首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Most rodent models of insulin resistance are accompanied by decreased circulating adiponectin levels. Adiponectin treatment improves the metabolic phenotype by increasing fatty acid oxidation in skeletal muscle and suppressing hepatic glucose production. Muscle IGF-I receptor (IGF-IR)-lysine-arginine (MKR) mice expressing dominant-negative mutant IGF-IRs in skeletal muscle are diabetic with insulin resistance in muscle, liver, and adipose tissue. Adiponectin levels are elevated in MKR mice, suggesting an unusual discordance between insulin resistance and adiponectin responsiveness. Therefore, we investigated the metabolic actions of adiponectin in MKR mice. MKR and ob/ob mice were treated both acutely (28 microg/g) and chronically (for 2 wk) with full-length adiponectin. Acute hypoglycemic effects of adiponectin were evident only in ob/ob mice but not in MKR mice. Chronic adiponectin treatment significantly improved both insulin sensitivity and glucose tolerance in ob/ob but not in MKR mice. Adiponectin receptor mRNA levels and adiponectin-stimulated phosphorylation of AMPK in skeletal muscle and liver were similar among MKR, wild-type, and ob/ob mice. Thus MKR mice are adiponectin resistant despite normal expression of adiponectin receptors and normal AMPK phosphorylation in muscle and liver. MKR mice may be a useful model for dissecting relationships between insulin resistance and adiponectin action in regulation of glucose homeostasis.  相似文献   

2.
3.
Glucagon-like peptide-1 (GLP-1) receptor knockout (Glp1r(-/-)) mice exhibit impaired hepatic insulin action. High fat (HF)-fed Glp1r(-/-) mice exhibit improved, rather than the expected impaired, hepatic insulin action. This is due to decreased lipogenic gene expression and triglyceride accumulation. The present studies overcome these secondary adaptations by acutely modulating GLP-1R action in HF-fed wild-type mice. The central GLP-1R was targeted given its role as a regulator of hepatic insulin action. We hypothesized that acute inhibition of the central GLP-1R impairs hepatic insulin action beyond the effects of HF feeding. We further hypothesized that activation of the central GLP-1R improves hepatic insulin action in HF-fed mice. Insulin action was assessed in conscious, unrestrained mice using the hyperinsulinemic euglycemic clamp. Mice received intracerebroventricular (icv) infusions of artificial cerebrospinal fluid, GLP-1, or the GLP-1R antagonist exendin-9 (Ex-9) during the clamp. Intracerebroventricular Ex-9 impaired the suppression of hepatic glucose production by insulin, whereas icv GLP-1 improved it. Neither treatment affected tissue glucose uptake. Intracerebroventricular GLP-1 enhanced activation of hepatic Akt and suppressed hypothalamic AMP-activated protein kinase. Central GLP-1R activation resulted in lower hepatic triglyceride levels but did not affect muscle, white adipose tissue, or plasma triglyceride levels during hyperinsulinemia. In response to oral but not intravenous glucose challenges, activation of the central GLP-1R improved glucose tolerance. This was associated with higher insulin levels. Inhibition of the central GLP-1R had no effect on oral or intravenous glucose tolerance. These results show that inhibition of the central GLP-1R deteriorates hepatic insulin action in HF-fed mice but does not affect whole body glucose homeostasis. Contrasting this, activation of the central GLP-1R improves glucose homeostasis in HF-fed mice by increasing insulin levels and enhancing hepatic insulin action.  相似文献   

