首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Alcohol-inducible cytochrome P450 2E1 (CYP2E1) has the most rapid turnover of any member of this large family of membrane-bound oxygenases, and its degradation rate is altered profoundly by various substrates, such as ethanol and CCl(4). CYP2E1 is degraded by the ubiquitin-proteasome pathway, and because the hsp90/hsp70-based chaperone machinery is often involved in maintaining the balance between protein integrity and degradation by this pathway, we have asked whether CYP2E1 is regulated by the chaperone machinery. We show here that treatment of transformed human skin fibroblasts stably expressing CYP2E1 with the hsp90 inhibitor radicicol results in CYP2E1 degradation that is inhibited by the proteasome inhibitor lactacystin. Immunoadsorption of hsp90 from cytosol of HEK cells expressing the truncated CYP2E1(Delta3-29) yields coadsorption of CYP2E1(Delta3-29). Cotransfection of HEK cells with both the truncated CYP2E1 and the hsp70-dependent E3 ubiquitin ligase CHIP results in CYP2E1(Delta3-29) degradation, and CYP2E1(Delta3-29) co-immunoadsorbs with myc-CHIP from cytosol of cotransfected cells. Purified, bacterially expressed CYP2E1(Delta3-29) is ubiquitylated in a CHIP-dependent manner when it is incubated with a purified system containing the E1 ubiquitin activating enzyme, E2, and CHIP. CYP2E1 is the first P450 shown to be an hsp90 "client" protein that can be ubiquitylated by the hsp70-dependent E3 ubiquitin ligase CHIP. Our observations lead to a general model of how substrates, such as ethanol, can regulate the interaction of CYP2E1 with the chaperones hsp90 and hsp70 to profoundly alter enzyme turnover.  相似文献   

2.
The nitric oxide receptor soluble guanylyl cyclase (sGC) exists in multimeric protein complexes, including heat shock protein (HSP) 90 and endothelial nitric oxide synthase. Inhibition of HSP90 by geldanamycin causes proteasomal degradation of sGC protein. In this study, we have investigated whether COOH terminus of heat shock protein 70-interacting protein (CHIP), a co-chaperone molecule that is involved in protein folding but is also a chaperone-dependent ubiquitin E3 ligase, could play a role in the process of degradation of sGC. Transient overexpression of CHIP in COS-7 cells degraded heterologous sGC in a concentration-related manner; this downregulation of sGC was abrogated by the proteasome inhibitor MG-132. Transfection of tetratricopeptide repeats and U-box domain CHIP mutants attenuated sGC degradation, suggesting that both domains are indispensable for CHIP function. Results from immunoprecipitation and indirect immunofluorescent microscopy experiments demonstrated that CHIP is associated with sGC, HSP90, and HSP70 in COS-7 cells. Furthermore, CHIP increased the association of HSP70 with sGC. In in vitro ubiquitination assays using purified proteins and ubiquitin enzymes, E3 ligase CHIP directly ubiquitinated sGC; this ubiquitination was potentiated by geldanamycin in COS-7 cells, followed by proteasomal degradation. In rat aortic smooth muscle cells, endogenous sGC was also degraded by adenovirus-infected wild-type CHIP but not by the chaperone interaction-deficient K30A CHIP, whereas CHIP, but not K30A, attenuated sGC expression in, and nitric oxide donor-induced relaxation of, rat aortic rings, suggesting that CHIP plays a regulatory role under physiological conditions. This study reveals a new mechanism for the regulation of sGC, an important mediator of cellular and vascular function.  相似文献   

