首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrobacterium tumefaciens carrying a disarmed Ti-plasmid vector containing a chimeric NPT-ll gene and a mutant acetolactate synthase gene (conferring resistance to the herbicide chlorsulfuron) from Arabidopsis was used to transform flax (Linum usitatissimum) hypocotyl tissue. Transgenic regenerants were recovered from the inoculated tissue and were tested for expression of the foreign genes by leaf callus assays on kanamycin and on chlorsulfuron. Transgenic plants were grown to maturity; selfed progeny were similarly tested to determine segregation pattern for the novel genes, and some were grown in chlorsulfuron containing soil. Lines from two major commercial cultivars express chlorsulfuron resistance in greenhouse tests.  相似文献   

2.
Inheritance of evolved glyphosate resistance in Lolium rigidum (Gaud.)   总被引:5,自引:0,他引:5  
Resistance to the non-selective herbicide, glyphosate, has evolved recently in several populations of Lolium rigidum (Gaud.). Based upon the observed pattern of inheritance, glyphosate resistant and susceptible populations are most probably homozygous for glyphosate resistance and susceptibility, respectively. When these populations were crossed and the F1 progeny treated with glyphosate, the dose response behavior was intermediate to that of the parental populations. This observation, coupled with an absence of a difference between reciprocal F1 populations, suggests that glyphosate resistance is inherited as an incompletely dominant nuclear-encoded trait. The segregation of resistance in F1×S backcrosses suggests that the major part of the observed resistance is conferred by a single gene, although at low glyphosate treatments other genes may also contribute to plant survival. It appears from this study that a single nuclear gene confers resistance to glyphosate in one population of L. rigidum. Received: 17 May 2000 / Accepted: 1 September 2000  相似文献   

3.
Summary The wild species Solanum integrifolium represents a source of pest and disease resistance genes for breeding strategies of the cultivated species Solanum melongena. Somatic hybridization via protoplast fusion between the two species may provide a valuable tool for transferring polygenic traits into the cultivated species. The availability of S.integrifolium cells carrying dominant selectable markers would facilitate the heterokaryon rescue. An appropriate methodology for in vitro culture and plant regeneration from leaf explants of S.integrifolium is reported. Efficient leaf-disk transformation via co-cultivation with Agrobacterium tumefaciens led to the regeneration of transformed plants carrying the reporter genes GUS and NPT-II. Transformed individuals were obtained through selection on kanamycin-containing medium. Stable genetic transformation was assessed by histochemical and enzymatic assays for GUS and NPT-II activity, by the ability of leaf disks to initiate callus on Km-containing medium, Southern blot analyses of the regenerated plants, and genetic analysis of their progenies. Selfed-seed progeny of individual transformed plants segregated seedlings capable to root and grow in selective condition, while untransformed progeny did not. Genetic analyses of progeny behaviour showed that the reporter gene NPT-II segregated as single as well as two independent Mendelian factors. In two cases an excess of kanamycin-sensitive seedlings was obtained, not fitting into any genetic hypothesis.Abbreviations MS Murashige and Skoog (1962) medium - NOS nopaline synthase - NPT-II neomycin phosphotransferase - GUS beta-glucuronidase - LB Luria and Bertani medium - KIN 6-furfurylaminopurine - BAP 6-benzylaminopurine - 2iP N6-(2-isopentyl)adenine - ZEA zeatin - TDZ Thidiazuron  相似文献   

4.
Hexaploid somatic hybrids resulting from mesophyll protoplast fusions between Solanum brevidens Phil., PI 218228, and Solanum tuberosum L., PI 203900 were tested for late blight resistance using two races of Phytophthora infestans Monte., de Bary. The S. tuberosum parent was a late blight differential possessing the R4 gene which confers resistance to race 0. The S. brevidens parent is resistant to potato leaf roll virus. Inoculations with both compatible (race 1.3.4.5) and incompatible (race 0) races of P. infestans clearly demonstrated the expression of the late blight resistance gene in all of the hybrid progeny tested. Most of the hybrids tested were also resistant to potato leaf roll virus (PLRV), indicating that the S. brevidens genes for PLRV resistance were present and expressed.  相似文献   

