首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Zhu H  Itoh K  Yamamoto M  Zweier JL  Li Y 《FEBS letters》2005,579(14):3029-3036
Understanding the molecular pathway(s) of antioxidant gene regulation is of crucial importance for developing antioxidant-inducing agents for the intervention of oxidative cardiac disorders. Accordingly, this study was undertaken to determine the role of Nrf2 signaling in the basal expression as well as the chemical inducibility of endogenous antioxidants and phase 2 enzymes in cardiac fibroblasts. The basal expression of a scope of key cellular antioxidants and phase 2 enzymes was significantly lower in cardiac fibroblasts derived from Nrf2-/- mice than those from wild type control. These include catalase, reduced glutathione (GSH), glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase-1 (NQO1). Incubation of Nrf2+/+ cardiac fibroblasts with 3H-1,2-dithiole-3-thione (D3T) led to a significant induction of superoxide dismutase (SOD), catalase, GSH, GR, glutathione peroxidase (GPx), GST, and NQO1. The inducibility of SOD, catalase, GSH, GR, GST, and NQO1, but not GPx by D3T was completely abolished in Nrf2-/- cells. The Nrf2-/- cardiac fibroblasts were much more sensitive to reactive oxygen and nitrogen species-mediated cytotoxicity. Upregulation of antioxidants and phase 2 enzymes by D3T in Nrf2+/+ cardiac fibroblasts resulted in a dramatically increased resistance to the above species-induced cytotoxicity. In contrast, D3T-treatment of the Nrf2-/- cells only provided a slight cytoprotection. Taken together, this study demonstrates for the first time that Nrf2 is critically involved in the regulation of the basal expression and chemical induction of a number of antioxidants and phase 2 enzymes in cardiac fibroblasts, and is an important factor in controlling cardiac cellular susceptibility to reactive oxygen and nitrogen species-induced cytotoxicity.  相似文献   

2.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

3.
The recognition of the critical involvement of oxidative and electrophilic stress in cardiac disorders has led to extensive investigation of the protective effects of exogenous antioxidants on cardiac injury. On the other hand, another strategy for protecting against oxidative/electrophilic cardiac injury may be through induction of the endogenous antioxidants and phase 2 enzymes in myocardium by chemical inducers. However, our understanding of the chemical inducibility of cardiac antioxidants/phase 2 enzymes in vivo is very limited. In addition, careful studies on the basal levels of a scope of endogenous antioxidants/phase 2 enzymes in myocardium as compared with other tissues, such as liver, are lacking. Accordingly, this study was undertaken to determine the basal levels of endogenous antioxidants/phase 2 enzymes, including superoxide dismutase (SOD), catalase, reduced glutathione (GSH), GSH peroxidase (GPx), glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase 1 (NQO1), and investigate the inducibility of the above antioxidants/phase 2 enzymes by the chemoprotectant, 1,2-dithiole-3-thione (D3T), in cardiac as well as hepatic tissues in C57BL/6 mice. Our results demonstrated that in C57BL/6 mice, the levels of catalase, GSH, GPx, GR, and GST were significantly lower in cardiac tissue than in hepatic tissue. The level of total SOD did not differ significantly between mouse heart and liver. Notably, heart contained a much higher NQO1 activity than liver. Immunoblotting and RT-PCR analyses further demonstrated the high expression of NQO1 protein and mRNA in myocardium. Oral administration of D3T at 0.25 and 0.5 mmol/kg body weight for 3 consecutive days resulted in a significant induction of cardiac SOD, catalase, GR, GST, and NQO1. No significant induction of cardiac GSH and GPx was observed with the above D3T treatment. Only GR, GST, and NQO1 in mouse liver were induced by the D3T treatment. Unexpectedly, we observed a significant D3T dose-dependent decrease in hepatic GPx activity. Taken together, this study demonstrates for the first time that: (1) the expression of NQO1 is remarkably high in mouse myocardium though other cardiac antioxidants/phase 2 enzymes are relatively lower as compared with liver; (2) a number of endogenous antioxidants/phase 2 enzymes in mouse cardiac tissue can be significantly induced by D3T following oral administration; and (3) the inducibility of endogenous antioxidants/phase 2 enzymes by D3T differs between mouse cardiac and hepatic tissues. This study provides a basis for future investigation of the cardioprotection of chemically induced endogenous antioxidants and phase 2 enzymes in myocardium in animal models of oxidative/electrophilic cardiac disorders.  相似文献   