3.
Proper folding of proteins (either newly synthesized or damaged in response to a stressful event) occurs in a highly regulated fashion. Cytosolic chaperones such as Hsc/Hsp70 are assisted by cofactors that modulate the folding machinery in a positive or negative manner. CHIP (carboxyl terminus of Hsc70-interacting protein) is such a cofactor that interacts with Hsc70 and, in general, attenuates its most well characterized functions. In addition, CHIP accelerates ubiquitin-dependent degradation of chaperone substrates. Using an in vitro ubiquitylation assay with recombinant proteins, we demonstrate that CHIP possesses intrinsic E3 ubiquitin ligase activity and promotes ubiquitylation. This activity is dependent on the carboxyl-terminal U-box. CHIP interacts functionally and physically with the stress-responsive ubiquitin-conjugating enzyme family UBCH5. Surprisingly, a major target of the ubiquitin ligase activity of CHIP is Hsc70 itself. CHIP ubiquitylates Hsc70, primarily with short, noncanonical multiubiquitin chains but has no appreciable effect on steady-state levels or half-life of this protein. This effect may have heretofore unanticipated consequences with regard to the chaperoning activities of Hsc70 or its ability to deliver substrates to the proteasome. These studies demonstrate that CHIP is a bona fide ubiquitin ligase and indicate that U-box-containing proteins may comprise a new family of E3s.  相似文献   

4.
Morales JL  Perdew GH 《Biochemistry》2007,46(2):610-621
The regulation of the aryl hydrocarbon receptor (AhR) protein levels has been an area of keen interest, given its important role in mediating the cellular adaptation and toxic response to several environmental pollutants. The carboxyl terminus of hsc70-interacting protein (CHIP) ubiquitin ligase was previously associated with the regulation of the aryl hydrocarbon receptor, although the mechanisms were not directly demonstrated. In this study, we established that CHIP could associate with the AhR at cellular levels of these two proteins, suggesting a potential role for CHIP in the regulation of the AhR complex. The analysis of the sucrose-gradient-fractionated in vitro translated AhR complexes revealed that CHIP can mediate hsp90 ubiquitination while cooperating with unidentified factors to promote the ubiquitination of mature unliganded AhR complexes. In addition, the immunophilin-like protein XAP2 was able to partially protect the AhR from CHIP-mediated ubiquitination in vitro. This protection required the direct interaction of the XAP2 with the AhR complex. Surprisingly, CHIP silencing in Hepa-1c1c7 cells by siRNA methods did not reveal the function of CHIP in the AhR complex, because it did not affect well-characterized activities of the AhR nor affect its steady-state protein levels. However, the presence of potential compensatory mechanisms may be confounding this particular observation. Our results suggest a model where the E3 ubiquitin ligase CHIP cooperates with other ubiquitination factors to remodel native AhR-hsp90 complexes and where co-chaperones such as the XAP2 may affect the ability of CHIP to target AhR complexes for ubiquitination.  相似文献   

5.
Chaperone functions of the E3 ubiquitin ligase CHIP   总被引:3,自引:0,他引:3  
The carboxyl terminus of the Hsc70-interacting protein (CHIP) is an Hsp70 co-chaperone as well as an E3 ubiquitin ligase that protects cells from proteotoxic stress. The abilities of CHIP to interact with Hsp70 and function as a ubiquitin ligase place CHIP at a pivotal position in the protein quality control system, where its entrance into Hsp70-substrate complexes partitions nonnative proteins toward degradation. However, the manner by which Hsp70 substrates are selected for ubiquitination by CHIP is not well understood. We discovered that CHIP possesses an intrinsic chaperone activity that enables it to selectively recognize and bind nonnative proteins. Interestingly, the chaperone function of CHIP is temperature-sensitive and is dramatically enhanced by heat stress. The ability of CHIP to recognize nonnative protein structure may aid in selection of slow folding or misfolded polypeptides for ubiquitination.  相似文献   

6.
CHIP is a dimeric U box E3 ubiquitin ligase that binds Hsp90 and/or Hsp70 via its TPR-domain, facilitating ubiquitylation of chaperone bound client proteins. We have determined the crystal structure of CHIP bound to an Hsp90 C-terminal decapeptide. The structure explains how CHIP associates with either chaperone type and reveals an unusual asymmetric homodimer in which the protomers adopt radically different conformations. Additionally, we identified CHIP as a functional partner of Ubc13-Uev1a in formation of Lys63-linked polyubiquitin chains, extending CHIP's roles into ubiquitin regulation as well as targeted destruction. The structure of Ubc13-Uev1a bound to the CHIP U box domain defines the basis for selective cooperation of CHIP with specific ubiquitin-conjugating enzymes. Remarkably, the asymmetric arrangement of the TPR domains in the CHIP dimer occludes one Ubc binding site, so that CHIP operates with half-of-sites activity, providing an elegant means for coupling a dimeric chaperone to a single ubiquitylation system.  相似文献   

