首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor‐6 (FGF‐6) is known to be the key ligand for fibroblast growth factor receptor 4 (FGFR4) during muscle regeneration but its role in bone has yet to be verified. FGFR signaling is known to be important in the initiation and regulation of osteogenesis, so in this study the actions of FGF‐6 on human osteoblasts and osteoclasts were investigated. Human primary osteoblasts (hOB) were used to study the effect of FGF‐6 on proliferation (by ATP quantification), signal transduction (by ERK and AKT phosphorylation), differentiation (by alkaline phosphatase activity, APA), and mineralization (by calcein staining). To study FGF‐6 activity on osteoclast differentiation, human bone marrow cells were used and tartrate‐resistant acid phosphatase (TRAP) multinucleated cells together with actin filaments arrangements were quantified. Human primary mature osteoclasts were used to evaluate the effect of FGF‐6 on osteoclast reabsorbing activity by reabsorbed pit measurements. FGF‐6 >10−9 M as FGF‐2 10−7 M induced hOB proliferation mediated by pERK together with a reduction in APA and reduced mineralization of the treated cells. Moreover FGF‐6 increased the formation of TRAP‐positive multinucleated cells in a dose‐dependent manner (maximal effect at 10−8 M). FGF‐6‐treated cells showed also a greater percentage of cells that formed typical osteoclast sealing zones. Mature osteoclasts cultured on dentine slice increased the area of reabsorption with a maximal effect of FGF‐6 at 10−12 M. FGF‐6 may be considered a regulator of bone metabolism as shown by its activity on both osteoblasts and osteoclasts. J. Cell. Physiol. 225: 466–471, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and IκB, as well as IκB degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption. [BMB Reports 2014; 47(8): 451-456]  相似文献   

3.
Coenzyme Q10 (CoQ10), selenium, and curcumin are known to be powerful antioxidants. Osteoclasts are capable of resorbing mineralized bone and excessive bone resorption by osteoclasts causes bone loss-related diseases. During osteoclast differentiation, the reactive oxygen species (ROS) acts as a secondary messenger on signal pathways. In this study, we investigated whether antioxidants can inhibit RANKL-induced osteoclastogenesis through suppression of ROS generation and compared the relative inhibitory activities of CoQ10, sodium selenite, and curcumin on osteoclast differentiation. We found that antioxidants markedly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in both bone marrow-derived monocytes (BMMs) and RAW 264.7 cells. Antioxidants scavenged intracellular ROS generation within osteoclast precursors during RANKL-stimulated osteoclastogenesis. These also acted to significantly suppress the gene expression of NFATc1, TRAP, and osteoclast-associated immunoglobulin-like receptor (OSCAR), which are genetic markers of osteoclast differentiation in a dose-dependent manner. These antioxidants also suppressed ROS-induced IκBα signaling pathways for osteoclastogenesis. Specially, curcumin displayed the highest inhibitory effect on osteoclast differentiation when concentrations were held constant. Together, CoQ10, selenite, and curcumin act as inhibitors of RANKL-induced NFATc1 which is a downstream event of NF-κB signal pathway through suppression of ROS generation, thereby suggesting their potential usefulness for the treatment of bone disease associated with excessive bone resorption.  相似文献   

4.
5.
Estrogen insufficiency at menopause cause accelerated bone loss due to unwarranted differentiation and function of osteoclasts. Unraveling the underlying mechanism/s may identify mediators of estrogen action which can be targeted for improved management of osteoporosis. Towards this, we analyzed the effect of 17β-estradiol on the proteomes of differentiating human osteoclasts. The major proteomic changes observed included upregulation of LYN by estrogen. We, therefore, investigated the effect of estrogen on osteoclast differentiation, survival, and function in control and LYN knockdown conditions. In control condition, estrogen treatment increased the apoptosis rate and suppressed the calcium signaling by reducing the intracellular Ca2+ levels as well as expression and activation of NFATc1 and c-Src during differentiation, resulting in reduced osteoclastogenesis. These osteoclasts were smaller in size with reduced extent of multinuclearity and produced significantly low levels of bone resorbing enzymes. They also exhibited disrupted sealing zone formation with low podosome density, impaired cell polarization and reduced resorption of dentine slices. Interestingly, in LYN knockdown condition, estrogen failed to induce apoptosis and inhibit activation of NFATc1 and c-Src. Compared to effect of estrogen on osteoclast in control condition, LYN knockdown osteoclasts did not show reduction in production of bone resorbing enzymes and had defined sealing zone formation with high podosome density with no impairment in cell polarization. They resorbed significant area on dentine slices. Thus, the inhibitory action of estrogen on osteoclast was severely restrained in LYN knockdown condition, demonstrating the importance of LYN as a key mediator of the effect of estrogen on osteoclastogenesis.  相似文献   

