首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The insect lipophorin receptor (LpR), an LDL receptor (LDLR) homologue that is expressed during restricted periods of insect development, binds and endocytoses high-density lipophorin (HDLp). However, in contrast to LDL, HDLp is not lysosomally degraded, but recycled in a transferrin-like manner, leaving a function of receptor-mediated uptake of HDLp to be uncovered. Since a hallmark of circulatory HDLp is its ability to function as a reusable shuttle that selectively loads and unloads lipids at target tissues without being endocytosed or degraded, circulatory HDLp can exist in several forms with respect to lipid loading. To investigate whether lipid content of the lipoprotein affects binding and subsequent endocytosis by LpR, HDLp was partially delipidated in vitro by incubation with α-cyclodextrin, yielding a particle of buoyant density 1.17 g/mL (HDLp-1.17). Binding experiments demonstrated that LpR bound HDLp-1.17 with a substantially higher affinity than HDLp both in LpR-transfected Chinese hamster ovary (CHO) cells and isolated insect fat body tissue endogenously expressing LpR. Similar to HDLp, HDLp-1.17 was targeted to the endocytic recycling compartment after endocytosis in CHO(LpR) cells. The complex of HDLp-1.17 and LpR appeared to be resistant to endosomal pH, as was recently demonstrated for the LpR–HDLp complex, corroborating that HDLp-1.17 is recycled similar to HDLp. This conclusion was further supported by the observation of a significant decrease with time of HDLp-1.17-containing vesicles after endocytosis of HDLp-1.17 in LpR-expressing insect fat body tissue. Collectively, our results indicate that LpR favors the binding and subsequent endocytosis of HDLp-1.17 over HDLp, suggesting a physiological role for LpR in selective endocytosis of relatively lipid-unloaded HDLp particles, while lipid reloading during their intracellular itinerary might result in decreased affinity for LpR and thus allows recycling.  相似文献   

2.
Circulatory transport of neutral lipids (fat) in animals relies on members of the large lipid transfer protein (LLTP) superfamily, including mammalian apolipoprotein B (apoB) and insect apolipophorin II/I (apoLp-II/I). Latter proteins, which constitute the structural basis for the assembly of various lipoproteins, acquire lipids through microsomal triglyceride transfer protein (MTP)—another LLTP family member—and bind them by means of amphipathic structures. Comparative research reveals that LLTPs have evolved from the earliest animals and additionally highlights the structural and functional adaptations in these lipid carriers. For instance, in contrast to mammalian apoB, the insect apoB homologue, apoLp-II/I, is post-translationally cleaved by a furin, resulting in their appearance of two non-exchangeable apolipoproteins in the insect low-density lipoprotein (LDL) homologue, high-density lipophorin (HDLp). An important difference between mammalian and insect lipoproteins relates to the mechanism of lipid delivery. Whereas in mammals, endocytic uptake of lipoprotein particles, mediated via members of the LDL receptor (LDLR) family, results in their degradation in lysosomes, the insect HDLp was shown to act as a reusable lipid shuttle which is capable of reloading lipid. Although the recent identification of a lipophorin receptor (LpR), a homologue of LDLR, reveals that endocytic uptake of HDLp may constitute an additional mechanism of lipid delivery, the endocytosed lipoprotein appears to be recycled in a transferrin-like manner. Binding studies indicate that the HDLp–LpR complex, in contrast to the LDL–LDLR complex, is resistant to dissociation at endosomal pH as well as by treatment with EDTA mimicking the drop in Ca2+ concentration in the endosome. This remarkable stability of the ligand–receptor complex may provide a crucial key to the recycling mechanism. Based on the binding and dissociation capacities of mutant and hybrid receptors, the specific binding interaction of the ligand-binding domain of the receptor with HDLp was characterized. These structural similarities and functional adaptations of the lipid transport systems operative in mammals and insects are discussed from an evolutionary perspective.  相似文献   