7.
It is established that suicide inactivation of neuronal nitric-oxide synthase (nNOS) by drugs and other xenobiotics leads to ubiquitination and proteasomal degradation of the enzyme. The exact mechanism is not known, although it is widely thought that the covalent alteration of the active site during inactivation triggers the degradation. A mechanism that involves recognition of the altered nNOS by Hsp70 and its cochaperone CHIP, an E3-ubiquitin ligase, has been proposed. To further address how alterations of the active site trigger ubiquitination of nNOS, we examined a C331A nNOS mutant, which was reported to have impaired ability to bind l-arginine and tetrahydrobiopterin. We show here that C331A nNOS is highly susceptible to ubiquitination by a purified system containing ubiquitinating enzymes and chaperones, by the endogenous ubiquitinating system in reticulocyte lysate fraction II, and by intact HEK293 cells. The involvement of the altered heme cleft in regulating ubiquitination is confirmed by the finding that the slowly reversible inhibitor of nNOS, NG-nitro-l-arginine, but not its inactive d-isomer, protects the C331A nNOS from ubiquitination in all these experimental systems. We also show that both Hsp70 and CHIP play a major role in the ubiquitination of C331A nNOS, although Hsp90 protects from ubiquitination. Thus, these studies further strengthen the link between the mobility of the substrate-binding cleft and chaperone-dependent ubiquitination of nNOS. These results support a general model of chaperone-mediated protein quality control and lead to a novel mechanism for substrate stabilization based on nNOS interaction with the chaperone machinery.  相似文献   

8.
Runx1 is a key factor in the generation and maintenance of hematopoietic stem cells. Improper expression and mutations in Runx1 are frequently implicated in human leukemia. Here, we report that CHIP, the carboxyl terminus of Hsc70-interacting protein, also named Stub1, physically interacts with Runx1 through the TPR and Charged domains in the nucleus. Over-expression of CHIP directly induced Runx1 ubiquitination and degradation through the ubiquitin-proteasome pathway. Interestingly, we found that CHIP-mediated degradation of Runx1 is independent of the molecular chaperone Hsp70/90. Taken together, we propose that CHIP serves as an E3 ubiquitin ligase that regulates Runx1 protein stability via an ubiquitination and degradation mechanism that is independent of Hsp70/90.  相似文献   

9.
Cellular protein quality control involves a close interplay between molecular chaperones and the ubiquitin/proteasome system. We recently identified a degradation pathway, on which the chaperone Hsc70 delivers chaperone clients, such as misfolded forms of the cystic fibrosis transmembrane conductance regulator (CFTR), to the proteasome. The cochaperone CHIP is of central importance on this pathway, because it acts as a chaperone-associated ubiquitin ligase. CHIP mediates the attachment of a ubiquitin chain to a chaperone-presented client protein and thereby stimulates its proteasomal degradation. To gain further insight into the function of CHIP we isolated CHIP-containing protein complexes from human HeLa cells and analyzed their composition by peptide mass fingerprinting. We identified the Hsc70 cochaperone BAG-2 as a main component of CHIP complexes. BAG-2 inhibits the ubiquitin ligase activity of CHIP by abrogating the CHIP/E2 cooperation and stimulates the chaperone-assisted maturation of CFTR. The activity of BAG-2 resembles that of the previously characterized Hsc70 cochaperone and CHIP inhibitor HspBP1. The presented data therefore establish multiple mechanisms to control the destructive activity of the CHIP ubiquitin ligase in human cells.  相似文献   

