首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducible nitric oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. It is reported that iNOS is degraded mainly by the ubiquitin-proteasome pathway in RAW264.7 cells and human embryonic kidney (HEK) 293 cells. In this study, we showed that iNOS was ubiquitinated and degraded dependent on CHIP (COOH terminus of heat shock protein 70-interacting protein), a chaperone-dependent ubiquitin ligase. The results from overexpression and RNAi experiments demonstrated that CHIP decreased the protein level of iNOS, shortened the half-life of iNOS and attenuated the production of NO. Furthermore, CHIP promoted ubiquitination and proteasomal degradation of iNOS by associating with iNOS. These results suggest that CHIP plays an important role in regulation iNOS activity.  相似文献   

2.
Dual leucine zipper-bearing kinase (DLK) is a mixed-lineage kinase family member that acts as an upstream activator of the c-Jun N-terminal kinases. As opposed to other components of this pathway, very little is currently known regarding the mechanisms by which DLK is regulated in mammalian cells. Here we identify the stress-inducible heat shock protein 70 (Hsp70) as a negative regulator of DLK expression and activity. Support for this notion derives from data showing that Hsp70 induces the proteasomal degradation of DLK when both proteins are co-expressed in COS-7 cells. Hsp70-mediated degradation occurs with expression of wild-type DLK, which functions as a constitutively activated protein in these cells but not kinase-defective DLK. Interestingly, the Hsp70 co-chaperone CHIP, an E3 ubiquitin ligase, seems to be indispensable for this process since Hsp70 failed to induce DLK degradation in COS-7 cells expressing a CHIP mutant unable to catalyze ubiquitination or in immortalized fibroblasts derived from CHIP knock-out mice. Consistent with these data, we have found that endogenous DLK becomes sensitive to CHIP-dependent proteasomal degradation when it is activated by okadaic acid and that down-regulation of Hsp70 levels with an Hsp70 antisense attenuates this sensitivity. Therefore, our studies suggest that Hsp70 contributes to the regulation of activated DLK by promoting its CHIP-dependent proteasomal degradation.  相似文献   

3.
Death-associated protein kinase (DAPK) has been found associated with HSP90, and inhibition of HSP90 with 17-alkylamino-17-demethoxygeldanamycin reduced expression of DAPK. These results were extended to determine whether the degradation of DAPK in the absence of HSP90 activity is dependent on the ubiquitin-proteasome pathway. Our results show that treatment of cells with geldanamycin (GA) leads to degradation of DAPK, and this degradation is attenuated by the proteasome inhibitor, lactacystin. GA-induced DAPK degradation is also dependent on phosphorylation of DAPK at Ser(308), and the cellular levels of phospho(Ser(308))-DAPK dramatically increase in response to GA treatment. Expression of two distinct ubiquitin E3 ligases, carboxyl terminus of HSC70-interacting protein (CHIP) or DIP1/Mib1, enhanced DAPK degradation, and conversely, short interfering RNA depletion of either CHIP or DIP1/Mib1 attenuated DAPK degradation. In vitro ubiquitination assays confirmed that DAPK is targeted for ubiquitination by both CHIP and DIP. Consistent with these results, DAPK is found in two distinct immune complexes, one containing HSP90 and CHIP and a second complex containing only DIP1/Mib. Collectively, these results indicate that strict modulation of DAPK activities is critical for regulation of apoptosis and cellular homeostasis.  相似文献   

4.
5.
Transforming growth factor-β (TGF-β) signaling plays an important role in regulation of a wide variety of cellular processes. Canonical TGF-β signaling is mediated by Smads which were further regulated by several factors. We previously reported that E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70-interacting protein, also named Stub1) controlled the sensitivity of TGF-β signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. Here, we present evidence that Hsp70 and Hsp90 regulate the complex formation of Smad3/CHIP. Furthermore, we observed that over-expressed Hsp70 or inhibition of Hsp90 by geldanamycin (GA) leads to facilitated CHIP-induced ubiquitination and degradation of Smad3, which finally enhances TGF-β signaling. In contrast, over-expressed Hsp90 antagonizes CHIP mediated Smad3 ubiquitination and degradation and desensitizes cells in response to TGF-β signaling. Taken together, our data reveal an opposite role of Hsp70 and Hsp90 in regulating TGF-β signaling by implicating CHIP-mediated Smad3 ubiquitination and degradation. This study provides a new insight into understanding the regulation of the TGF-β signaling by chaperones.  相似文献   