4.
We evaluated the preventive effects of Terminalia chebula (T. chebula) aqueous extract on oxidative and antioxidative status in liver and kidney of aged rats compared to young albino rats. The concentrations of malondialdehyde (MDA), lipofuscin (LF), protein carbonyls (PCO), activities of xantione oxidase (XO), manganese‐superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione‐S‐transferase (GST), and glucose‐6‐phosphate dehydrogenase (G6PDH), levels of glutathione (GSH), vitamin C and vitamin E were used as biomarkers. In the liver and kidney of aged animals, enhanced oxidative stress was accompanied by compromised antioxidant defences. Administration of aqueous extract of T. cheubla effectively modulated oxidative stress and enhanced antioxidant status in the liver and kidney of aged rats. The results of the present study demonstrate that aqueous extract of T. cheubla inhibits the development of age‐induced damages by protecting against oxidative stress. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

6.
Administration of lead (1.25 and 2.5 mumol/kg egg weight) to 14-day-old chick embryos enhanced the level of lipid peroxides (LPO) in tissues of liver, brain, and heart. Accumulation of LPO was maximum at 9 h after treatment with lead and returned to normal level by 72 h. Further, we have studied the levels of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. At 9 h posttreatment, the hepatic GR was reduced significantly with the induction of GST and considerable depletion of GSH. However, in brain and heart, both GR and GST activities were unaltered with significant reduction of GSH. Further, an increase of non-Se-dependent GPx and SOD activities were observed in liver, brain, and heart. Similarly, at 72 h, although the GPx activity was found decreased in liver and brain, the GST, catalase, and SOD activities were significantly increased in all the three tissues alike, suggesting tissue-specific changes of antioxidant defense components in response to lead treatment. Our results suggests that the elevated levels of GST, SOD, and catalase at 72 h were successful in bringing LPO levels back to normal.  相似文献   

7.
In all 5 acute viral hepatites (AVHs) and chronic viral hepatites (CVHs) there was the increase of erythrocyte activities of glutathione peroxidase (GPx) and glutathione reductase (GR), and the decrease in reduced glutathione (GSH) concentration. In blood plasma there was accumulation of GPx, glutathione S-transferase (GST), and γ-glutamyl transferase (GGT). GSH and GR increased in plasma only in AVHs. Erythrocyte GST increased in CVH C. Evidently changes in the erythrocyte glutathione system represent reactions to oxidative stress and in blood plasma they are consequences of inflammation and hepatocyte cytolysis. Changes were more pronounced in moderate than in severe disease course. These changes have pathogenic importance and can be used in addition to complex diagnostics. These changes significantly differ from the changes found in chronic gall-bladder diseases. It is important to analyze glutathione system separately in erythrocytes and blood plasma and not in the whole blood.  相似文献   

8.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

9.
Quercetin (QT), a dietary‐derived flavonoid, is ubiquitous in fruits and vegetables and plays an important role in human health by virtue of its antioxidant function. The present study was designed to examine the effects of QT on oxidative damage that was induced by the herbicide, atrazine (ATZ), in mixed cultures of Sertoli‐germ cells. Results showed that treatment with QT increased cell viability and decreased catalase activity, malondialdehyde, and reactive oxygen species (ROS) levels. QT treatment also increased the mRNA expression of glutathione peroxidase (GSH‐Px), glutathione reductase (GR), glutathione‐S‐transferase, and superoxide dismutase‐1 and could not reversed to the control levels ATZ‐induced steady‐state mRNA levels of these antioxidant genes as well as the level of glutathione and activities of GSH‐Px and GR. QT has protective effect against ATZ‐induced oxidative stress through a reduction in ROS levels and lipid peroxidation. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:477‐485, 2012; View this article online at wileyonlinelibrary.com . DOI 10:1002/jbt.21449  相似文献   

10.
Sub-acute hepatotoxicity was induced in mice by exposure to pesticides. The effect of pretreatment with aqueous black tea extract on lipid peroxidation and antioxidants in the liver was investigated. Administering a combination dose of chlorpyriphos and cypermethrin (20 mg kg(-1) each) on alternate days over a 15-day period to male mice resulted in induction of sub-acute toxicity as reflected by elevated levels of liver damage marker enzymes alkaline phosphatase(ALP), aspartate transaminase(AST) and alanine transaminase(ALT). Significantly elevated levels of lipid peroxidation were observed in the experimental group (group III) as compared with control mice. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total thiol, glutathione peroxidase (GPx), glutathione reductase(GR) and glutathione-S-transferase (GST) were also observed in pesticide-treated as compared to control mice. Aqueous black tea extract was given as a pretreatment to group IV mice at a dose of 200 mg ml(-1) polyphenols before the pesticide dose, which significantly decreased the levels of lipid peroxidation and significantly elevated the activities of SOD, CAT, GSH, total thiol, GPx, GR and GST in liver to levels similar to the controls. Thus, the data offer support for the claim that the central mechanism of pesticide action occurs via changes in cellular oxidative status and shows conclusively that supplementation with black tea extract protects against the free radical-mediated oxidative stress in hepatocytes of animals with pesticide-induced liver injury.  相似文献   