3.
While the intracellular pathways of ligands after receptor-mediated endocytosis have been studied extensively in mammalian cells, in insect cells these pathways are largely unknown. We transfected Drosophila Schneider line 2 (S2) cells with the human low-density lipoprotein (LDL) receptor (LDLR) and transferrin (Tf) receptor (TfR), and used endocytosis of LDL and Tf as markers. After endocytosis in mammalian cells, LDL is degraded in lysosomes, whereas Tf is recycled. Fluorescence microscopy analysis revealed that LDL and Tf are internalized by S2 cells transfected with LDLR or TfR, respectively. In transfectants simultaneously expressing LDLR and TfR, both ligands colocalize in endosomes immediately after endocytic uptake, and their location remained unchanged after a chase. Similar results were obtained with Spodoptera frugiperda Sf9 cells that were transfected with TfR, suggesting that Tf is retained intracellularly by both cell lines. The insect lipoprotein, lipophorin, is recycled upon lipophorin receptor (LpR)-mediated endocytosis by mammalian cells, however, not after endocytosis by LpR-expressing S2 transfectants, suggesting that this recycling mechanism is cell-type specific. LpR is endogenously expressed by fat body tissue of Locusta migratoria for a limited period after an ecdysis. A chase following endocytosis of labeled lipophorin by isolated fat body tissue at this developmental stage resulted in a significant decrease of lipophorin-containing vesicles, indicative of recycling of the ligand.  相似文献   

4.
Lipoprotein-mediated delivery of lipids in mammals involves endocytic receptors of the low density lipoprotein (LDL) receptor (LDLR) family. In contrast, in insects, the lipoprotein, lipophorin (Lp), functions as a reusable lipid shuttle in lipid delivery, and these animals, therefore, were not supposed to use endocytic receptors. However, recent data indicate additional endocytic uptake of Lp, mediated by a Lp receptor (LpR) of the LDLR family. The two N-terminal domains of LDLR family members are involved in ligand binding and dissociation, respectively, and are composed of a mosaic of multiple repeats. The three C-terminal domains, viz., the optional O-linked glycosylation domain, the transmembrane domain, and the intracellular domain, are of a non-repetitive sequence. The present classification of newly discovered LDLR family members, including the LpRs, bears no relevance to physiological function. Therefore, as a novel approach, the C-terminal domains of LDLR family members across the entire animal kingdom were used to perform a sequence comparison analysis in combination with a phylogenetic tree analysis. The LpRs appeared to segregate into a specific group distinct from the groups encompassing the other family members, and each of the three C-terminal domains of the insect receptors is composed of unique set of sequence motifs. Based on conservation of sequence motifs and organization of these motifs in the domains, LpR resembles most the groups of the LDLRs, very low density lipoprotein (VLDL) receptors, and vitellogenin receptors. However, in sequence aspects in which LpR deviates from these three receptor groups, it most notably resembles LDLR-related protein-2, or megalin. These features might explain the functional differences disclosed between insect and mammalian lipoprotein receptors.  相似文献   

5.
A novel member of the low density lipoprotein (LDL) receptor family was identified, which is expressed in locust oocytes, fat body, brain, and midgut. This receptor appeared to be a homolog of the mammalian very low density lipoprotein receptor as it contains eight cysteine-rich repeats in its putative ligand-binding domain. When transiently expressed in COS-7 or stably expressed in LDL receptor-deficient CHO cells, the receptor mediates endocytic uptake of high density lipophorin (HDLp), an abundant lipoprotein in the circulatory compartment of insects. Moreover, in the latter cell line, we demonstrated that an excess of unlabeled HDLp competed with fluorescent labeled HDLp for uptake whereas an excess of human LDL did not affect uptake. Expression of the receptor mRNA in fat body cells is down-regulated during adult development, which is consistent with the previously reported down-regulation of receptor-mediated endocytosis of lipophorins in fat body tissue (Dantuma, N. P., M.A.P. Pijnenburg, J. H. B. Diederen, and D. J. Van der Horst. 1997. J. Lipid Res. 38: 254-265). The expression of this receptor in various tissues that internalize circulating lipophorins and its capability to mediate endocytosis of HDLp indicate that this novel member of the LDL receptor family may function as an endocytic lipophorin receptor in vivo.  相似文献   

