in the hemolymph (e.g., only 160 micrograms of LTP was obtained from the original hemolymph containing 400 mg protein). The molecular weight of intact LTP was estimated to be about 600,000 and the LTP was comprised of three glycosylated apoproteins, apoLTP-I (mol wt 310K), apoLTP-II (mol wt 89K), and apoLTP-III (mol wt 68K). The locust LTP contained significant amounts of lipids; the total lipid content amounted to 14.4% and the lipids were comprised of 17% hydrocarbons, 44% diacylglycerol, 8% cholesterol, 13% free fatty acid, and 18% phospholipids. The above molecular properties of locust LTP are essentially similar to those reported for M. sexta LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号