6.
7.
Osteoclasts are specialized macrophage derivatives that secrete acid and proteinases to mobilize bone for mineral homeostasis, growth, and replacement or repair. Osteoclast differentiation generally requires the monocyte growth factor m‐CSF and the TNF‐family cytokine RANKL, although differentiation is regulated by many other cytokines and by intracellular signals, including Ca2+. Studies of osteoclast differentiation in vitro were performed using human monocytic precursors stimulated with m‐CSF and RANKL, revealing significant loss in both the expression and function of the required components of store‐operated Ca2+ entry over the course of osteoclast differentiation. However, inhibition of CRAC using either the pharmacological agent 3,4‐dichloropropioanilide (DCPA) or by knockdown of Orai1 severely inhibited formation of multinucleated osteoclasts. In contrast, no effect of CRAC channel inhibition was observed on expression of the osteoclast protein tartrate resistant acid phosphatase (TRAP). Our findings suggest that despite the fact that they are down‐regulated during osteoclast differentiation, CRAC channels are required for cell fusion, a late event in osteoclast differentiation. Since osteoclasts cannot function properly without multinucleation, selective CRAC inhibitors may have utility in management of hyperresorptive states. J. Cell. Physiol. 226: 1082–1089, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
9.
10.
Bone homeostasis is tightly regulated by matrix-producing osteoblasts and bone-resorbing osteoclasts. During osteoclast development, mononuclear preosteoclasts derived from myeloid cells fuse together to form multinucleated, giant cells. Previously, we reported that the d2 isoform of the vacuolar (H+) ATPase V0 domain (Atp6v0d2) plays an important role in osteoclast maturation and bone formation. To understand how Atp6v0d2 controls osteoclast maturation, we have performed a yeast two-hybrid screen using full-length Atp6v0d2 as the bait, and identified adhesion-regulating molecule 1 protein (Adrm1) as a potential functional partner of Atp6v0d2. The interaction between Atp6v0d2 and Adrm1 was confirmed in yeast and invivo using immunoprecipitation assays. We also show that Adrm1 is required for cell migration and osteoclast maturation.  相似文献   

11.
Src‐like adaptor protein (SLAP) is a hematopoietic adaptor containing Src homology (SH)3 and SH2 motifs and a unique carboxy terminus. Unlike c‐Src, SLAP lacks a tyrosine kinase domain. We investigated the role of SLAP in osteoclast development and resorptive function. Employing SLAP‐deficient mice, we find lack of the adaptor enhances in vitro proliferation of osteoclast precursors in the form of bone marrow macrophages (BMMs), without altering their survival. Furthermore, osteoclastogenic markers appear more rapidly in SLAP?/? BMMs exposed to RANK ligand (RANKL). The accelerated proliferation of M‐CSF‐treated, SLAP‐deficient precursors is associated with enhanced ERK activation. SLAP's role as a mediator of M‐CSF signaling, in osteoclastic cells, is buttressed by complexing of the adaptor protein and c‐Fms in lipid rafts. Unlike c‐Src, SLAP does not impact resorptive function of mature osteoclasts but induces their early apoptosis. Thus, SLAP negatively regulates differentiation of osteoclasts and proliferation of their precursors. Conversely, SLAP decreases osteoclast death by inhibiting activation of caspase 3. These counterbalancing events yield indistinguishable bones of WT and SLAP?/? mice which contain equal numbers of osteoclasts in basal and stimulated conditions. J. Cell. Biochem. 110: 201–209, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Stimulation by toll-like receptors inhibits osteoclast differentiation   总被引:12,自引:0,他引:12  
Osteoclasts, the cells capable of resorbing bone, are derived from hemopoietic precursor cells of monocyte-macrophage lineage. The same precursor cells can also give rise to macrophages and dendritic cells, which are essential for proper immune responses to various pathogens. Immune responses to microbial pathogens are often triggered because various microbial components induce the maturation and activation of immunoregulatory cells such as macrophages or dendritic cells by stimulating Toll-like receptors (TLRs). Since osteoclasts arise from the same precursors as macrophages, we tested whether TLRs play any role during osteoclast differentiation. We showed here that osteoclast precursors prepared from mouse bone marrow cells expressed all known murine TLRs (TLR1-TLR9). Moreover, various TLR ligands (e.g., peptidoglycan, poly(I:C) dsRNA, LPS, and CpG motif of unmethylated DNA, which act as ligands for TLR2, 3, 4, and 9, respectively) induced NF-kappa B activation and up-regulated TNF-alpha production in osteoclast precursor cells. Unexpectedly, however, TLR stimulation of osteoclast precursors by these microbial products strongly inhibited their differentiation into multinucleated, mature osteoclasts induced by TNF-related activation-induced cytokine. Rather, TLR stimulation maintained the phagocytic activity of osteoclast precursors in the presence of osteoclastogenic stimuli M-CSF and TNF-related activation-induced cytokine. Taken together, these results suggest that TLR stimulation of osteoclast precursors inhibits their differentiation into noninflammatory mature osteoclasts during microbial infection. This process favors immune responses and may be critical to prevent pathogenic effects of microbial invasion on bone.  相似文献   