6.
To identify and characterize the HDLp (high-density lipophorin) receptor from Galleria mellonella (LpRGm), we used techniques of ligand blotting. This method was, to our knowledge, first used to characterize the lipophorin receptor (LpR) in insects. LpRGm had an approximate molecular weight of 97 kDa under non-reducing conditions and bound the HDLp specifically. The time-course of lipophorin binding to their receptor protein was rapid. The binding of lipophorins to their receptors was saturable with a Kd of 34.33+/-4.67 microg/ml. Although Ca2+ was essentially required in the binding of HDLp to their receptors, interestingly increasing concentration of Ca2+ has shown to have a slight inhibitory effect. EDTA was used here as Ca2+ chelating reagent, because Mg2+ in the binding buffer did not affect the binding of HDLp to their receptors, and inhibited the binding of HDLp and LpRGm absolutely. Suramin (polysulfated polycyclic hydrocarbon), known to inhibit the binding of lipoproteins to their receptors, effectively abolished the binding of HDLp to their receptors. LpRGm showed the stage specific binding activity especially in day 1-3 last instar larval, prepupal, and day 1-3 adult stages.  相似文献   

7.
8.
9.
Low density lipoprotein (LDL) cholesterol is taken up into cells via clathrin-mediated endocytosis of the LDL receptor (LDLR). Following dissociation of the LDLR-LDL complex, LDL is directed to lysosomes whereas the LDLR recycles to the plasma membrane. Activation of the sterol-sensing nuclear receptors liver X receptors (LXRs) enhances degradation of the LDLR. This depends on the LXR target gene inducible degrader of the LDLR (IDOL), an E3-ubiquitin ligase that promotes ubiquitylation and lysosomal degradation of the LDLR. How ubiquitylation of the LDLR by IDOL controls its endocytic trafficking is currently unknown. Using genetic- and pharmacological-based approaches coupled to functional assessment of LDL uptake, we show that the LXR-IDOL axis targets a LDLR pool present in lipid rafts. IDOL-dependent internalization of the LDLR is independent of clathrin, caveolin, macroautophagy, and dynamin. Rather, it depends on the endocytic protein epsin. Consistent with LDLR ubiquitylation acting as a sorting signal, degradation of the receptor can be blocked by perturbing the endosomal sorting complex required for transport (ESCRT) or by USP8, a deubiquitylase implicated in sorting ubiquitylated cargo to multivesicular bodies. In summary, we provide evidence for the existence of an LXR-IDOL-mediated internalization pathway for the LDLR that is distinct from that used for lipoprotein uptake.  相似文献   

10.
The biosynthesis of neutral fat-transporting lipoproteins involves the lipidation of their nonexchangeable apolipoprotein. In contrast to its mammalian homolog apolipoprotein B, however, insect apolipophorin-II/I (apoLp-II/I) is cleaved posttranslationally at a consensus substrate sequence for furin, resulting in the appearance of two apolipoproteins in insect lipoprotein. To characterize the cleavage process, a truncated cDNA encoding the N-terminal 38% of Locusta migratoria apoLp-II/I, including the cleavage site, was expressed in insect Sf9 cells. This resulted in the secretion of correctly processed apoLp-II and truncated apoLp-I. The cleavage could be impaired by the furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (decRVKRcmk) as well as by mutagenesis of the consensus substrate sequence for furin, as indicated by the secretion of uncleaved apoLp-II/I-38. Treatment of L. migratoria fat body, the physiological site of lipoprotein biosynthesis, with decRVKRcmk similarly resulted in the secretion of uncleaved apoLp-II/I, which was integrated in lipoprotein particles of buoyant density identical to wild-type high density lipophorin (HDLp). These results show that apoLp-II/I is posttranslationally cleaved by an insect furin and that biosynthesis and secretion of HDLp can occur independent of this processing step. Structure modeling indicates that the cleavage of apoLp-II/I represents a molecular adaptation in homologous apolipoprotein structures. We propose that cleavage enables specific features of insect lipoproteins, such as low density lipoprotein formation, endocytic recycling, and involvement in coagulation.  相似文献   