6.
It is established that neuronal nitric-oxide synthase (nNOS) is ubiquitylated and proteasomally degraded. The proteasomal degradation of nNOS is enhanced by suicide inactivation of nNOS or by the inhibition of hsp90, which is a chaperone found in a native complex with nNOS. In the current study, we have examined whether CHIP, a chaperone-dependent E3 ubiquitin-protein isopeptide ligase that is known to ubiquitylate other hsp90-chaperoned proteins, could act as an ubiquitin ligase for nNOS. We found with the use of HEK293T or COS-7 cells and transient transfection methods that CHIP overexpression causes a decrease in immunodetectable levels of nNOS. The extent of the loss of nNOS is dependent on the amount of CHIP cDNA used for transfection. Lactacystin (10 microM), a selective proteasome inhibitor, attenuates the loss of nNOS in part by causing the nNOS to be found in a detergent-insoluble form. Immunoprecipitation of the nNOS and subsequent Western blotting with an anti-ubiquitin IgG shows an increase in nNOS-ubiquitin conjugates because of CHIP. Moreover, incubation of nNOS with a purified system containing an E1 ubiquitin-activating enzyme, an E2 ubiquitin carrier protein conjugating enzyme (UbcH5a), CHIP, glutathione S-transferase-tagged ubiquitin, and an ATP-generating system leads to the ubiquitylation of nNOS. The addition of purified hsp70 and hsp40 to this in vitro system greatly enhances the amount of nNOS-ubiquitin conjugates, suggesting that CHIP is an E3 ligase for nNOS whose action is facilitated by (and possibly requires) its interaction with nNOS-bound hsp70.  相似文献   

7.
The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [35S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL.  相似文献   

8.
The E3 ubiquitin ligase CHIP is involved in protein triage, serving as a co-chaperone for refolding as well as catalyzing ubiquitination of substrates. CHIP functions with both the stress induced Hsp70 and constitutive Hsc70 chaperones, and also plays a role in maintaining their balance in the cell. When the chaperones carry no client proteins, CHIP catalyzes their polyubiquitination and subsequent proteasomal degradation. Although Hsp70 and Hsc70 are highly homologous in sequence and similar in structure, CHIP mediated ubiquitination promotes degradation of Hsp70 with a higher efficiency than for Hsc70. Here we report a detailed and systematic investigation to characterize if there are significant differences in the CHIP in vitro ubiquitination of human Hsp70 and Hsc70. Proteomic analysis by mass spectrometry revealed that only 12 of 39 detectable lysine residues were ubiquitinated by UbcH5a in Hsp70 and only 16 of 45 in Hsc70. The only conserved lysine identified as ubiquitinated in one but not the other heat shock protein was K159 in Hsc70. Ubiquitination assays with K-R ubiquitin mutants showed that multiple Ub chain types are formed and that the distribution is different for Hsp70 versus Hsc70. CHIP ubiquitination with the E2 enzyme Ube2W is predominantly directed to the N-terminal amine of the substrate; however, some internal lysine modifications were also detected. Together, our results provide a detailed view of the differences in CHIP ubiquitination of these two very similar proteins, and show a clear example where substantial differences in ubiquitination can be generated by a single E3 ligase in response to not only different E2 enzymes but subtle differences in the substrate.  相似文献   

9.
Runx1 is a key factor in the generation and maintenance of hematopoietic stem cells. Improper expression and mutations in Runx1 are frequently implicated in human leukemia. Here, we report that CHIP, the carboxyl terminus of Hsc70-interacting protein, also named Stub1, physically interacts with Runx1 through the TPR and Charged domains in the nucleus. Over-expression of CHIP directly induced Runx1 ubiquitination and degradation through the ubiquitin-proteasome pathway. Interestingly, we found that CHIP-mediated degradation of Runx1 is independent of the molecular chaperone Hsp70/90. Taken together, we propose that CHIP serves as an E3 ubiquitin ligase that regulates Runx1 protein stability via an ubiquitination and degradation mechanism that is independent of Hsp70/90.  相似文献   

10.
Chaperone functions of the E3 ubiquitin ligase CHIP   总被引:3,自引:0,他引:3  
The carboxyl terminus of the Hsc70-interacting protein (CHIP) is an Hsp70 co-chaperone as well as an E3 ubiquitin ligase that protects cells from proteotoxic stress. The abilities of CHIP to interact with Hsp70 and function as a ubiquitin ligase place CHIP at a pivotal position in the protein quality control system, where its entrance into Hsp70-substrate complexes partitions nonnative proteins toward degradation. However, the manner by which Hsp70 substrates are selected for ubiquitination by CHIP is not well understood. We discovered that CHIP possesses an intrinsic chaperone activity that enables it to selectively recognize and bind nonnative proteins. Interestingly, the chaperone function of CHIP is temperature-sensitive and is dramatically enhanced by heat stress. The ability of CHIP to recognize nonnative protein structure may aid in selection of slow folding or misfolded polypeptides for ubiquitination.  相似文献   

