首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Three classes of particles have been identified in restrictive phi 29 suppressor-sensitive (sus) mutant infections of Bacillus subtilis, including DNA-containing heads or phage, prohead, and empty heads. Pulse-chase labeling experiments indicate that the prohead, the first particle assembled in 14-infected cells, is converted to DNA-filled heads and phi 29. In addition to the proteins Hd, P10, and F found in mature phi 29, the prohead contains a "core" protein P7 that exits as the prohead matures and appears to recycle during subsequent rounds of prohead assembly. Prohead-like structures accumulate in UV-irradiated cells and are present in restrictive infections with sus mutants of cistrons 9 and 16. Empty heads are observed only when infection results in the formation of DNA-containing particles; this and other evidence indicates that the empty heads are probably not true intermediates. Phage phi 29 assembly apparently occurs by a single pathway in which neck and tail components interact to stabilize the completed DNA-containing head.  相似文献   

2.
The activity of the DNA packaging adenosine triphosphatase (ATPase) of the Bacillus subtilis bacteriophage phi 29 is dependent upon prohead RNA. The 174 nucleotide viral-encoded RNA is positioned on the head-tail connector at the portal vertex of the phi 29 precursor shell (prohead). Here, the RNA interacts with the ATP-binding gene 16 product (gp16) to constitute the DNA-packaging ATPase and initiate DNA packaging in vitro. Both the prohead connector (gene 10 product, gp10) and gp16 may utilize an RNA recognition motif characteristic of a number of RNA-associated proteins, and the binding of gp16 by proheads shields the prohead RNA from RNase A. The ATPase activity of gp16 is stimulated fourfold by RNA and tenfold by proheads with RNA. RNA is needed continuously for the gp16/RNA ATPase activity and is essential for the gp16/prohead ATPase activity. The prohead, with its connector, RNA and associated gp16 in an assembly-regulated configuration, hydrolyzes ATP and drives phi 29 DNA translocation.  相似文献   

3.
Unraveling the structure and assembly of the DNA packaging ATPases of the tailed double-stranded DNA bacteriophages is integral to understanding the mechanism of DNA translocation. Here, the bacteriophage phi29 packaging ATPase gene product 16 (gp16) was overexpressed in soluble form in Bacillus subtilis (pSAC), purified to near homogeneity, and assembled to the phi29 precursor capsid (prohead) to produce a packaging motor intermediate that was fully active in in vitro DNA packaging. The formation of higher oligomers of the gp16 from monomers was concentration dependent and was characterized by analytical ultracentrifugation, gel filtration, and electron microscopy. The binding of multiple copies of gp16 to the prohead was dependent on the presence of an oligomer of 174- or 120-base prohead RNA (pRNA) fixed to the head-tail connector at the unique portal vertex of the prohead. The use of mutant pRNAs demonstrated that gp16 bound specifically to the A-helix of pRNA, and ribonuclease footprinting of gp16 on pRNA showed that gp16 protected the CC residues of the CCA bulge (residues 18-20) of the A-helix. The binding of gp16 to the prohead/pRNA to constitute the complete and active packaging motor was confirmed by cryo-electron microscopy three-dimensional reconstruction of the prohead/pRNA/gp16 complex. The complex was capable of supercoiling DNA-gp3 as observed previously for gp16 alone; therefore, the binding of gp16 to the prohead, rather than first to DNA-gp3, represents an alternative packaging motor assembly pathway.  相似文献   