11.
12.
The LDL receptor (LDLR) supports efficient uptake of both LDL and VLDL remnants by binding lipoprotein at the cell surface, internalizing lipoprotein through coated pits, and releasing lipoprotein in endocytic compartments before returning to the surface for further rounds of uptake. While many aspects of lipoprotein binding and receptor entry are well understood, it is less clear where, when, and how the LDLR releases lipoprotein. To address these questions, the current study employed quantitative fluorescence imaging to visualize the uptake and endosomal processing of LDL and the VLDL remnant β-VLDL. We find that lipoprotein release is rapid, with most release occurring prior to entry of lipoprotein into early endosomes. Published biochemical studies have identified two mechanisms of lipoprotein release: one that involves the β-propeller module of the LDLR and a second that is independent of this module. Quantitative imaging comparing uptake supported by the normal LDLR or by an LDLR variant incapable of β-propeller-dependent release shows that the β-propeller-independent process is sufficient for release for both lipoproteins but that the β-propeller process accelerates both LDL and β-VLDL release. Together these findings define where, when, and how lipoprotein release occurs and provide a generalizable methodology for visualizing endocytic handling in situ.  相似文献   

13.
Apolipoprotein B (apoB) is required for the hepatic assembly and secretion of very low density lipoprotein (VLDL). The LDL receptor (LDLR) promotes post-translational degradation of apoB and thereby reduces VLDL particle secretion. We investigated the trafficking pathways and ligand requirements for the LDLR to promote degradation of apoB. We first tested whether the LDLR drives apoB degradation in an endoplasmic reticulum (ER)-associated pathway. Primary mouse hepatocytes harboring an ethyl-nitrosourea-induced, ER-retained mutant LDLR secreted comparable levels of apoB with LDLR-null hepatocytes, despite reduced secretion from cells expressing the wild-type LDLR. Additionally, treatment of cells with brefeldin A inhibited LDLR-dependent degradation. However, this rescue was reversible, and degradation of apoB occurred upon removal of brefeldin A. To characterize the lipoprotein reuptake pathway of degradation, we employed an LDLR mutant defective in constitutive endocytosis and internalization of apoB. This mutant was as effective in reducing apoB secretion as the wild-type LDLR. However, the effect was dependent on apolipoprotein E (apoE) as only the wild-type LDLR, and not the endocytic mutant, reduced apoB secretion in apoE-null cells. Treatment with heparin rescued a pool of apoB in cells expressing the endocytic mutant, indicating that reuptake of VLDL via apoE still occurs with this mutant. Finally, an LDLR mutant defective in binding apoB but not apoE reduced apoB secretion in an apoE-dependent manner. Together, these data suggest that the LDLR directs apoB to degradation in a post-ER compartment. Furthermore, the reuptake mechanism of degradation occurs via internalization of apoB through a constitutive endocytic pathway and apoE through a ligand-dependent pathway.  相似文献   

14.
Binding of high-density lipophorin (HDLp) to a plasma membrane preparation of locust flight muscle tissue was studied using a radiolabelled ligand binding assay and ligand blotting techniques. Analysis at 33 degrees C of the concentration-dependent total binding of tritium-labelled HDLp ([3H]HDLp) to the membrane preparation revealed the presence of a single specific binding site with an equilibrium dissociation constant of Kd = 9 (+/- 2) X 10(-7) M and a maximal binding capacity of 84 (+/- 10) ng X (micrograms protein)-1. Unlabelled HDLp as well as unlabelled low-density lipophorin (LDLp) competed with [3H]HDLp for binding to the identified binding site. In addition, ligand blotting demonstrated that both HDLp and LDLp bind specifically to a 30-kDa protein in the plasma membrane preparation, suggesting the involvement of this protein in the binding of lipophorins to the isolated membranes. A possible relationship between the identified binding of lipophorins and the observed co-purification of lipophorin lipase activity with the plasma membranes is discussed.  相似文献   