5.
Wang J  Li Y  Liang C 《Transgenic research》2008,17(3):417-424
The aroA-M1 encoding the mutant of 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) was introduced into the Brassica juncea genome by sonication-assisted, pollen-mediated transformation. The plasmid DNA and collected pollen grains were mixed in 0.3 mol/L sucrose solution and treated with mild ultrasonication. The treated pollen was then pollinated onto the oilseed stigmas after the stamens were removed artificially. Putative transgenic plants were obtained by screening germinating seeds on a medium containing glyphosate. Southern blot analysis of glyphosate-resistant plants indicated that the aroA-M1 gene had been integrated into the oilseed genome. Western blot analysis further confirmed that the EPSPS coded by aroA-M1 gene was expressed in transgenic plants. The transgenic plants exhibited increased resistance to glyphosate compared to untransformed plants. Some of those transgenic plants had considerably high resistance to glyphosate. The genetic analysis of T1 progeny further confirmed that the inheritance of the introduced genes followed the Mendelian rules. The results indicated that foreign genes can be transferred by pollen-mediated transformation combined with mild ultrasonication.  相似文献   

6.
Zhao FY  Li YF  Xu P 《Biotechnology letters》2006,28(15):1199-1207
The most economically significant Chinese cotton cultivar (Gossypium hirsutum L. cv. Zhongmian 35) was transformed via Agrobacterium tumefaciens-mediated DNA transfer. The aroA-M1 gene that confers resistance to the glyphosate was fused with a chloroplast-transit peptide of Arabidopsis thaliana 5-enolpyruvyl-3-phosphoshikimate synthase (ASP) and expressed in cotton plants under the control of a CaMV35S promoter. Transgenic plants were directly selected on medium containing glyphosate. Thirty-four independent transgenic lines were obtained after selection, giving a maximal 1.9% transformation frequency. The integration and expression of the aroA-M1 gene in T0 plants and T1 progeny were confirmed using DNA hybridization, Western blot and PCR techniques. An increased resistance of T0 and T1 transgenic plants towards glyphosate was also observed.  相似文献   

7.
In a previous study two haploid streptomycin-resistant clones of Nicotiana plumbaginifolia were isolated. The chromosome number of one of these clones has now been doubled through leaf-midvein culture and the resultant diploids were characterized genetically. Our results show that streptomycin resistance in this clone is conditioned by a recessive nuclear gene. Haploid protoplasts of this streptomycin-resistant mutant were selected for chlorate resistance. All clones obtained from the selection were deficient in nitrate reductase activity in addition to resistance to streptomycin. Genetic analysis of progeny of one of these clones revealed that the genes for streptomycin resistance and for the apoenzyme of nitrate reductase are unlinked.  相似文献   

8.
A glyphosate-tolerant variant of cultured tomato cells (Lycopersicon esculentum × L. peruvianum hybrid) was isolated via a single-step selection. Growth of the variant in suspension culture was essentially unaffected by 10 mM glyphosate, 100 times the concentration needed to significantly reduce the growth rate of wild type cells. When treated with glyphosate, variant cells accumulated much less shikimic acid than did the wild type cells. In analyses of 5-enolpyruvyl-shikimic acid 3-phosphate (EPSP) synthase activity in two separate experiments, the variant cells had 8 and 13 times higher specific activity than the wild type cells. The enzyme activities from the two types of cells were equally inhibited by glyphosate. These results suggest that the glyphosate tolerance of the variant results from overaccumulation of a glyphosate-sensitive EPSP synthase. Attempts to regenerate fertile plants from the variant cells were unsuccessful, but abnormal shoots were regenerated and callus from leaves of these shoots retained the tolerance to glyphosate.  相似文献   