4.
A set of mutants of Bacillus subtilis bacteriophage phi29 unable to synthesize the head fiber protein has been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Infectious phage are produced during restrictive infection. We have focused on mutant sus 8.5(900) because the mutation is suppressible by both the su(+3) and su(+44) hosts, and it can be mapped by three- and four-factor crosses. After restrictive infection with mutant sus 8.5(900), a fragment about 70% of the size of the normal fiber is produced as well as particles that are fast-sedimenting in sucrose gradients relative to phi29(+). These particles have the buoyant density of particles with the fibers removed and have the absolute plating efficiency of phi29(+). Fiber protein is absent from prohead as well as virion. A second set of mutants produces fiber protein with a slightly altered electrophoretic mobility. This type of fiber protein is either present or absent on both prohead and virion. A third class of mutants, typified by 914, produces a "normal" fiber, but a major head protein of altered electrophoretic mobility. After infection by this mutant, the fiber is absent from both prohead and virion, and the biological and physical properties of the 914(-) particle are similar to those of particles produced after infection of the su(-) host by sus8.5(900). These observations suggest that the head fiber is not an essential component of the prohead or virion and that the assembly process is efficient in the absence of fiber protein. Three- and four-factor genetic crosses have established the order sus8(769)-8(914)-sus8.5(900)-sus9(756) and indicate that cistrons 8 and 8.5 code for the major head protein and head fiber protein, respectively.  相似文献   

5.
The 174-base prohead RNA encoded by bacteriophage phi 29 of Bacillus subtilis, essential for packaging of the DNA-gp3 (DNA-gene product 3) complex, was expressed efficiently from the cloned gene. Computer programs for RNA structure analysis were used to fold hypothetical RNA mutants and thus to target mutagenesis of the RNA for studies of structure and function. Five mutants of the RNA were then produced by oligonucleotide-directed mutagenesis that were altered in the primary sequence at selected sites; two of these mutants were predicted to be altered in secondary structure from a model established previously by a phylogenetic analysis. The binding of the 32P end-labeled mutant RNAs to RNA-free proheads was comparable with that of the wild-type RNA. However, the capability of the mutant RNAs to reconstitute RNA-free proheads for DNA-gp3 packaging in the defined in vitro system and for assembly of phage in RNA-free extracts was variable, depending upon the alteration. Changes of highly conserved bases that retained the predicted secondary structure of the RNA model were tolerated to a much greater extent than changes predicted to alter the RNA secondary structure.  相似文献   

6.
C S Lee  P Guo 《Journal of virology》1995,69(8):5024-5032
The mechanism of viral capsid assembly is an intriguing problem because of its fundamental importance to research on synthetic viral particle vaccines, gene delivery systems, antiviral drugs, chimeric viruses displaying antigens or ligands, and the study of macromolecular interactions. The genes coding for the scaffolding (gp7), capsid (gp8), and portal vertex (gp10) proteins of the procapsid of bacteriophage phi 29 of Bacillus subtilis were expressed in Escherichia coli individually or in combination to study the mechanism of phi 29 procapsid assembly. When expressed alone, gp7 existed as a soluble monomer, gp8 aggregated into inclusion bodies, and gp10 formed the portal vertex. Circular dichroisin spectrum analysis indicated that gp7 is mainly composed of alpha helices. When two of the proteins were coexpressed, gp7 and gp8 assembled into procapsid-like particles with variable sizes and shapes, gp7 and gp10 formed unstable complexes, and gp8 and gp10 did not interact. These results suggested that gp7 served as a bridge for gp8 and gp10. When gp7, gp8, and gp10 were coexpressed, active procapsids were produced. Complementation of extracts containing one or two structural components could not produce active procapsids, indicating that no stable intermediates were formed. A dimeric gp7 concatemer promoted the solubility of gp8 but was inactive in the assembly of procapsid or procapsid-like particles. Mutation at the C terminus of gp7 prevented it from interacting with gp8, indicating that this part of gp7 may be important for interaction with gp8. Coexpression of the portal protein (gp20) of phage T4 with phi 29 gp7 and gp8 revealed the lack of interaction between T4 gp20 and phi 29 gp7 and/or gp8. Perturbing the ratio of the three structural proteins by duplicating one or another gene did not reduce the yield of potentially infectious particles. Changing of the order of gene arrangement in plasmids did not affect the formation of active procapsids significantly. These results indicate that phi 29 procapsid assembly deviated from the single-assembly pathway and that coexistence of all three components with a threshold concentration was required for procapsid assembly. The trimolecular interaction was so rapid that no true intermediates could be isolated. This finding is in accord with the result of capsid assembly obtained by the equilibrium model proposed by A. Zlotnick (J. Mol. Biol. 241:59-67, 1994).  相似文献   