15.
The ligand binding domain of the LDL receptor (LDLR) contains seven structurally homologous repeats. The fifth repeat (LR5) is considered to be the main module responsible for the binding of lipoproteins LDL and β‐VLDL. LR5, like the other homologous repeats, is around 40‐residue long and contains three disulfide bonds and a conserved cluster of negatively charged residues surrounding a hexacoordinated calcium ion. The calcium coordinating cage is formed by the backbone oxygens of W193 and D198, and side‐chain atoms of D196, D200, D206, and E207. The functionality of LDLR is closely associated with the presence of calcium. Magnesium ions are to some extent similar to calcium ions. However, they appear to be involved in different physiological events and their concentrations in extracellular and intracellular compartments are regulated by different mechanisms. Whether magnesium ions can play a role in the complex cycle of LDLR internalization and recycling is not known. We report here a detailed study of the interaction between LR5 and these two cations combining ITC, emission fluorescence, high resolution NMR, and MD simulations, at extracellular and endosomal pHs. Our results indicate that the conformational stability and internal dynamics of LR5 are strongly modulated by the specific bound cation. It appears that the difference in binding affinity for these cations is somewhat compensated by their different concentrations in late LDL‐associated endosomes. While the mildly acidic and calcium‐depleted environment in late endosomes has been proposed to contribute significantly to LDL release, the presence of magnesium might assist in efficient LDLR recycling. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Insect vitellogenin and lipophorin receptors (VgRs/LpRs) belong to the low-density lipoprotein receptor (LDLR) gene superfamily and play a critical role in oocyte development by mediating endocytosis of the major yolk protein precursors Vg and Lp, respectively. Precursor Vg and Lp are synthesized, in the majority of insects, extraovarially in the fat body and are internalized by competent oocytes through membrane-bound receptors (i.e., VgRs and LpRs, respectively). Structural analysis reveals that insect VgRs/LpRs and all other LDLR family receptors share a group of five structural domains: clusters of cysteine-rich repeats constituting the ligand-binding domain (LBD), epidermal growth factor (EGF)-precursor homology domain that mediates the acid-dependent dissociation of ligands, an O-linked sugar domain of unknown function, a transmembrane domain anchoring the receptor in the plasma membrane, and a cytoplasmic domain that mediates the clustering of the receptor into the coated pits. The sequence analysis indicates that insect VgRs harbor two LBDs with five repeats in the first and eight repeats in the second domain as compared to LpRs which have a single 8-repeat LBD. Moreover, the cytoplasmic domain of all insect VgRs contains a LI internalization signal instead of the NPXY motif found in LpRs and in the majority of other LDLR family receptors. The exception is that of Solenopsis invicta VgR, which also contains an NPXY motif in addition to LI signal. Cockroach VgRs still harbor another motif, NPTF, which is also believed to be a functional internalization signal. The expression studies clearly demonstrate that insect VgRs are ovary-bound receptors of the LDLR family as compared to LpRs, which are transcribed in a wide range of tissues including ovary, fat body, midgut, brain, testis, Malpighian tubules, and muscles. VgR/LpR mRNA and the protein were detected in the germarium, suggesting that the genes involved in receptor-endocytotic machinery are specifically expressed long before they are functionally required.  相似文献   

17.
The low-density lipoprotein (LDL) receptor (LDLR) binds to and internalizes lipoproteins that contain apolipoproteinB100 (apoB100) or apolipoproteinE (apoE). Internalization of the apoB100 lipoprotein ligand, LDL, requires the FDNPVY(807) sequence on the LDLR cytoplasmic domain, which binds to the endocytic machinery of coated pits. We show here that inactivation of the FDNPVY(807) sequence by mutation of Y807 to cysteine prevented the uptake of LDL; however, this mutation did not prevent LDLR-dependent uptake of the apoE lipoprotein ligand, beta-VLDL. Comparison of the surface localization of the LDLR-Y807C using LDLR-immunogold, LDL-gold and beta-VLDL-gold probes revealed enrichment of LDLR-Y807C-bound beta-VLDL in coated pits, suggesting that beta-VLDL binding promoted the internalization of the LDLR-Y807C. Consistent with this possibility, treatment with monensin, which traps internalized LDLR in endosomes, resulted in the loss of surface LDLR-Y807C only when beta-VLDL was present. Reconstitution experiments in which LDLR variants were introduced into LDLR-deficient cells showed that the HIC(818) sequence is involved in beta-VLDL uptake by the LDLR-Y807C. Together, these experiments demonstrate that the LDLR has a very low-density lipoprotein (VLDL)-induced, FDNPVY-independent internalization mechanism.  相似文献   