4.
Pathogenesis of insulin resistance in leptin-deficient ob/ob mice is obscure. In another form of diet-dependent obesity, high-fat-fed mice, hepatic insulin resistance involves ceramide-induced activation of atypical protein kinase C (aPKC), which selectively impairs protein kinase B (Akt)-dependent forkhead box O1 protein (FoxO1) phosphorylation on scaffolding protein, 40 kDa WD(tryp-x-x-asp)-repeat propeller/FYVE protein (WD40/ProF), thereby increasing gluconeogenesis. Resultant hyperinsulinemia activates hepatic Akt and mammalian target of rapamycin C1, and further activates aPKC; consequently, lipogenic enzyme expression increases, and insulin signaling in muscle is secondarily impaired. Here, in obese minimally-diabetic ob/ob mice, hepatic ceramide and aPKC activity and its association with WD40/ProF were increased. Hepatic Akt activity was also increased, but Akt associated with WD40/ProF was diminished and accounted for reduced FoxO1 phosphorylation and increased gluconeogenic enzyme expression. Most importantly, liver-selective inhibition of aPKC decreased aPKC and increased Akt association with WD40/ProF, thereby restoring FoxO1 phosphorylation and reducing gluconeogenic enzyme expression. Additionally, lipogenic enzyme expression diminished, and insulin signaling in muscle, glucose tolerance, obesity, hepatosteatosis, and hyperlipidemia improved. In conclusion, hepatic ceramide accumulates in response to CNS-dependent dietary excess irrespective of fat content; hepatic insulin resistance is prominent in ob/ob mice and involves aPKC-dependent displacement of Akt fromWD40/ProF and subsequent impairment of FoxO1 phosphorylation and increased expression of hepatic gluconeogenic and lipogenic enzymes; and hepatic alterations diminish insulin signaling in muscle.  相似文献   

5.
6.
7.
Methionine restriction (MR) decreases body weight and adiposity and improves glucose homeostasis in rodents. Similar to caloric restriction, MR extends lifespan, but is accompanied by increased food intake and energy expenditure. Most studies have examined MR in young animals; therefore, the aim of this study was to investigate the ability of MR to reverse age‐induced obesity and insulin resistance in adult animals. Male C57BL/6J mice aged 2 and 12 months old were fed MR (0.172% methionine) or control diet (0.86% methionine) for 8 weeks or 48 h. Food intake and whole‐body physiology were assessed and serum/tissues analyzed biochemically. Methionine restriction in 12‐month‐old mice completely reversed age‐induced alterations in body weight, adiposity, physical activity, and glucose tolerance to the levels measured in healthy 2‐month‐old control‐fed mice. This was despite a significant increase in food intake in 12‐month‐old MR‐fed mice. Methionine restriction decreased hepatic lipogenic gene expression and caused a remodeling of lipid metabolism in white adipose tissue, alongside increased insulin‐induced phosphorylation of the insulin receptor (IR) and Akt in peripheral tissues. Mice restricted of methionine exhibited increased circulating and hepatic gene expression levels of FGF21, phosphorylation of eIF2a, and expression of ATF4, with a concomitant decrease in IRE1α phosphorylation. Short‐term 48‐h MR treatment increased hepatic FGF21 expression/secretion and insulin signaling and improved whole‐body glucose homeostasis without affecting body weight. Our findings suggest that MR feeding can reverse the negative effects of aging on body mass, adiposity, and insulin resistance through an FGF21 mechanism. These findings implicate MR dietary intervention as a viable therapy for age‐induced metabolic syndrome in adult humans.  相似文献   

8.
Strenuous exercise induces delayed-onset muscle damage including oxidative damage of cellular components. Oxidative stress to muscle cells impairs glucose uptake via disturbance of insulin signaling pathway. We investigated glucose uptake and insulin signaling in relation to oxidative protein modification in muscle after acute strenuous exercise. ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed downhill running exercise at 30 m/min for 30 min. At 24 hr after exercise, metabolic performance and insulin-signaling proteins in muscle tissues were examined. In whole body indirect calorimetry, carbohydrate utilization was decreased in the exercised mice along with reduction of the respiratory exchange ratio compared to the rested control mice. Insulin-stimulated uptake of 2-deoxy-[(3)H]glucose in damaged muscle was decreased after acute exercise. Tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidyl-3-kinase/Akt signaling were impaired by exercise, leading to inhibition of the membrane translocation of glucose transporter 4. We also found that acute exercise caused 4-hydroxy-nonenal modification of IRS-1 along with elevation of oxidative stress in muscle tissue. Impairment of insulin-induced glucose uptake into damaged muscle after strenuous exercise would be related to disturbance of insulin signal transduction by oxidative modification of IRS-1.  相似文献   