9.
Hypocotyl protoplasts of German winter oilseed, rape (Brassica napus) lines of double-low quality were transformed using Agrobacterium tumefaciens harbouring pGV 38501103 neo (dimer) containing chimaeric kanamycin resistance reporter genes. Transformed protoplasts were regenerated to fertile and phenotypically normal plants. Transformation was confirmed by kanamycin resistance, nopaline production, neomycinphosphotransferase II activity, and Southern blot hybridization. Seed progeny from self-pollinated transformants expressed the introduced kanamycin resistance as a Mendelian trait.Abbreviations BAP 6-benzylaminopurine - Cf ClaforanR - 2.4D 2,4-dichlorophenoxy acetic acid - Km kanamycin - MS Murashige and Skoog (1962) - NAA -naphthalene acetic acid - NPT II neomycinphosphotransferase - npt II neomycinphosphotransferase II gene - NOS nopaline synthase - nos nopaline synthase gene - ocs octopine synthase gene - IAA indole-3-acetic acid  相似文献   

10.
Zhou M  Xu H  Wei X  Ye Z  Wei L  Gong W  Wang Y  Zhu Z 《Plant physiology》2006,140(1):184-195
5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) is a key enzyme in the shikimate pathway and is targeted by the wide-spectrum herbicide glyphosate. Here, we describe the use of a selection system based on directed evolution to select glyphosate-resistant mutants of EPSPS. Using this system, the rice (Oryza sativa) EPSPS gene, mutagenized by Error-Prone polymerase chain reaction, was introduced into an EPSPS-deficient Escherichia coli strain, AB2829, and transformants were selected on minimal medium by functional complementation. Three mutants with high glyphosate resistance were identified in three independent glyphosate selection experiments. Each mutant contained a C(317)-->T transition within the EPSPS coding sequence, causing a change of proline-106 to leucine (P106L) in the protein sequence. Glyphosate resistance assays indicated a 3-fold increase in glyphosate resistance of E. coli expressing the P106L mutant. Affinity of the P106L mutant for glyphosate and phosphoenolpyruvate was decreased about 70-fold and 4.6-fold, respectively, compared to wild-type EPSPS. Analysis based on a kinetic model demonstrates that the P106L mutant has a high glyphosate resistance while retaining relatively high catalytic efficiency at low phosphoenolpyruvate concentrations. A mathematical model derived from the Michaelis-Menten equation was used to characterize the effect of expression level and selection conditions on kinetic (Ki and Km) variation of the mutants. This prediction suggests that the expression level is an important aspect of the selection system. Furthermore, glyphosate resistance of the P106L mutant was confirmed in transgenic tobacco (Nicotiana tabacum), demonstrating the potential for using the P106L mutant in transgenic crops.  相似文献   

11.
The use of resistant varieties is an important tool in the management of late blight, which threatens potato production worldwide. Clone MaR8 from the Mastenbroek differential set has strong resistance to Phytophthora infestans, the causal agent of late blight. The F1 progeny of a cross between the susceptible cultivar Concurrent and MaR8 were assessed for late blight resistance in field trials inoculated with an incompatible P. infestans isolate. A 1:1 segregation of resistance and susceptibility was observed, indicating that the resistance gene referred to as R8, is present in simplex in the tetraploid MaR8 clone. NBS profiling and successive marker sequence comparison to the potato and tomato genome draft sequences, suggested that the R8 gene is located on the long arm of chromosome IX and not on the short arm of chromosome XI as was suggested previously. Analysis of SSR, CAPS and SCAR markers confirmed that R8 was on the distal end of the long arm of chromosome IX. R gene cluster directed profiling markers CDPSw54 and CDPSw55 flanked the R8 gene at the distal end (1 cM). CDPTm21-1, CDPTm21-2 and CDPTm22 flanked the R8 gene on the proximal side (2 cM). An additional co-segregating marker (CDPHero3) was found, which will be useful for marker assisted breeding and map based cloning of R8.  相似文献   