18.
Sorting nexins (SNXs) comprise a family of proteins characterized by the presence of a phox-homology domain, which mediates the association of these proteins with phosphoinositides and recruits them to specific membranes or vesicular structures within cells. Although only limited information about SNXs and their functions is available, they seem to be involved in membrane trafficking and sorting processes by directly binding to target proteins such as certain growth factor receptors. We show that SNX17 binds to the intracellular domain of some members of the low-density lipoprotein receptor (LDLR) family such as LDLR, VLDLR, ApoER2 and LDLR-related protein. SNX17 resides on distinct vesicular structures partially overlapping with endosomal compartments characterized by the presence of EEA1 and rab4. Using rhodamine-labeled LDL, it was possible to demonstrate that during endocytosis, LDL passes through SNX17-positive compartments. Functional studies on the LDLR pathway showed that SNX17 enhances the endocytosis rate of this receptor. Our results identify SNX17 as a novel adaptor protein for LDLR family members and define a novel mechanism for modulation of their endocytic activity.  相似文献   

19.
Lipid mobilization in long-distance flying insects has revealed a novel concept for lipid transport in the circulatory system during exercise. Similar to energy generation for sustained locomotion in mammals, the work accomplished by non-stop flight activity is powered by oxidation of free fatty acids (FFA) derived from endogenous reserves of triacylglycerol. The transport form of the lipid, however, is diacylglycerol (DAG), which is delivered to the flight muscles associated with lipoproteins. In the insect system, the multifunctional lipoprotein, high-density lipophorin (HDLp) is loaded with DAG while additionally, multiple copies of the exchangeable apolipoprotein, apoLp-III, associate with the expanding particle. As a result, lipid-enriched low-density lipophorin (LDLp) is formed. At the flight muscles, LDLp-carried DAG is hydrolyzed and FFA are imported into the muscle cells for energy generation. The depletion of DAG from LDLp results in the recovery of both HDLp and apoLp-III, which are reutilized for another cycle of DAG transport. A receptor for HDLp, identified as a novel member of the vertebrate low-density lipoprotein (LDL) receptor family, does not seem to be involved in the lipophorin shuttle mechanism operative during flight activity. In addition, endocytosis of HDLp mediated by the insect receptor does not seem to follow the classical mammalian LDL pathway.Many structural elements of the lipid mobilization system in insects are similar to those in mammals. Domain structures of apoLp-I and apoLp-II, the non-exchangeable apolipoprotein components of HDLp, are related to apoB100. ApoLp-III is a bundle of five amphipathic -helices that binds to a lipid surface very similar to the four-helix bundle of the N-terminal domain of human apoE. Despite these similarities, the functioning of the insect lipoprotein in energy transport during flight activity is intriguingly different, since the TAG-rich mammalian lipoproteins play no role as a carrier of mobilized lipids during exercise and besides, these lipoproteins are not functioning as a reusable shuttle for lipid transport. On the other hand, the deviant behavior of similar molecules in a different biological system may provide a useful alternative model for studying the molecular basis of processes related to human disorders and disease.  相似文献   

20.
Removal of cholesterol-containing particles from the circulation is mediated by the low-density lipoprotein (LDL) receptor. Upon ligand binding, the receptor-ligand complex is endocytosed, and the ligand is released. The important biological role of the LDL receptor (LDLR) has been highlighted by the identification of more than 400 LDLR mutations that are associated with familial hypercholesterolemia. The extracellular region of the LDLR is modular in nature and principally comprises multiple copies of ligand binding, epidermal growth factor-like (EGF), and YWTD-type domains. This report describes characterization of the calcium binding properties of the tandem pair of EGF domains. While only the C-terminal EGF module contains the consensus sequence associated with calcium binding, a noncanonical calcium binding site in the N-terminal domain has been revealed using solution NMR spectroscopy. The calcium dissociation constants for the N- and C-terminal sites have been measured under physiologically relevant pH and ionic strength conditions using a combination of solution NMR, intrinsic protein fluorescence, and chromophoric chelator methods to be approximately 50 microM and approximately 10-20 microM, respectively. Identification of the novel calcium binding motif in LDLR sequences from other species suggests that it may confer specificity within the LDLR gene family. Comparison of the K(d) for the C-terminal site with the calcium concentration in late vesicles indicates that the binding properties of this module may be tuned to titrate upon endocytosis of the LDL receptor-ligand complex, and thus calcium binding may play a role in the ligand dissociation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号