9.
Insulin and nutrients activate hepatic p70 S6 kinase (S6K1) to regulate protein synthesis. Paradoxically, activation of S6K1 also leads to the development of insulin resistance. In this study, we investigated the effect of TRB3, which acts as an endogenous inhibitor of Akt, on S6K1 activity in vitro and in vivo. In cultured cells, overexpression of TRB3 completely inhibited insulin-stimulated S6K1 activation by mammalian target of rapamycin, whereas knockdown of endogenous TRB3 increased both basal and insulin-stimulated activity. In C57BL/6 mice, adenoviral overexpression of TRB3 inhibited insulin-stimulated activation of hepatic S6K1. In contrast, overexpression of TRB3 did not inhibit nutrient-stimulated S6K1 activity. We also investigated the effect of starvation, feeding, or insulin treatment on TRB3 levels and S6K1 activity in the liver of C57BL/6 and db/db mice. Both insulin and feeding activate S6K1 in db/db mice, but only insulin activates in the C57BL/6 strain. TRB3 levels were 3.5-fold higher in db/db mice than C57BL/6 mice and were unresponsive to feeding or insulin, whereas both treatments reduced TRB3 in C57BL/6 mice. Akt was activated by insulin alone in the C57BL/6 strain and but not in db/db mice. Both insulin and feeding activated mammalian target of rapamycin similarly in these mice; however, feeding was unable to activate the downstream target S6K1 in C57BL/6 mice. These results suggest that the nutrient excess in the hyperphagic, hyperinsulinemic db/db mouse primes the hepatocyte to respond to nutrients resulting in elevated S6K1 activity. The combination of elevated TRB3 and constitutive S6K1 activity results in decreased insulin signaling via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway.  相似文献   

10.
Despite the prevalence of insulin resistance and type 2 diabetes mellitus, their underlying mechanisms remain incompletely understood. Many secreted endocrine factors and the intertissue cross-talk they mediate are known to be dysregulated in type 2 diabetes mellitus. Here, we describe CTRP12, a novel adipokine with anti-diabetic actions. The mRNA and circulating levels of CTRP12 were decreased in a mouse model of obesity, but its expression in adipocytes was increased by the anti-diabetic drug rosiglitazone. A modest rise in circulating levels of CTRP12 by recombinant protein administration was sufficient to lower blood glucose in wild-type, leptin-deficient ob/ob, and diet-induced obese mice. A short term elevation of serum CTRP12 by adenovirus-mediated expression improved glucose tolerance and insulin sensitivity, normalized hyperglycemia and hyperinsulinemia, and lowered postprandial insulin resistance in obese and diabetic mice. CTRP12 improves insulin sensitivity in part by enhancing insulin signaling in the liver and adipose tissue. Further, CTRP12 also acts in an insulin-independent manner; in cultured hepatocytes and adipocytes, CTRP12 directly activated the PI3K-Akt signaling pathway to suppress gluconeogenesis and promote glucose uptake, respectively. Collectively, these data establish CTRP12 as a novel metabolic regulator linking adipose tissue to whole body glucose homeostasis through insulin-dependent and independent mechanisms.  相似文献   

11.
The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the maintenance of peripheral glucose homeostasis remains to be established. FXR-deficient mice display decreased adipose tissue mass, lower serum leptin concentrations, and elevated plasma free fatty acid levels. Glucose and insulin tolerance tests revealed that FXR deficiency is associated with impaired glucose tolerance and insulin resistance. Moreover, whole-body glucose disposal during a hyperinsulinemic euglycemic clamp is decreased in FXR-deficient mice. In parallel, FXR deficiency alters distal insulin signaling, as reflected by decreased insulin-dependent Akt phosphorylation in both white adipose tissue and skeletal muscle. Whereas FXR is not expressed in skeletal muscle, it was detected at a low level in white adipose tissue in vivo and induced during adipocyte differentiation in vitro. Moreover, mouse embryonic fibroblasts derived from FXR-deficient mice displayed impaired adipocyte differentiation, identifying a direct role for FXR in adipocyte function. Treatment of differentiated 3T3-L1 adipocytes with the FXR-specific synthetic agonist GW4064 enhanced insulin signaling and insulin-stimulated glucose uptake. Finally, treatment with GW4064 improved insulin resistance in genetically obese ob/ob mice in vivo. Although the underlying molecular mechanisms remain to be unraveled, these results clearly identify a novel role of FXR in the regulation of peripheral insulin sensitivity and adipocyte function. This unexpected function of FXR opens new perspectives for the treatment of type 2 diabetes.  相似文献   