12.
Selection of bacterial wilt-resistant tomato through tissue culture   总被引:6,自引:0,他引:6  
Bacterial wilt-resistant plants were obtained using a tomato tissue culture system. A virulent strain ofPseudomonas solanacearum secreted some toxic substances into the culture medium. Leaf explant-derived callus tissues which were resistant to these toxic substances in the culture filtrate were selectedin vitro and regenerated into plants. These plants expressed bacterial wilt resistance at the early infection stage to suppress or delay the growth of the inoculated bacteria. On the other hand, complete resistance was obtained in self-pollinated progeny of regenerants derived from non-selected callus tissues. These plants showed a high resistance when inoculated with this strain, and were also resistant when planted in a field infested with a different strain of the pathogen.  相似文献   

13.
Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.  相似文献   

14.
Escherichia coli cells and tobacco (cv. Xanthi) plants transformed with the hygromycin B phosphotransferase gene were able to grow in culture medium containing glyphosate at 2.0 mM. The growth of tobacco calli in media containing increasing glyphosate concentrations was measured. The ID50 for glyphosate was 1.70±0.03 mM for hygromycin-B resistant plants, and 0.45±0.02 mM for control plants. Regenerated plants and progeny selected for resistance to hygromycin B were tested for glyphosate tolerance by spraying them with Faena herbicide (formulated glyphosate with surfactant) at a dose equal to 0.24 kg/ha. This was two times the dose required to kill 100 percent of the control plants. Phosphotransferase activity was measured in the extracts of the transformed leaves by the incorporation of 32P from [–32P]ATP and it was observed that hygromycin B phosphotransferase was able to recognize the molecule of glyphosate as substrate.Abbreviations (Hyg) Hygromycin - (Km) Kanamycin - (Glp) Glyphosate - (Sarc) Sarcosine - (AMPA) Aminomethylphosphonic acid  相似文献   

15.
Glyphosate herbicide-resistant crop plants, introduced commercially in 1994, now represent approximately 85% of the land area devoted to transgenic crops. Herbicide resistance in commercial glyphosate-resistant crops is due to expression of a variant form of a bacterial 5-enolpyruvylshikimate-3-phosphate synthase with a significantly decreased binding affinity for glyphosate at the target site of the enzyme. As a result of widespread and recurrent glyphosate use, often as the only herbicide used for weed management, increasing numbers of weedy species have evolved resistance to glyphosate. Weed resistance is most often due to changes in herbicide translocation patterns, presumed to be through the activity of an as yet unidentified membrane transporter in plants. To provide insight into glyphosate resistance mechanisms and identify a potential glyphosate transporter, we screened Escherichia coli genomic DNA for alternate sources of glyphosate resistance genes. Our search identified a single non-target gene that, when overexpressed in E. coli and Pseudomonas, confers high-level glyphosate resistance. The gene, yhhS, encodes a predicted membrane transporter of the major facilitator superfamily involved in drug efflux. We report here that an alternative mode of glyphosate resistance in E. coli is due to reduced accumulation of glyphosate in cells that overexpress this membrane transporter and discuss the implications for potential alternative resistance mechanisms in other organisms such as plants.  相似文献   

16.
Tobacco mosaic virus-resistant tobacco was selected in vitro using callus tissues induced from axillary buds of systemically infected tobacco plants. Callus lines in which the virus was continuously multiplying were first isolated and redifferentiated into shoots. By the procedure, non-diseased, healthy shoots were successfully isolated from diseased shoots, which showed typical mosaic symptoms of the virus, and regenerated into intact plants.These regenerated plants showed resistance to virus inoculation, and selfed progeny of virus-resistant regenerants segregated the resistance and susceptibility according to the Mendelian system.  相似文献   