11.
The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its half-life. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.  相似文献   

12.
Cellular protein quality control involves a close interplay between molecular chaperones and the ubiquitin/proteasome system. We recently identified a degradation pathway, on which the chaperone Hsc70 delivers chaperone clients, such as misfolded forms of the cystic fibrosis transmembrane conductance regulator (CFTR), to the proteasome. The cochaperone CHIP is of central importance on this pathway, because it acts as a chaperone-associated ubiquitin ligase. CHIP mediates the attachment of a ubiquitin chain to a chaperone-presented client protein and thereby stimulates its proteasomal degradation. To gain further insight into the function of CHIP we isolated CHIP-containing protein complexes from human HeLa cells and analyzed their composition by peptide mass fingerprinting. We identified the Hsc70 cochaperone BAG-2 as a main component of CHIP complexes. BAG-2 inhibits the ubiquitin ligase activity of CHIP by abrogating the CHIP/E2 cooperation and stimulates the chaperone-assisted maturation of CFTR. The activity of BAG-2 resembles that of the previously characterized Hsc70 cochaperone and CHIP inhibitor HspBP1. The presented data therefore establish multiple mechanisms to control the destructive activity of the CHIP ubiquitin ligase in human cells.  相似文献   

13.
McKusick–Kaufman syndrome (MKKS) is a recessively inherited human genetic disease characterized by several developmental anomalies. Mutations in the MKKS gene also cause Bardet–Biedl syndrome (BBS), a genetically heterogeneous disorder with pleiotropic symptoms. However, little is known about how MKKS mutations lead to disease. Here, we show that disease-causing mutants of MKKS are rapidly degraded via the ubiquitin–proteasome pathway in a manner dependent on HSC70 interacting protein (CHIP), a chaperone-dependent ubiquitin ligase. Although wild-type MKKS quickly shuttles between the centrosome and cytosol in living cells, the rapidly degraded mutants often fail to localize to the centrosome. Inhibition of proteasome functions causes MKKS mutants to form insoluble structures at the centrosome. CHIP and partner chaperones, including heat-shock protein (HSP)70/heat-shock cognate 70 and HSP90, strongly recognize MKKS mutants. Modest knockdown of CHIP by RNA interference moderately inhibited the degradation of MKKS mutants. These results indicate that the MKKS mutants have an abnormal conformation and that chaperone-dependent degradation mediated by CHIP is a key feature of MKKS/BBS diseases.  相似文献   

14.
15.
The dbl proto-oncogene product is a prototype of a growing family of guanine nucleotide exchange factors (GEFs) that stimulate the activation of small GTP-binding proteins from the Rho family. Mutations that result in the loss of proto-Dbl's amino terminus produce a variant with constitutive GEF activity and high oncogenic potential. Here, we show that proto-Dbl is a short-lived protein that is kept at low levels in cells by efficient ubiquitination and degradation. The cellular fate of proto-Dbl is regulated by interactions with the chaperones Hsc70 and Hsp90 and the protein-ubiquitin ligase CHIP, and these interactions are mediated by the spectrin domain of proto-Dbl. We show that CHIP is the E3 ligase responsible for ubiquitination and proteasomal degradation of proto-Dbl, while Hsp90 functions to stabilize the protein. Onco-Dbl, lacking the spectrin homology domain, cannot bind these regulators and therefore accumulates in cells at high levels, leading to persistent stimulation of its downstream signaling pathways.  相似文献   

16.
Ubiquitination and degradation of mutant p53   总被引:2,自引:0,他引:2  
While wild-type p53 is normally a rapidly degraded protein, mutant forms of p53 are stabilized and accumulate to high levels in tumor cells. In this study, we show that mutant and wild-type p53 proteins are ubiquitinated and degraded through overlapping but distinct pathways. While Mdm2 can drive the degradation of both mutant and wild-type p53, our data suggest that the ability of Mdm2 to function as a ubiquitin ligase is less important in the degradation of mutant p53, which is heavily ubiquitinated in an Mdm2-independent manner. Our initial attempts to identify ubiquitin ligases that are responsible for the ubiquitination of mutant p53 have suggested a role for the chaperone-associated ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein), although other unidentified ubiquitin ligases also appear to contribute. The contribution of Mdm2 to the degradation of mutant p53 may reflect the ability of Mdm2 to deliver the ubiquitinated mutant p53 to the proteasome.  相似文献   