7.
An unusual RNA molecule encoded by the Bacillus subtilis bacteriophage phi 29 is a structural component of the viral prohead and is required for the ATP-dependent packaging of DNA. Here we report a model of secondary structure for this prohead RNA developed from a phylogenetic analysis of the primary sequences of prohead RNAs of related phages. Twenty-nine phages related to phi 29 were found to produce prohead RNAs. These RNAs were analyzed by their ability to replace phi 29 RNA in in vitro phage assembly, by Northern blot hybridization with a probe complementary to phi 29 RNA, and by partial and complete sequence analyses. These analyses revealed four quite different sequences ranging in length from 161 to 174 residues. The secondary structure deduced from these sequences, in agreement with earlier observations, indicated that prohead RNA is organized into two domains. The larger 5'-domain (Domain I) is composed of 113-117 residues and contains four helices. Three of these helices appear to be organized into a central stem that is interrupted by two unpaired loops and the fourth helix and loop. The smaller 3'-domain (Domain II) is composed of 40-44 residues and consists of two helices. Domains I and II are separated by 8-13 unpaired residues. Nuclease cleavage occurs readily in this single-stranded joining region, and this cleavage allows the subsequent separation of the two RNA domains. The separated Domain I is fully active in DNA packaging in vitro. The functional significance and biological role of Domain II are unknown. The phylogenetic secondary structure model provides a basis for further analysis of the role of this RNA in bacteriophage morphogenesis.  相似文献   

8.
Role of RNA in bacteriophage phi 29 DNA packaging   总被引:3,自引:0,他引:3  
A novel bacteriophage phi 29 RNA of 174 nucleotides is essential for the in vitro packaging of the DNA-terminal protein complex into proheads. The RNA, bound to the prohead portal vertex (connector), participates in assembly and function of the DNA translocating ATPase and in recognition of the DNA left-end during the course of the packaging reaction. The RNA is present in related phages and varies widely in primary sequence, but its secondary structure, as deduced by phylogenetic analysis, is both highly conserved and unique among small RNAs.  相似文献   

9.
The DNA entrance vertex of the phage head is critical for prohead assembly and DNA packaging. A single structural protein comprises this dodecameric ring substructure of the prohead. Assembly of the phage T4 prohead occurs on the cytoplasmic membrane through a specific attachment at or near the gp20 DNA entrance vertex. An auxiliary head assembly gene product, gp40, was hypothesized to be involved in assembling the gp20 substructure. T4 genes 20, 40 and 20 + 40 were cloned into expression vectors under lambda pL promoter control. The corresponding T4 gene products were synthesized in high yield and were active as judged by their ability to complement the corresponding infecting T4 mutants in vivo. The cloned T4 gene 20 and gene 40 products were inserted into the cytoplasmic membrane as integral membrane proteins; however, gp20 was inserted into the membrane only when gp40 was also synthesized, whereas gp40 was inserted in the presence or absence of gp20. The gp20 insertion required a membrane potential, was not dependent upon the Escherichia coli groE gene, and assumed a defined membrane-spanning conformation, as judged by specific protease fragments protected by the membrane. The inserted gp20 structure could be probed by antibody binding and protein A-gold immunoelectron microscopy. The data suggest that a specific gp20-gp40-membrane insertion structure constitutes the T4 prohead assembly initiation complex.  相似文献   