10.
Parkinson's disease (PD) is a common neurodegenerative condition in which abnormalities in protein homeostasis, or proteostasis, may lead to accumulation of the protein α-synuclein (α-syn). Mutations within or multiplications of the gene encoding α-syn are known to cause genetic forms of PD and polymorphisms in the gene are recently established risk factors for idiopathic PD. α-syn is a major component of Lewy bodies, the intracellular proteinaceous inclusions which are pathological hallmarks of most forms of PD. Recent evidence demonstrates that α-syn can self associate into soluble oligomeric species and implicates these α-syn oligomers in cell death. We have previously shown that carboxyl terminus of Hsp70-interacting protein (CHIP), a co-chaperone molecule with E3 ubiquitin ligase activity, may reduce the levels of toxic α-syn oligomers. Here we demonstrate that α-syn is ubiquitinylated by CHIP both in vitro and in cells. We find that the products from ubiquitinylation by CHIP include both monoubiquitinylated and polyubiquitinylated forms of α-syn. We also demonstrate that CHIP and α-syn exist within a protein complex with the co-chaperone bcl-2-associated athanogene 5 (BAG5) in brain. The interaction of CHIP with BAG5 is mediated by Hsp70 which binds to the tetratricopeptide repeat domain of CHIP and the BAG domains of BAG5. The Hsp70-mediated association of BAG5 with CHIP results in inhibition of CHIP E3 ubiquitin ligase activity and subsequently reduces α-syn ubiquitinylation. Furthermore, we use a luciferase-based protein-fragment complementation assay of α-syn oligomerization to investigate regulation of α-syn oligomers by CHIP in living cells. We demonstrate that BAG5 mitigates the ability of CHIP to reduce α-syn oligomerization and that non-ubiquitinylated α-syn has an increased propensity for oligomerization. Thus, our results identify CHIP as an E3 ubiquitin ligase of α-syn and suggest a novel function for BAG5 as a modulator of CHIP E3 ubiquitin ligase activity with implications for CHIP-mediated regulation of α-syn oligomerization.  相似文献   

11.
ErbB2 degradation mediated by the co-chaperone protein CHIP   总被引:12,自引:0,他引:12  
ErbB2 overexpression contributes to the evolution of a substantial group of human cancers and signifies a poor clinical prognosis. Thus, down-regulation of ErbB2 signaling has emerged as a new anti-cancer strategy. Ubiquitinylation, mediated by the Cbl family of ubiquitin ligases, has emerged as a physiological mechanism of ErbB receptor down-regulation, and this mechanism appears to contribute to ErbB2 down-regulation induced by therapeutic anti-ErbB2 antibodies. Hsp90 inhibitory ansamycin antibiotics such as geldanamycin (GA) induce rapid ubiquitinylation and down-regulation of ErbB2. However, the ubiquitin ligase(s) involved has not been identified. Here, we show that ErbB2 serves as an in vitro substrate for the Hsp70/Hsp90-associated U-box ubiquitin ligase CHIP. Overexpression of wild type CHIP, but not its U-box mutant H260Q, induced ubiquitinylation and reduction in both cell surface and total levels of ectopically expressed or endogenous ErbB2 in vivo, and this effect was additive with that of 17-allylamino-geldanamycin (17-AAG). The CHIP U-box mutant H260Q reduced 17-AAG-induced ErbB2 ubiquitinylation. Wild type ErbB2 and a mutant incapable of association with Cbl (ErbB2 Y1112F) were equally sensitive to CHIP and 17-AAG, implying that Cbl does not play a major role in geldanamycin-induced ErbB2 down-regulation. Both endogenous and ectopically expressed CHIP and ErbB2 coimmunoprecipitated with each other, and this association was enhanced by 17-AAG. Notably, CHIP H260Q induced a dramatic elevation of ErbB2 association with Hsp70 and prevented the 17-AAG-induced dissociation of Hsp90. Our results demonstrate that ErbB2 is a target of CHIP ubiquitin ligase activity and suggest a role for CHIP E3 activity in controlling both the association of Hsp70/Hsp90 chaperones with ErbB2 and the down-regulation of ErbB2 induced by inhibitors of Hsp90.  相似文献   