14.
Osteoclasts, multinucleated cells that resorb bone, play a key role in bone remodeling. Although immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling is critical for osteoclast differentiation, the significance of immunoreceptor tyrosine-based inhibitory motif (ITIM) has not been well understood. Here we report the function of Ly49Q, an Ly49 family member possessing an ITIM motif, in osteoclastogenesis. Ly49Q is selectively induced by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) stimulation in bone marrow-derived monocyte/macrophage precursor cells (BMMs) among the Ly49 family of NK receptors. The knockdown of Ly49Q resulted in a significant reduction in the RANKL-induced formation of tartrate-resistance acid phosphatase (TRAP)-positive multinucleated cells, accompanied by a decreased expression of osteoclast-specific genes such as Nfatc1, Tm7sf4, Oscar, Ctsk, and Acp5. Osteoclastogenesis was also significantly impaired in Ly49Q-deficient cells in vitro. The inhibitory effect of Ly49Q-deficiency may be explained by the finding that Ly49Q competed for the association of Src-homology domain-2 phosphatase-1 (SHP-1) with paired immunoglobulin-like receptor-B (PIR-B), an ITIM-bearing receptor which negatively regulates osteoclast differentiation. Unexpectedly, Ly49Q deficiency did not lead to impaired osteoclast formation in vivo, suggesting the existence of a compensatory mechanism. This study provides an example in which an ITIM-bearing receptor functions as a positive regulator of osteoclast differentiation.  相似文献   

15.
16.
Objectives: Osteoclasts are descended from the CD14+ monocyte/macrophage lineage, but influence of other haematopoietic cells on osteoclastic commitment of their precursors has remained poorly understood. In this study, osteoclastogenic behaviour of peripheral blood mononuclear cells (PBMC) and their CD14+ and CD14? subpopulations has been accessed, in the absence or presence of M‐CSF and RANKL. Materials and Methods: Cell cultures were characterized for presence of actin rings and vitronectin and calcitonin receptors, TRAP activity and calcium phosphate resorbing activity, expression of osteoclast‐related genes and secretion of M‐CSF and RANKL. Results: In the absence of growth factors, PBMC and CD14+ cultures had some degree of cell survival, and some spontaneous osteoclastogenesis was observed, only on cultures of the former. Supplementation with M‐CSF and RANKL significantly increased osteoclastogenic behaviour of cell cultures, particularly CD14+ cell cultures. Nevertheless, PBMC derived a higher degree of osteoclastogenesis, either as absolute values or after normalization by protein content. It was observed that unlike CD14+ cells, PBMC were able to express M‐CSF and RANKL, which increased following growth factor treatment. Also, expression of TNF‐α, GM‐CSF, IL‐1β, IL‐6 and IL‐17 was higher in PBMC cultures. Finally, CD14? cultures exhibited limited cell survival and did not reveal any osteoclast features. Conclusions: Results show that although osteoclastic precursors reside in the CD14+ cell subpopulation, other populations (such as CD14? cells) derived from PBMC, have the ability to modulate osteoclastogenesis positively.  相似文献   