11.
Free radical-induced lipid peroxidation has been associated with numerous disease processes including diabetes mellitus. The extent of lipid peroxidation (LPO) and antioxidant defense system [i.e., levels of glutathione (GSH), glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and catalase (CAT)] were evaluated in reticulocytes and erythrocytes of type 2 diabetic males and age-matched controls. Type 2 diabetics have shown increased lipid peroxidation and decreased levels of GSH, GR, GPx, G6PDH, and GST both in reticulocytes and erythrocytes compared to controls, indicating the presence of oxidative stress and defective antioxidant systems in these patients. CAT activity is found to be enhanced in both the reticulocytes and erythrocytes of diabetics, with a greater percentage enhancement in reticulocytes. The extent of increase in lipid peroxidation is greater in erythrocytes compared to reticulocytes in these patients. Furthermore, the maturation of reticulocytes to erythrocytes resulted in decreased GSH and decreased activities of all antioxidant enzymes (except CAT) both in normals and type 2 diabetes individuals, indicating decreased scavenging capacity as reticulocytes mature to erythrocytes. These maturational alterations are further intensified in type 2 diabetics. The present study reveals that the alterations in lipid peroxidation and antioxidant system lean toward early senescence of erythrocytes in type 2 diabetic patients.  相似文献   

12.
Gao M  Li Y  Long J  Shah W  Fu L  Lai B  Wang Y 《Mutation research》2011,719(1-2):52-59
Benzo[a]pyrene [B(a)P] is one of the most prevalent environmental carcinogens and genotoxic agents. However, the mechanisms of B(a)P-induced oxidative damage in cervical tissue are still not clear. The present study was to investigate the oxidative stress and DNA damage in cervix of ICR female mice induced by acute treatment with B(a)P. Oxidative stress was assayed by analysis of malondialdehyde (MDA), superoxide anion and H(2)O(2), and antioxidant enzymes. The alkaline single-cell electrophoresis (SCGE) was used to measure DNA damage. The contents of MDA and glutathione (GSH), and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were significantly increased in cervix 24, 48 and 72h after B(a)P treatment of a single dose of 12.5 and 25mg/kg, while GSH, CAT, SOD and GST had no significant difference with the dose of 50mg/kg B(a)P at post-treatment time 48 and 72h except for SOD activity at 48h which was significant. The maximum values of SOD, CAT, GST and GSH were peaked at 24h and then decreased gradually while GPx activities and MDA levels persisted for up to 72h. Superoxide anion, H(2)O(2) and DNA damage changed similarly as the activity of SOD, CAT or GST. Additionally, increases of formamidopyrimidine DNA glycosylase (FPG) specific DNA damage were observed and can be greatly rescued by vitamin C pretreatment. Overall, B(a)P demonstrated a time- and dose- related oxidative stress and DNA damage in cervix.  相似文献   

13.
Enzymatic antioxidants such as selenium-dependent glutathione peroxidase (GPx), glutathione transferase (GST), glutathione reductase (GR), and superoxide dismutases (SOD), as well as the concentration of hydrogen peroxide (H2O2) and malondialdehyde (MDA, an indicator of lipid peroxidation) were determined to identify which antioxidant enzymes participate in the efficient scavenging of ROS generated upon exposure to high doses of Cd2+ in fourth-instar Propsilocerus akamusi (Tokuna) (Diptera: Chironomidae) larvae after 72-h exposure. A significant increase in MDA levels and a change in GR and GPx activities in the Cd(2+)-treated P. akamusi were observed. The MDA in 25.0 and 50.0 mmol/liter treatments was significantly higher than that of the control dose after 72 h exposure. GPx activity was significantly induced by Cd2+ exposure only in the 50.0-mmol/liter treatment with a 0.59-fold increase in the control. All doses of Cd2+ significantly suppressed GR activity compared with the findings for the control dose, with an inhibited rate up to 0.55-fold in the 25.0 mmol/liter Cd2+ treatment. SOD and GST activities were not altered. The results indicate that Cd2+ can induce oxidative stress as indicated by the changes in lipid peroxidation and antioxidant status. For P. akamusi, an increase in the dose that the threshold needed for defense (namely, MDA level and GPx activity) activation was achieved. From this, organisms can be hypothesized to enable cells to avoid oxidant stress up to a certain extent where damage is again measurable (higher Cd2+ concentration).  相似文献   