12.
The INO80 chromatin remodeling complex has roles in many essential cellular processes, including DNA replication. However, the mechanisms that regulate INO80 in these processes remain largely unknown. We previously reported that the stability of Ino80, the catalytic ATPase subunit of INO80, is regulated by the ubiquitin proteasome system and that BRCA1-associated protein-1 (BAP1), a nuclear deubiquitinase with tumor suppressor activity, stabilizes Ino80 via deubiquitination and promotes replication fork progression. However, the E3 ubiquitin ligase that targets Ino80 for proteasomal degradation was unknown. Here, we identified the C-terminus of Hsp70-interacting protein (CHIP), the E3 ubiquitin ligase that functions in cooperation with Hsp70, as an Ino80-interacting protein. CHIP polyubiquitinates Ino80 in a manner dependent on Hsp70. Contrary to our expectation that CHIP degrades Ino80, CHIP instead stabilizes Ino80 by extending its half-life. The data suggest that CHIP stabilizes Ino80 by inhibiting degradative ubiquitination. We also show that CHIP works together with BAP1 to enhance the stabilization of Ino80, leading to its chromatin binding. Interestingly, both depletion and overexpression of CHIP compromise replication fork progression with little effect on fork stalling, as similarly observed for BAP1 and Ino80, indicating that an optimal cellular level of Ino80 is important for replication fork speed but not for replication stress suppression. This work therefore idenitifes CHIP as an E3 ubiquitin ligase that stabilizes Ino80 via nondegradative ubiquitination and suggests that CHIP and BAP1 act in concert to regulate Ino80 ubiquitination to fine-tune its stability for efficient DNA replication.  相似文献   

13.
The cytoplasm is protected against the perils of protein misfolding by two mechanisms: molecular chaperones (which facilitate proper folding) and the ubiquitin-proteasome system, which regulates degradation of misfolded proteins. CHIP (carboxyl terminus of Hsp70-interacting protein) is an Hsp70-associated ubiquitin ligase that participates in this process by ubiquitylating misfolded proteins associated with cytoplasmic chaperones. Mechanisms that regulate the activity of CHIP are, at present, poorly understood. Using a proteomics approach, we have identified BAG2, a previously uncharacterized BAG domain-containing protein, as a common component of CHIP holocomplexes in vivo. Binding assays indicate that BAG2 associates with CHIP as part of a ternary complex with Hsc70, and BAG2 colocalizes with CHIP under both quiescent conditions and after heat shock. In vitro and in vivo ubiquitylation assays indicate that BAG2 is an efficient and specific inhibitor of CHIP-dependent ubiquitin ligase activity. This activity is due, in part, to inhibition of interactions between CHIP and its cognate ubiquitin-conjugating enzyme, UbcH5a, which may in turn be facilitated by ATP-dependent remodeling of the BAG2-Hsc70-CHIP heterocomplex. The association of BAG2 with CHIP provides a cochaperone-dependent regulatory mechanism for preventing unregulated ubiquitylation of misfolded proteins by CHIP.  相似文献   

14.
The E3 ubiquitin ligase CHIP is involved in protein triage, serving as a co-chaperone for refolding as well as catalyzing ubiquitination of substrates. CHIP functions with both the stress induced Hsp70 and constitutive Hsc70 chaperones, and also plays a role in maintaining their balance in the cell. When the chaperones carry no client proteins, CHIP catalyzes their polyubiquitination and subsequent proteasomal degradation. Although Hsp70 and Hsc70 are highly homologous in sequence and similar in structure, CHIP mediated ubiquitination promotes degradation of Hsp70 with a higher efficiency than for Hsc70. Here we report a detailed and systematic investigation to characterize if there are significant differences in the CHIP in vitro ubiquitination of human Hsp70 and Hsc70. Proteomic analysis by mass spectrometry revealed that only 12 of 39 detectable lysine residues were ubiquitinated by UbcH5a in Hsp70 and only 16 of 45 in Hsc70. The only conserved lysine identified as ubiquitinated in one but not the other heat shock protein was K159 in Hsc70. Ubiquitination assays with K-R ubiquitin mutants showed that multiple Ub chain types are formed and that the distribution is different for Hsp70 versus Hsc70. CHIP ubiquitination with the E2 enzyme Ube2W is predominantly directed to the N-terminal amine of the substrate; however, some internal lysine modifications were also detected. Together, our results provide a detailed view of the differences in CHIP ubiquitination of these two very similar proteins, and show a clear example where substantial differences in ubiquitination can be generated by a single E3 ligase in response to not only different E2 enzymes but subtle differences in the substrate.  相似文献   