17.
Previous studies found that bone morphogenic proteins (BMPs) support osteoclast formation, but it is not clear whether this is a direct effect on osteoclasts or mediated indirectly through osteoblasts. We have shown that a mouse deficient for the BMP antagonist Twisted gastrulation suggested a direct positive role for BMPs on osteoclastogenesis. In this report, we further determine the significance of BMP signaling on osteoclast formation in vitro. We find that BMP2 synergizes with suboptimal levels of receptor activator of NF‐κB ligand (RANKL) to enhance in vitro differentiation of osteoclast‐like cells. The enhancement by BMP2 is not a result of changes in the rate of proliferation or survival of the bone marrow‐derived cultures, but is accompanied by an increase in expression of genes involved in osteoclast differentiation and fusion. Treatment with BMP2 did not significantly alter expression of RANKL or OPG in our osteoclast cultures, suggesting that the enhancement of osteoclastogenesis is not mediated indirectly through osteoblasts or stromal cells. Consistent with this, we detected phosphorylated SMAD1,5,8 (p‐SMAD) in the nuclei of mononuclear and multinucleated cells in osteoclast cultures. Levels of p‐SMAD, BMP2, and BMP receptors increased during differentiation. RNAi suppression of Type II BMP receptor inhibited RANKL‐stimulated formation of multinuclear TRAP‐positive cells. The BMP antagonist noggin inhibited RANKL‐mediated osteoclast differentiation when added prior to day 3, while addition of noggin on day 3 or later failed to inhibit their differentiation. Taken together, these data indicate that osteoclasts express BMP2 and BMP receptors, and that autocrine BMP signaling directly promotes the differentiation of osteoclasts‐like cells. J. Cell. Biochem. 109: 672–682, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Osteoclast-mediated bone resorption is accomplished by secretion of lysosomal proteases into an acidic extracellular compartment. We have previously demonstrated that avian osteoclasts and human osteoclast-like giant cell tumor cells respond in vitro to treatment with 17β-estradiol (17β-E2) by decreased bone resorption activity. To better understand the mechanism by which this is accomplished, we have investigated the effects of 17β-E2 treatment on lysosomal enzyme production and secretion by isolated avian osteoclasts and multinucleated cells from human giant cell tumors in vitro. Isolated cells were cultured with bone particles in the presence of either vehicle or steroid. The conditioned media and cells were harvested, and the levels of cathepsin B, cathepsin L, β-glucuronidase, lysozyme, and tartrate-resistant acid phosphatase (TRAP) activities were determined. There was a steroid dose-dependent decrease in secreted levels of these enzymes. Cell-associated levels of cathepsin L, β-glucuronidase, and lysozyme decreased, whereas cell-associated levels of cathepsin B and TRAP increased. These changes were measurable at 10?10 M and maximal at 10?8 M 17β-E2. The changes were detectable at 4–18 h of treatment and increased through 24 h of treatment. The response was steroid specific, since the inactive estrogen isomer, 17β-E2, failed to alter the activity levels. Moreover, the effects of 17β-E2 were blocked when the cells were treated simultaneously with the estrogen antagonist ICI182–780 in conjunction with 17β-E2. Human osteoclast-like cells obtained from giant cell tumors of bone responded similarly to estrogen with respect to cathepsin B, cathepsin L, and TRAP activities. However, secretion of β-glucuronidase and lysozyme were not altered by treatment with 10?8 M 17β-E2. These data indicate that estrogen effects on osteoclast resorption activity may be mediated by decreasing the secretion of cathepsin B, cathepsin L, and TRAP.  相似文献   

19.
In a co-culture system of mouse spleen cells and osteoblastic cells, we have demonstrated that a suitable microenvironment must be provided by osteoblastic cells in order for osteoclast-like multinucleated cell (MNC) formation. Using this co-culture system, we examined the pathogenetic mechanism underlying the lack of bone resorption in osteosclerotic oc/oc mice. Numerous tartrate-resistant acid phosphatase (TRAP, an osteoclast marker enzyme)-positive MNCs were formed in response to 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3] both in co-cultures of oc/oc spleen cells and normal osteoblastic cells and in those of normal spleen cells and oc/oc osteoblastic cells. TRAP-positive MNCs derived from normal spleen cells tended to spread out on culture dishes, whereas those from oc/oc spleen cells remained as small, compact MNCs. When TRAP-positive MNCs enriched from co-cultures of normal spleen cells and oc/oc osteoblastic cells were cultured on dentine slices, they formed numerous resorption pits with ruffled borders and clear zones. In contrast, none of the TRAP-positive MNCs derived from oc/oc spleen cells formed either ruffled borders or resorption pits. These results indicate that the lack of bone resorption in oc/oc mice is due to a defect in osteoclast progenitors rather than the local microenvironment provided by osteoblastic cells.  相似文献   

20.
Osteoclast progenitors differentiate into mature osteoclasts in the presence of receptor activator of NF-kappaB (RANK) ligand on stromal or osteoblastic cells and monocyte macrophage colony-stimulating factor (M-CSF). The soluble RANK ligand induces the same differentiation in vitro without stromal cells. Tumor necrosis factor-alpha (TNF-alpha), a potent cytokine involved in the regulation of osteoclast activity, promotes bone resorption via a primary effect on osteoblasts; however, it remains unclear whether TNF-alpha can also directly induce the differentiation of osteoclast progenitors into mature osteoclasts. This study revealed that TNF-alpha directly induced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), which produced resorption pits on bone in vitro in the presence of M-CSF. The bone resorption activity of TNF-alpha-induced MNCs was lower than that of soluble RANK ligand-induced MNCs; however, interleukin-1beta stimulated this activity of TNF-alpha-induced MNCs without an increase in the number of MNCs. In this case, interleukin-1beta did not induce TRAP-positive MNC formation. The osteoclast progenitors expressed TNF receptors, p55 and p75; and the induction of TRAP-positive MNCs by TNF-alpha was inhibited completely by an anti-p55 antibody and partially by an anti-p75 antibody. Our findings presented here are the first to indicate that TNF-alpha is a crucial differentiation factor for osteoclasts. Our results suggest that TNF-alpha and M-CSF play an important role in local osteolysis in chronic inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号