14.
Antioxidant enzymes, total glutathione (GSH), and ascorbic acid (ASA) were determined in whole body homogenates of nondiapausing larvae, diapausing larvae during the diapausing period (October, December, and February), and in pupae emerged from both diapausing and nondiapausing larvae of the European corn borer (Ostrinia nubilalis, Hubn., Lepidoptera: Pyralidae). The activities of catalase, selenium nondependent glutathione peroxidase (GPx), and glutathione-S-transferase (GST), as well as the content of GSH and ASA, were found to vary throughout the larval diapause. Compared to diapausing larvae, nondiapausing larvae were higher in levels of catalase, GPx, GST, and dehydroascorbate reductase (DHAR) activity. GSH content was also increased. However, nondiapausing larvae contained less ASA than diapausing ones. Pupae had higher GPx and GST activity and an increased ASA content compared to larvae. The pupae emerged from nondiapausing larvae had higher GST, glutathione reductase (GR), and DHAR activities, but lower GPx activity and ASA content than those emerged from diapausing larvae. Correlation analysis revealed differences in the way the antioxidant level is equilibrated for a particular stage and developmental pattern. The results suggest that cellular antioxidants are involved in both the protection of cells and the regulation of redox levels during the pre-adult stages of Ostrinia nubilalis. Arch. Insect Biochem. Physiol. 55:79-89, 2004.  相似文献   

15.

Aims

The aim of this study was to evaluate the antioxidant status and oxidative stress biomarkers in the blood of children and teenagers with Down syndrome.

Main methods

The analysis of enzymatic antioxidant defenses, such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione transferase (GST), non-enzymatic antioxidants, such as levels of reduced glutathione (GSH), uric acid (UA) and vitamin E, as well as oxidative damage indicators, such as protein carbonyls (PC) levels and lipoperoxidation (TBARS), of DS individuals (n = 20) compared to healthy controls (n = 18). Except the vitamin E was measured by HPLC, all other markers were measured spectrophotometrically.

Key Findings

Antioxidant enzymes analysis showed significant increases in the SOD (47.2%), CAT (24.7%) and GR (49.6%) activities in DS subjects. No significant difference in GPx activity was detected while GST activity (61.2%) was decreased, and both responses may be consequence of the depletion of GSH (24.9%) levels. There were no significant differences in TBARS levels, while PC levels showed decreased (31.7%) levels compared to healthy controls, which may be related to the increase (16.1%) found in serum UA. Levels of vitamin E showed no significant differences between DS individuals compared to controls.

Significance

The results revealed a systemic pro-oxidant status in DS individuals, evidenced by the increased activity of some important antioxidant enzymes, together with decreased GSH levels in whole blood and elevated UA levels in plasma, probably as an antioxidant compensation related to the redox imbalance in DS individuals.  相似文献   

16.
The present study investigated the protective effect of gossypol, selenium, zinc, or glutathione (GSH) against dimethylnitrosamine (DMN)‐induced hepatotoxicity in the livers of male mice. The expression and the activity of glutathione S‐transferase (GST), levels of GSH, and free radicals (malondialdehyde (MDA)), as well as the activity of glutathione reductase were determined after the treatment of mice for seven consecutive days with low or high doses of gossypol, selenium, zinc, or GSH. In experimental groups, DMN was administered as a single dose for 2 h after the repeated dose treatments of mice for seven consecutive days with each antioxidant. DMN reduced the expression and inhibited the activity of GST. However, repeated treatments of mice with low‐dose gossypol or high dose of either selenium or GSH followed by a single dose of DMN induced the expression and the activity of GST. In contrast, low‐dose treatments of mice with zinc, selenium, or GSH followed by a single dose of DMN reduced the expression and the activity of GST compared to either control or DMN‐treated groups. In addition, high‐dose treatment with either gossypol or selenium markedly induced the levels of GSH compared to either control or DMN‐treated groups. Interestingly, pretreatment of mice with high dose of either gossypol or selenium for seven consecutive days followed by a single dose of DMN decreased the levels of MDA, whereas DMN induced such levels. It is concluded that high dose of either gossypol or selenium is a stronger protector than zinc and GSH in ameliorating the toxic effects of DMN. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:389–395, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20255  相似文献   