17.
Methods for the detection of bacterial chitinase activity were compared. The soluble substrate p-nitrophenyl-ß-D-N,N diacetyl chitobiose (NDC) was more sensitive in detecting purified chitinase of Serratia marcescens than assays measuring degradation of a solid chitin substrate by either radiochemical or colorimetric means. A chimaeric gene containing a S. marcescens chitinase gene under control of a Cauliflower Mosaic Virus 35S promoter and nopaline synthase terminator sequences was constructed and transferred to tobacco tumour cells using Agrobacterium tumefaciens as a vector. The rate of hydrolysis of the NDC substrate was three fold greater with cell extracts of both pooled and individual tumours carrying the chimaeric chitinase gene than in control tumours. It was calculated from the enzyme activity data that the foreign bacterial chitinase contributed 0.1% of the total soluble protein in transformed plant cells. This level of expression of this gene was not detectable using the less sensitive assays employing solid chitin substrate. These results indicate that NDC is a preferable substrate for assaying bacterial chitinase in transformed plant cells.  相似文献   

18.
Plastid transformation (transplastomic) technology has several potential advantages for biotechnological applications including the use of unmodified prokaryotic genes for engineering, potential high-level gene expression and gene containment due to maternal inheritance in most crop plants. However, the efficacy of a plastid-encoded trait may change depending on plastid number and tissue type. We report a feasibility study in tobacco plastids to achieve high-level herbicide resistance in both vegetative tissues and reproductive organs. We chose to test glyphosate resistance via over-expression in plastids of tolerant forms of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Immunological, enzymatic and whole-plant assays were used to prove the efficacy of three different prokaryotic (Achromobacter, Agrobacterium and Bacillus) EPSPS genes. Using the Agrobacterium strain CP4 EPSPS as a model we identified translational control sequences that direct a 10,000-fold range of protein accumulation (to >10% total soluble protein in leaves). Plastid-expressed EPSPS could provide very high levels of glyphosate resistance, although levels of resistance in vegetative and reproductive tissues differed depending on EPSPS accumulation levels, and correlated to the plastid abundance in these tissues. Paradoxically, higher levels of plastid-expressed EPSPS protein accumulation were apparently required for efficacy than from a similar nuclear-encoded gene. Nevertheless, the demonstration of high-level glyphosate tolerance in vegetative and reproductive organs using transplastomic technology provides a necessary step for transfer of this technology to other crop species.  相似文献   

19.
20.
Herbicide-resistant Palmer amaranth is a widespread issue in row-crop production in the Midsouthern US. Palmer amaranth is commonly found on roadside habitats in this region, but little is known on the degree of herbicide resistance in these populations. Herbicide resistance in roadside Palmer amaranth populations can represent the spread of an adaptive trait across a selective landscape. A large-scale survey was carried out in the Mississippi Delta region of eastern Arkansas to document the level of resistance in roadside Palmer amaranth populations to pyrithiobac and glyphosate, two important herbicides with broad history of use in the region. A total of 215 Palmer amaranth populations collected across 500 random survey sites were used in the evaluations. About 89 and 73% of the surveyed populations showed >90% survival to pyrithiobac and glyphosate, respectively. Further, only 3% of the populations were completely susceptible to glyphosate, while none of the populations was completely controlled by pyrithiobac. Among the 215 populations evaluated, 209 populations showed multiple resistance to both pyrithiobac and glyphosate at varying degrees. Dose-response assays confirmed the presence of high levels of herbicide resistance in the five selected populations (≥ 25-fold compared to a susceptible standard). Results demonstrate the prevalence of multiple-herbicide resistance in roadside Palmer amaranth populations in this region. Growers should be vigilant of Palmer amaranth infestation in roadsides adjacent to their fields and implement appropriate control measures to prevent likely spread of herbicide resistance into their fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号