15.
The ubiquitin–proteasome pathway is an important regulatory system for the lifetime of inducible nitric-oxide synthase (iNOS), a high-output isoform compared to neuronal NOS (nNOS) and endothelial NOS (eNOS), to prevent overproduction of NO that could trigger detrimental effects such as cytotoxicity. Two E3 ubiquitin ligases, Elongin B/C−Cullin-5−SPRY domain- and SOCS box-containing protein [ECS(SPSB)] and the C-terminus of Hsp70–interacting protein (CHIP), recently have been reported to target iNOS for proteasomal degradation. However, the significance of each E3 ubiquitin ligase for the proteasomal degradation of iNOS remains to be determined. Here, we show that ECS(SPSB) specifically interacted with iNOS, but not nNOS and eNOS, and induced the subcellular redistribution of iNOS from dense regions to diffused expression as well as the ubiquitination and proteasomal degradation of iNOS, whereas CHIP neither interacted with iNOS nor had any effects on the subcellular localization, ubiquitination, and proteasomal degradation of iNOS. These results differ from previous reports. Furthermore, the lifetime of the iNOS(N27A) mutant, a form of iNOS that does not bind to ECS(SPSB), was substantially extended in macrophages. These results demonstrate that ECS(SPSB), but not CHIP, is the master regulator of the iNOS lifetime.  相似文献   

16.
Unfolded Pael receptor (Pael-R) is a substrate of the E3 ubiquitin ligase Parkin. Accumulation of Pael-R in the endoplasmic reticulum (ER) of dopaminergic neurons induces ER stress leading to neurodegeneration. Here, we show that CHIP, Hsp70, Parkin, and Pael-R formed a complex in vitro and in vivo. The amount of CHIP in the complex was increased during ER stress. CHIP promoted the dissociation of Hsp70 from Parkin and Pael-R, thus facilitating Parkin-mediated Pael-R ubiquitination. Moreover, CHIP enhanced Parkin-mediated in vitro ubiquitination of Pael-R in the absence of Hsp70. Furthermore, CHIP enhanced the ability of Parkin to inhibit cell death induced by Pael-R. Taken together, these results indicate that CHIP is a mammalian E4-like molecule that positively regulates Parkin E3 activity.  相似文献   

17.
BAG-1 is a ubiquitin domain protein that links the molecular chaperones Hsc70 and Hsp70 to the proteasome. During proteasomal sorting BAG-1 can cooperate with another co-chaperone, the carboxyl terminus of Hsc70-interacting protein CHIP. CHIP was recently identified as a Hsp70- and Hsp90-associated ubiquitin ligase that labels chaperone-presented proteins with the degradation marker ubiquitin. Here we show that BAG-1 itself is a substrate of the CHIP ubiquitin ligase in vitro and in vivo. CHIP mediates attachment of ubiquitin moieties to BAG-1 in conjunction with ubiquitin-conjugating enzymes of the Ubc4/5 family. Ubiquitylation of BAG-1 is strongly stimulated when a ternary Hsp70.BAG-1.CHIP complex is formed. Complex formation results in the attachment of an atypical polyubiquitin chain to BAG-1, in which the individual ubiquitin moieties are linked through lysine 11. The noncanonical polyubiquitin chain does not induce the degradation of BAG-1, but it stimulates a degradation-independent association of the co-chaperone with the proteasome. Remarkably, this stimulating activity depends on the simultaneous presentation of the integrated ubiquitin-like domain of BAG-1. Our data thus reveal a cooperative recognition of sorting signals at the proteolytic complex. Attachment of polyubiquitin chains to delivery factors may represent a novel mechanism to regulate protein sorting to the proteasome.  相似文献   