12.
Caveolin-3 (Cav-3) is expressed predominantly in skeletal muscle fibers, where it drives caveolae formation at the muscle cell's plasma membrane. In vitro studies have suggested that Cav-3 may play a positive role in insulin signaling and energy metabolism. We directly address the in vivo metabolic consequences of genetic ablation of Cav-3 in mice as it relates to insulin action, glucose metabolism, and lipid homeostasis. At age 2 mo, Cav-3 null mice are significantly larger than wild-type mice, and display significant postprandial hyperinsulinemia, whole body insulin resistance, and whole body glucose intolerance. Studies using hyperinsulinemic-euglycemic clamps revealed that Cav-3 null mice exhibited 20% and 40% decreases in insulin-stimulated whole body glucose uptake and whole body glycogen synthesis, respectively. Whole body insulin resistance was mostly attributed to 20% and 40% decreases in insulin-stimulated glucose uptake and glucose metabolic flux in the skeletal muscle of Cav-3 null mice. In addition, insulin-mediated suppression of hepatic glucose production was significantly reduced in Cav-3 null mice, indicating hepatic insulin resistance. Insulin-stimulated glucose uptake in white adipose tissue, which does not express Cav-3, was decreased by 70% in Cav-3 null mice, suggestive of an insulin-resistant state for this tissue. During fasting, Cav-3 null mice possess normal insulin receptor protein levels in their skeletal muscle. However, after 15 min of acute insulin stimulation, Cav-3 null mice show dramatically reduced levels of the insulin receptor protein, compared with wild-type mice treated identically. These results suggest that Cav-3 normally functions to increase the stability of the insulin receptor at the plasma membrane, preventing its rapid degradation, i.e., by blocking or slowing ligand-induced receptor downregulation. Thus our results demonstrate the importance of Cav-3 in regulating whole body glucose homeostasis in vivo and its possible role in the development of insulin resistance. These findings may have clinical implications for the early diagnosis and treatment of caveolinopathies. limb girdle muscular dystrophy; glucose intolerance; hyperinsulinemia; insulin receptor degradation  相似文献   

13.
c-Jun N-terminal kinase pathways in diabetes   总被引:1,自引:0,他引:1  
Type 2 diabetes develops from insulin resistance and has become a worldwide epidemic. The c-Jun N-terminal kinases have been considered as signaling molecules linking inflammation and insulin resistance. Genetic disruption of c-Jun N-terminal kinase-1 gene prevents the development of insulin resistance in obese and diabetic mice. Inhibition of c-Jun N-terminal kinases by a small cell-permeable peptide improves insulin sensitivity in mice. Hepatic inhibition of c-Jun N-terminal kinases using a dominant-negative protein or knockdown of c-Jun N-terminal kinase-1 gene by RNA interference reduces blood glucose and insulin levels and enhances hepatic insulin signaling in mice. Recent evidence demonstrates that the hepatic c-Jun N-terminal kinase pathway plays an important role in lipid and lipoprotein homeostasis in mice. This review discusses recent advances in our understanding of the role of c-Jun N-terminal kinase pathway in metabolic control and its potential as a target for the treatment of type 2 diabetes.  相似文献   