17.
18.
BACKGROUND: Molecular chaperones recognize nonnative proteins and orchestrate cellular folding processes in conjunction with regulatory cofactors. However, not every attempt to fold a protein is successful, and misfolded proteins can be directed to the cellular degradation machinery for destruction. Molecular mechanisms underlying the cooperation of molecular chaperones with the degradation machinery remain largely enigmatic so far. RESULTS: By characterizing the chaperone cofactors BAG-1 and CHIP, we gained insight into the cooperation of the molecular chaperones Hsc70 and Hsp70 with the ubiquitin/proteasome system, a major system for protein degradation in eukaryotic cells. The cofactor CHIP acts as a ubiquitin ligase in the ubiquitination of chaperone substrates such as the raf-1 protein kinase and the glucocorticoid hormone receptor. During targeting of signaling molecules to the proteasome, CHIP may cooperate with BAG-1, a ubiquitin domain protein previously shown to act as a coupling factor between Hsc/Hsp70 and the proteasome. BAG-1 directly interacts with CHIP; it accepts substrates from Hsc/Hsp70 and presents associated proteins to the CHIP ubiquitin conjugation machinery. Consequently, BAG-1 promotes CHIP-induced degradation of the glucocorticoid hormone receptor in vivo. CONCLUSIONS: The ubiquitin domain protein BAG-1 and the CHIP ubiquitin ligase can cooperate to shift the activity of the Hsc/Hsp70 chaperone system from protein folding to degradation. The chaperone cofactors thus act as key regulators to influence protein quality control.  相似文献   

19.
UBR1 and UBR2 are N-recognin ubiquitin ligases that function in the N-end rule degradation pathway. In yeast, the UBR1 homologue also functions by N-end rule independent means to promote degradation of misfolded proteins generated by treatment of cells with geldanamycin, a small molecule inhibitor of Hsp90. Based on these studies we examined the role of mammalian UBR1 and UBR2 in the degradation of protein kinase clients upon Hsp90 inhibition. Our findings show that protein kinase clients Akt and Cdk4 are still degraded in mouse Ubr1(-)/(-) cells treated with geldanamycin, but that their levels recover much more rapidly than is found in wild type cells. These findings correlate with increased induction of Hsp90 expression in the Ubr1(-)/(-) cells compared with wild type cells. We also observed a reduction of UBR1 protein levels in geldanamycin-treated mouse embryonic fibroblasts and human breast cancer cells, suggesting that UBR1 is an Hsp90 client. Further studies revealed a functional overlap between UBR1 and the quality control ubiquitin ligase, CHIP. Our findings show that UBR1 function is conserved in controlling the levels of Hsp90-dependent protein kinases upon geldanamycin treatment, and suggest that it plays a role in determining the sensitivity of cancer cells to the chemotherapeutic effects of Hsp90 inhibitors.  相似文献   

20.
We investigated the molecular mechanism underlying curcumin depletion of ErbB2 protein. Curcumin induced ErbB2 ubiquitination but pretreatment with proteasome inhibitors neither prevented curcumin depletion of ErbB2 protein nor further accumulated ubiquitinated ErbB2. Curcumin increased association of endogenous and ectopically expressed CHIP, a chaperone-dependent ubiquitin ligase, with ErbB2. In COS7 cells cotransfected with ErbB2 and various CHIP plasmids followed by curcumin treatment, CHIP-H260Q (a mutant lacking ubiquitin ligase activity) promoted less curcumin-induced ErbB2 ubiquitination than did wild type CHIP, and CHIP-K30A (a mutant incapable of binding Hsp90 and Hsp70) neither associated with ErbB2 nor promoted its ubiquitination. ErbB2 mutants lacking the kinase domain failed to associate with CHIP and were completely resistant to ubiquitination and depletion induced by curcumin. Finally, curcumin's Michael reaction acceptor functionality was required for both covalent association of curcumin with ErbB2 and curcumin-mediated ErbB2 depletion. These data suggest (1) that CHIP-dependent ErbB2 ubiquitination is implicated in curcumin-stimulated ErbB2 depletion, and (2) that covalent modification of ErbB2 by curcumin is the proximal signal which initiates this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号