18.
The CHIP ubiquitin ligase turns molecular chaperones into protein degradation factors. CHIP associates with the chaperones Hsc70 and Hsp90 during the regulation of signaling pathways and during protein quality control, and directs chaperone-bound clients to the proteasome for degradation. Obviously, this destructive activity should be carefully controlled. Here, we identify the cochaperone HspBP1 as an inhibitor of CHIP. HspBP1 attenuates the ubiquitin ligase activity of CHIP when complexed with Hsc70. As a consequence, HspBP1 interferes with the CHIP-induced degradation of immature forms of the cystic fibrosis transmembrane conductance regulator (CFTR) and stimulates CFTR maturation. Our data reveal a novel regulatory mechanism that determines folding and degradation activities of molecular chaperones.  相似文献   

19.
The ubiquitin ligase CHIP catalyzes covalent attachment of ubiquitin to unfolded proteins chaperoned by the heat shock proteins Hsp70/Hsc70 and Hsp90. CHIP interacts with Hsp70/Hsc70 and Hsp90 by binding of a C-terminal IEEVD motif found in Hsp70/Hsc70 and Hsp90 to the tetratricopeptide repeat (TPR) domain of CHIP. Although recruitment of heat shock proteins to CHIP via interaction with the CHIP-TPR domain is well established, alterations in structure and dynamics of CHIP upon binding are not well understood. In particular, the absence of a structure for CHIP-TPR in the free form presents a significant limitation upon studies seeking to rationally design inhibitors that may disrupt interactions between CHIP and heat shock proteins. Here we report the 1H, 13C, and 15N backbone and side chain chemical shift assignments for CHIP-TPR in the free form, and backbone chemical shift assignments for CHIP-TPR in the IEEVD-bound form. The NMR resonance assignments will enable further studies examining the roles of dynamics and structure in regulating interactions between CHIP and the heat shock proteins Hsp70/Hsc70 and Hsp90.  相似文献   

20.
Page RC  Pruneda JN  Amick J  Klevit RE  Misra S 《Biochemistry》2012,51(20):4175-4187
Post-translational modification of proteins by ubiquitin (Ub) regulates a host of cellular processes, including protein quality control, DNA repair, endocytosis, and cellular signaling. In the ubiquitination cascade, a thioester-linked conjugate between the C-terminus of Ub and the active site cysteine of a ubiquitin-conjugating enzyme (E2) is formed. The E2~Ub conjugate interacts with a ubiquitin ligase (E3) to transfer Ub to a lysine residue on a target protein. The flexibly linked E2~Ub conjugates have been shown to form a range of structures in solution. In addition, select E2~Ub conjugates oligomerize through a noncovalent "backside" interaction between Ub and E2 components of different conjugates. Additional studies are needed to bridge the gap between the dynamic monomeric conjugates, E2~Ub oligomers, and the mechanisms of ubiquitination. We present a new 2.35 ? crystal structure of an oligomeric UbcH5c~Ub conjugate. The conjugate forms a staggered linear oligomer that differs substantially from the "infinite spiral" helical arrangement of the only previously reported structure of an oligomeric conjugate. Our structure also differs in intraconjugate conformation from other structurally characterized conjugates. Despite these differences, we find that the backside interaction mode is conserved in different conjugate oligomers and is independent of intraconjugate relative E2-Ub orientations. We delineate a common intraconjugate E2-binding surface on Ub. In addition, we demonstrate that an E3 CHIP (carboxyl terminus of Hsp70 interacting protein) interacts directly with UbcH5c~Ub oligomers, not only with conjugate monomers. These results provide insights into the conformational diversity of E2~Ub conjugates and conjugate oligomers, and into their compatibility and interactions with E3s, which have important consequences for the ubiquitination process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号