14.
The antiobesity and antidiabetic effects of the beta3-adrenergic agonists were investigated on nonobese type 2 diabetic MKR mice after injection with a beta3-adrenergic agonist, CL-316243. An intact response to acute CL-316243 treatment was observed in MKR mice. Chronic intraperitoneal CL-316243 treatment of MKR mice reduced blood glucose and serum insulin levels. Hyperinsulinemic euglycemic clamps exhibited improvement of the whole body insulin sensitivity and glucose homeostasis concurrently with enhanced insulin action in liver and adipose tissue. Treating MKR mice with CL-316243 significantly lowered serum and hepatic lipid levels, in part due to increased whole body triglyceride clearance and fatty acid oxidation in adipocytes. A significant reduction in total body fat content and epididymal fat weight was observed along with enhanced metabolic rate in both wild-type and MKR mice after treatment. These data demonstrate that beta3-adrenergic activation improves the diabetic state of nonobese diabetic MKR mice by potentiation of free fatty acid oxidation by adipose tissue, suggesting a potential therapeutic role for beta3-adrenergic agonists in nonobese diabetic subjects.  相似文献   

15.
Insulin resistance in type 2 diabetes is characterized by defects in muscle glucose uptake and hepatic overproduction of both glucose and lipids. These hepatic defects are perplexing because insulin normally suppresses glucose production and increases lipid synthesis in the liver. To understand the mechanisms for these seemingly paradoxical defects, we examined the activation of atypical protein kinase C (aPKC) and protein kinase B (PKB), two key signaling factors that operate downstream of phosphatidylinositol 3-kinase and regulate various insulin-sensitive metabolic processes. Livers and muscles of three insulin-resistant rodent models were studied. In livers of type 2 diabetic non-obese Goto-Kakazaki rats and ob/ob-diabetic mice, the activation of PKB was impaired, whereas activation of aPKC was surprisingly maintained. In livers of non-diabetic high fatfed mice, the activation of both aPKC and PKB was maintained. In contrast to the maintenance of aPKC activation in the liver, insulin activation of aPKC was impaired in muscles of Goto-Kakazaki-diabetic rats and ob/ob-diabetic and non-diabetic high fat-fed mice. These findings suggest that, at least in these rodent models, (a) defects in aPKC activation contribute importantly to skeletal muscle insulin resistance observed in both high fat feeding and type 2 diabetes; (b) insulin signaling defects in muscle are not necessarily accompanied by similar defects in liver; (c) defects in hepatic PKB activation occur in association with, and probably contribute importantly to, the development of overt diabetes; and (d) maintenance of hepatic aPKC activation may explain the continued effectiveness of insulin for stimulating certain metabolic actions in the liver.  相似文献   

16.
17.
Leptin has been shown to improve insulin sensitivity and glucose metabolism in obese diabetic ob/ob mice, yet the mechanisms remain poorly defined. We found that 2 d of leptin treatment improved fasting but not postprandial glucose homeostasis, suggesting enhanced hepatic insulin sensitivity. Consistent with this hypothesis, leptin improved in vivo insulin receptor (IR) activation in liver, but not in skeletal muscle or fat. To explore the cellular mechanism by which leptin up-regulates hepatic IR activation, we examined the expression of the protein tyrosine phosphatase PTP1B, recently implicated as an important negative regulator of insulin signaling. Unexpectedly, liver PTP1B protein abundance was increased by leptin to levels similar to lean controls, whereas levels in muscle and fat remained unchanged. The ability of leptin to augment liver IR activation and PTP1B expression was also observed in vitro in human hepatoma cells (HepG2). However, overexpression of PTP1B in HepG2 cells led to diminished insulin-induced IR phosphorylation, supporting the role of PTP1B as a negative regulator of IR activation in hepatocytes. Collectively, our results suggest that leptin acutely improves hepatic insulin sensitivity in vivo with concomitant increases in PTP1B expression possibly serving to counterregulate insulin action and to maintain insulin signaling in proper balance.  相似文献   