10.
In double-stranded DNA bacteriophages the viral DNA is translocated into an empty prohead shell by a powerful ATP-driven motor assembled at the unique portal vertex. Terminases consisting of two to three packaging-related ATPase sites are central to the packaging mechanism. But the nature of the key translocating ATPase, stoichiometry of packaging motor, and basic mechanism of DNA encapsidation are poorly understood. A defined phage T4 packaging system consisting of only two components, proheads and large terminase protein (gp17; 70 kDa), is constructed. Using the large expanded prohead, this system packages any linear double-stranded DNA, including the 171 kb T4 DNA. The small terminase protein, gp16 (18 kDa), is not only not required but also strongly inhibitory. An ATPase activity is stimulated when proheads, gp17, and DNA are actively engaged in the DNA packaging mode. No packaging ATPase was stimulated by the N-terminal gp17-ATPase mutants, K166G (Walker A), D255E (Walker B), E256Q (catalytic carboxylate), D255E-E256D and D255E-E256Q (Walker B and catalytic carboxylate), nor could these sponsor DNA encapsidation. Experiments with the two gp17 domains, N-terminal ATPase domain and C-terminal nuclease domain, suggest that terminase association with the prohead portal and communication between the domains are essential for ATPase stimulation. These data for the first time established an energetic linkage between packaging stimulation of N-terminal ATPase and DNA translocation. A core pathway for the assembly of functional DNA translocating motor is proposed. Since the catalytic motifs of the N-terminal ATPase are highly conserved among >200 large terminase sequences analyzed, these may represent common themes in phage and herpes viral DNA translocation.  相似文献   

11.
Extracts obtained after restrictive infection of Bacillus subtilis with mutants in cistron 11 of bacteriophage phi 29 are complemented in vitro by extract donors of the lower collar protein (p11). Purified 11- heads, containing the major capsid protein (p8), the fiber protein (p8.5), the upper collar protein (p10), and the virus DNA, can be also complemented in vitro to produce infective virus. This result suggests that 11- heads are intermediates in phage phi 29 morphogenesis. The order of assembly of the lower collar protein p11 and the tail protein p9 was determined in vitro in two complementation steps. The results obtained indicate that the lower collar protein is assembled before the tail protein.  相似文献   

12.
The ATPase activity of the DNA packaging protein gp16 (gene product 16) of bacteriophage phi 29 was studied in the completely defined in-vitro assembly system. ATP was hydrolyzed to ADP and Pi in the packaging reaction that included purified proheads, DNA-gp3 and gp16. Approximately one molecule of ATP was used in the packaging of 2 base-pairs of phi 29 DNA, or 9 X 10(3) ATP molecules per virion. The hydrolysis of ATP by gp16 was both prohead and DNA-gp3 dependent. gp16 contained both the "A-type" and the "B-type" ATP-binding consensus sequences (Walker et al., 1982) and the predicted secondary structure for ATP binding. The A-type sequence of gp16 was "basic-hydrophobic region-G-X2-G-X-G-K-S-X7-hydrophobic", and similar sequences were found in the phage DNA packaging proteins gpA of lambda, gp19 of T7 and gp17 of T4. Having both the ATP-binding and potential magnesium-binding domains, all of these proteins probably function as ATPases and may have common prohead-binding capabilities. The phi 29 protein gp3, covalently bound to the DNA, may be analogous in function to proteins gpNul of lambda and gpl of phi 21 that bind the DNA.  相似文献   

13.
Phage phi29 deoxyribonucleic acid (DNA) replicated under conditions where semiconservative DNA production in Bacillus subtilis host cells was blocked with 6-(p-hydroxyphenylazo)-uracil (HPUra). The time of initiation of phi29 DNA replication was not affected by HPUra, and normal quantities of viable phage were produced in the presence of the inhibitor. Studies with conditional lethal mutants of phage phi29 demonstrated the usefulness of HPUra for detection of viral-specific DNA production.  相似文献   

14.
15.
16.
The gene B protein (gpB) of bacteriophage phi X174 is required for prohead assembly and is removed from prohead during phage maturation. Protease activity was observed in isolated prohead which specifically cleaved gpB. Cleavage of gpB produced two fragments that had apparent molecular weights of 12,300 and 3,700 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino-terminal sequencing of the fragments confirmed that they resulted from the cleavage of gpB and identified the cleavage site as an Arg-Arg at amino acids 76 to 77 of the 120-amino-acid protein. gpB-specific protease activity was observed in both phi X174-infected and uninfected Escherichia coli extracts. This protease activity was localized to the outer-membrane fraction of uninfected cells. Protease activities present in the outer membrane and in isolated prohead produced identical fragments and had the same protease inhibition profile. The gpB-specific activity in uninfected cells was induced by growth at 42 degrees C and was inhibited by the protease inhibitors, 1,10-phenanthroline, EDTA, and N-ethylmaleimide.  相似文献   