17.
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.  相似文献   

18.
The objective of the present study was to assess superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), paraoxonase (PON1), glutathione reductase (GR), and catalase (CAT) activities ratio and their relationship with DNA oxidative damage in rats treated with cisplatin (3 mg/kg bwt/day) in the presence and absence of benfotiamine (100 mg/kg/day) for 25 days. Cisplatin‐induced renal damage was evidenced by renal dysfunction and elevated oxidative stress markers. SOD activity and levels of nitric oxide, protein carbonyl, malondialdehyde, and 8‐hydroxy‐2'‐deoxyguanosine were significantly increased by cisplatin treatment. Moreover, the ratios of GPx/GR, SOD/GPx, SOD/CAT, and SOD/PON1 were significantly increased compared to control. In contrast, glutathione levels were significantly decreased by cisplatin treatment. Simultaneous treatment of rats with cisplatin and benfotiamine ameliorate these variables to values near to those of control rats. This study suggests that benfotiamine can prevent cisplatin‐induced nephrotoxicity by inhibiting formation reactive species of oxygen and nitrogen. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:398‐405, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21501  相似文献   

19.
The effects of altered thyroid state on the antioxidant defense system in the liver of differently aged rats were examined. Male rats aged 15, 45 and 75 days were treated with L-thyroxine, T(4) (40 microg/100 g body mass, s.c., one dose per day) for 14 days (finally aged 30, 60 and 90 days, respectively). The following antioxidant defense enzymes were measured: superoxide dismutases (both copper zinc, CuZn-SOD and manganese containing, Mn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST), glutathione reductase (GR), as well as the content of low molecular mass antioxidant glutathione (GSH). The effect of T(4) on antioxidant defense system in the liver differs with respect to age. T(4) treatment decreased CAT and GST activities, as well as the content of GSH in animals aged 60 and 90 days. The same treatment elevated GR activity in rats at 30 days of age, this phenomenon was not observed in older animals. The different response of immature rats to thyroxine compared to older animals could be attributed to the differences in thyroxine metabolism and the developmental pattern. Direct effect of T(4) on mature rats can be considered as a part of its overall catabolic action.  相似文献   

20.
The metabolism of ethanol gives rise to the generation of excess amounts of reactive oxygen species and is also associated with immune dysfunction. We examined the efficacy of resveratrol and vitamin E on the immunomodulatory activity and vascular function in mice with liver abnormalities induced by chronic ethanol consumption by measuring the protein, liver-specific transaminase enzymes, antioxidant enzymes and non-enzymes such as reduced glutathione (GSH) content, thiobarbituric acid reactive substance (TBARS) level, nitrite level, and activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPx) and glutathione-S-transferase (GST), and cytokines such as interleukin (IL)-2, IL-4, IL-10, tumor necrosis factor (TNF)-alpha, gamma interferon (IFN-gamma), vascular endothelial growth factor (VEGF)-A and transforming growth factor (TGF)-beta1 in mice blood. Ethanol (1.6 g/kg body wt/day) exposure for 12 wks significantly increased TBARS and nitrite levels and GST activity, and significantly decreased GSH content and the activities of SOD, CAT, GR and GPx in whole blood hemolyzate of 8-10 wks-old male BALB/c mice (weighing 20-30 g). Ethanol exposure also elevated the activities of transaminase enzymes (AST and ALT), IL-10, TNF-alpha, IFN-gamma, VEGF-A and TGF-beta1, while decreasing the albumin concentration and IL-4 activity in the serum. Both resveratrol (5 mg kg(-1) day(-1)) and vitamin E (80 mg kg(-1) day(-1)) treatment significantly reduced AST, ALT, GST, IL-10, TNF-alpha, IFN-gamma, VEGF-A and TGF-beta1 activities and levels of TBARS and nitrite, and elevated albumin content, GSH level and activities of SOD, CAT, GR and GPx, compared to ethanol-treated group. Thus, results from the study demonstrated that both resveratrol (5 mg kg(-1) day(-1)) and vitamin E (80 mg kg(-1) day(-1)) can effectively ameliorate ethanol (1.6 g kg(-1) day(-1))-induced oxidative challenges, immunomodulatory activity and angiogenesis processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号