18.
Leptin has pleiotropic effects on glucose homeostasis and feeding behavior. Here, we validate the use of a cell-permeable phosphopeptide that blocks STAT3 activation in vivo. The combination of this biochemical approach with stereotaxic surgical techniques allowed us to pinpoint the contribution of hypothalamic STAT3 to the acute effects of leptin on food intake and glucose homeostasis. Leptin's ability to acutely reduce food intake critically depends on intact STAT3 signaling. Likewise, hypothalamic signaling of leptin through STAT3 is required for the acute effects of leptin on liver glucose fluxes. Lifelong obliteration of STAT3 signaling via the leptin receptor in mice (s/s mice) results in severe hepatic insulin resistance that is comparable to that observed in db/db mice, devoid of leptin receptor signaling. Our results demonstrate that the activation of the hypothalamic STAT3 pathway is an absolute requirement for the effects of leptin on food intake and hepatic glucose metabolism.  相似文献   

19.
Exercise is an effective therapy for insulin resistance. However, the underlying mechanism remains to be elucidated. Previous research demonstrated that TGFβ-activated kinase 1 (TAK1)-dependent signaling plays a crucial character in hepatic insulin resistance. Hepatic ubiquitin specific protease 4 (USP4), USP18, and dual-specificity phosphatases 14 (DUSP14) can suppress TAK1 phosphorylation, besides tumor necrosis factor receptor-associated factor 3 (TRAF3) and tripartite motif 8 (TRIM8) promote its phosphorylation. In this study, we tried to verify our hypothesis that exercise improves insulin resistance in high-fat diet (HFD)-induced obese (DIO) rats via regulating the TAK1 dependent signaling and TAK1 regulators in liver. Forty male Sprague–Dawley rats were randomized into four groups (n = 10): standard diet and sedentary as normal control; fed on HFD and DIO-sedentary; fed on HFD and DIO-chronic exercise; and fed on HFD and DIO-acute exercise. HFD feeding resulted in increased body weight, visceral fat mass, serum FFAs and hepatic lipid deposition, but decreased hepatic glycogen content and insulin sensitivity. Moreover, hepatic TRAF3 and TRIM8 protein levels increased, whereas USP4, USP18, and DUSP14 protein levels were decreased under obese status, which resulted in enhanced TAK1 phosphorylation and impaired insulin signaling. Exercise training, containing chronic and acute mode, both ameliorated insulin resistance. Meanwhile, decreased TAK1, c-Jun N-terminal kinase 1 (JNK1), and insulin receptor substrate 1 (IRS1) phosphorylation enhanced Akt phosphorylation in liver. Moreover, exercise enhanced USP4 and DUSP14 protein levels, whereas decreased TRIM8 protein levels in obese rats’ liver. These results showed that exercise triggered a crucial modulation in TAK1-dependent signaling and its regulators in obese rats’ liver, and distinct improvement in insulin sensitivity, which provide new insights into the mechanism by which physical exercise improves insulin resistance.  相似文献   

20.
The phosphatidylinositol 3-kinase signaling pathway in vascular endothelial cells is important for systemic angiogenesis and glucose metabolism. In this study, we addressed the precise role of the 3-phosphoinositide-dependent protein kinase 1 (PDK1)-regulated signaling network in endothelial cells in vivo, using vascular endothelial PDK1 knockout (VEPDK1KO) mice. Surprisingly, VEPDK1KO mice manifested enhanced glucose tolerance and whole-body insulin sensitivity due to suppression of their hepatic glucose production with no change in either peripheral glucose disposal or even impaired vascular endothelial function at 6 months of age. When mice were fed a standard diet at 6 months of age and a high-fat diet at 3 months of age, hypertrophy of epididymal adipose tissues was inhibited, adiponectin mRNA was significantly increased, and mRNA of MCP1, leptin, and TNFα was decreased in the white adipose tissue of VEPDK1KO mice in comparison with controls. Consequently, both the circulating adiponectin levels and the activity of hepatic AMP-activated protein kinase were significantly increased, subsequently enhancing whole-body insulin sensitivity and energy expenditure with increased hepatic fatty acid oxidation in VEPDK1KO mice. These results provide the first in vivo evidence that lowered angiogenesis through the deletion of PDK1 signaling not only interferes with the growth of adipose tissue but also induces increased energy expenditure due to amelioration of the adipocytokine profile. This demonstrates an unexpected role of PDK1 signaling in endothelial cells on the maintenance of proper glucose homeostasis through the regulation of adipocyte development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号