17.
Tailed bacteriophages and large eukaryotic viruses employ powerful molecular motors to translocate dsDNA into a preassembled capsid shell. The phage T4 motor is composed of a dodecameric portal and small and large terminase subunits assembled at the special head-tail connector vertex of the prohead. The motor pumps DNA through the portal channel, utilizing ATP hydrolysis energy provided by an ATPase present in the large terminase subunit. We report that the ATPase motors of terminases, helicases, translocating restriction enzymes, and protein translocases possess a common coupling motif (C-motif). Mutations in the phage T4 terminase C-motif lead to loss of stimulated ATPase and DNA translocation activities. Surprisingly, the mutants can catalyze at least one ATP hydrolysis event but are unable to turn over and reset the motor. This is the first report of a catalytic block in translocating ATPase motor after ATP hydrolysis occurred. We suggest that the C-motif is an ATP hydrolysis sensor, linking product release to mechanical motion. A novel terminase-driven mechanism is proposed for translocation of dsDNA in viruses.  相似文献   

18.
Fifty-four suppressible mutants of bacteriophage phi29 have been isolated with a variety of mutagens and assigned to eight complementation groups. Viral-specific protein synthesis in UV light-irradiated, nonsuppressing Bacillus subtilis 60084 was analyzed with exponential acrylamide gels. Four additional phi29 proteins which were undetected on ordinary acrylamide gels are reported in this paper. Five phage phi29 proteins have been unambiguously assigned to specific cistrons. Two cistrons had pleiotropic effects on viral protein synthesis. Mutants in cistrons I or II were unable to synthesize DNA in nonsuppressing bacteria. Mutants in cistron I were unable to attach viral chromosomes to the host cell membrane, and the protein responsible for this function has been identified. The other viral protein playing a role in phage phi29 DNA synthesis is also identified and assigned to cistron II. Mutants in cistron II can attach viral chromosomes to membrane, but cannot synthesize DNA in nonsuppressing bacteria.  相似文献   

19.
The protein composition of the Bacillus subtilis bacteriophage phi29 prohead and virion was determined by combustion of gel bands of (3)H-labeled proteins. Copy numbers of individual proteins were calculated relative to the 12 copies of the head-tail connector protein. The mean numbers of copies of the major capsid protein in the prohead and virion were 241 and 218, respectively, approaching the 235 copies determined previously by cryoelectron microscopy. The mean numbers of copies of the dimeric head fiber on the prohead and virion were 24 and 31, respectively, demonstrating partial occupancy of the 55 fiber binding sites. Measured copies of neck and tail proteins in the virion included 11 of the lower collar, 58 of the appendage, and 9 of the tail; if the true copies of these proteins are 12, 60, and 9, respectively, the entire neck and tail of phi29 has quasi-sixfold symmetry. The mass of the fiberless prohead with pRNA was about 14.2 MDa, and the mass of the prohead determined by scanning transmission electron microscopy was consistent with the biochemical data. The mass of the fiberless virion containing the 12.8-MDa DNA genome was about 30.4 MDa. A full complement of dimeric fibers on the prohead or virion would increase the mass of the particle by about 3.2 MDa. The data complement studies relating the structure of phi29 components to dynamic functions in morphogenesis and infection.  相似文献   

20.
V Benes  L Arnold  J Smrt  V Paces 《Gene》1989,75(2):341-347
The rightmost 2016 bp of the Bacillus subtilis phage phi 15 genome were sequenced. The nucleotide sequence was compared with the homologous regions of the related phages PZA and phi 29. There are six open reading frames (ORFs) in this region of the phi 15 genome; all of them are present in the PZA and phi 29 genomes. One of the ORFs was assigned to gene 17, which is involved in the replication of the phage DNA. Gene 17 has undergone reorganization during the evolution of this phage family. Comparison of the nucleotide sequence of its mRNA-like strand in phi 15, PZA and phi 29 showed that deletions in its central and 3'-end-proximal parts are tolerated and do not interfere with the gene 17 product function. It seems that the only portion of gene 17 that has to be conserved to encode the functional product is its 5'-end-proximal part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号