首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA mismatch repair (MMR) proteins are essential for the maintenance of genomic stability of human cells. Compared with hereditary or even sporadic carcinomas, MMR gene mutations are very uncommon in leukemia. However, genetic instability, attested by either loss of heterozygosity or microsatellite instability, has been extensively documented in chronic or acute malignant myeloid disorders. This observation suggests that in leukemia some internal or external signals may interfere with MMR protein expression and/or function. We investigated the effects of protein kinase C (PKC) stimulation by 12-O-tetradecanoylphorbol-13-acetate (TPA) on MMR protein expression and activity in human myeloid leukemia cell lines. First, we show here that unstimulated U937 cells displayed low level of PKC activity as well as MMR protein expression and activity compared with a panel of myeloid cell lines. Second, treatment of U937 cells with TPA significantly increased (3-5-fold) hMSH2 expression and, to a lesser extent, hMSH6 and hPMS2 expression, correlated to a restoration of MMR function. In addition, diacylglycerol, a physiological PKC agonist, induced a significant increase in hMSH2 expression, whereas chelerythrine or calphostin C, two PKC inhibitors, significantly decreased TPA-induced hMSH2 expression. Reciprocally, treatment of HEL and KG1a cells that exhibited a high level of PKC expression, with chelerythrine significantly decreased hMSH2 and hMSH6 expression. Moreover, the alteration of MMR protein expression paralleled the difference in microsatellite instability and cell sensitivity to 6-thioguanine. Our results suggest that PKC could play a role in regulating MMR protein expression and function in some myeloid leukemia cells.  相似文献   

2.
3.
4.
The hMutS alpha (hMSH2-hMSH6) protein heterodimer plays a critical role in the detection of DNA mispairs in the mismatch repair (MMR) process. We recently reported that hMutS alpha proteins were degraded by the ubiquitin-proteasome pathway in a cell-type-dependent manner, indicating that one or several regulator(s) may interfere with hMutS alpha protein ubiquitination and degradation. On the other hand, we and others have shown that protein kinase C (PKC) is involved as a positive regulator of MMR activity. Here, we provide evidence that the atypical PKC zeta regulates ubiquitination, degradation, and levels of hMutS alpha proteins. Using both PKC zeta-transfected U937 and PKC zeta siRNA-transfected MRC-5 cell lines, we found that PKC zeta protein expression was correlated with that of hMutS alpha as well as with MMR activity, but was inversely correlated with hMutS alpha protein ubiquitination and degradation. Interestingly, PKC zeta interacts with hMSH2 and hMSH6 proteins and phosphorylates both. Moreover, in an in vitro assay PKCzeta mediates phosphorylation events decreasing hMutS alpha protein degradation via the ubiquitin-proteasome pathway. Altogether, our results indicate that PKC zeta modulates hMutS alpha stability and protein levels, and suggest a role for PKC zeta in genome stability by regulating MMR activity.  相似文献   

5.
6.
7.
8.
In the present study the molecular mechanisms underlying tetradecanoylphorbol-13-acetate (TPA) mediated regulation of the human gamma-glutamyltransferase (GGT) gene were examined. TPA challenge of HeLa cells resulted in an increase of GGT mRNA and enzyme activity. Deletion analysis of the promoter revealed that the -348 to +60 fragment was able to mediate TPA induced expression. Gel shift and supershift analyses showed that TPA treatment increased nuclear protein binding to a putative AP-1 site (-225 to -214) and that c-Jun was part of the complex. This AP-1 element, when cloned either in its native arrangement or as tandem repeat 5' of the minimal thymidine kinase promoter, mediated a significant increase of luciferase activity after TPA treatment of transfected HeLa cells, while its mutated counterpart abolished the induction. The same AP-1 element was able to mediate TPA induced expression in HepG2 cells. Collectively these results indicate that like other GSH metabolising enzymes, GGT too is a target for AP-1 mediated regulation.  相似文献   

9.
The thrombin/proteinase-activated receptors (PARs) have been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. Thrombin up-regulates expression of several proteins including cyclooxygenase (COX)-2 in vascular smooth muscle cells (VSMCs) and contributes to vascular diseases. However, the mechanisms underlying thrombin-regulated COX-2 expression in VSMCs remain unclear. Western blotting, RT-PCR, and EIA kit analyses showed that thrombin induced the expression of COX-2 mRNA and protein and PGE(2) release in a time-dependent manner, which was attenuated by inhibitors of PKC (GF109203X and rottlerin), c-Src (PP1), EGF receptor (EGFR; AG1478) and MEK1/2 (U0126), or transfection with dominant negative mutants of PKC-delta, c-Src or extracellular regulated kinase (ERK) and ERK1 short hairpin RNA interference (shRNA). These results suggest that transactivation of EGFR participates in COX-2 expression induced by thrombin in VSMCs. Accordingly, thrombin stimulated phosphorylation of ERK1/2 which was attenuated by GF109203X, rottlerin, PP1, GM6001, CRM197, AG1478, or U0126, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by selective inhibitors of AP-1 and NF-kappaB, curcumin and helenalin, respectively. Moreover, thrombin-stimulated activation of NF-kappaB, AP-1, and COX-2 promoter activity was blocked by the inhibitors of c-Src, PKC, EGFR, MEK1/2, AP-1 and NF-kappaB, suggesting that thrombin induces COX-2 promoter activity mediated through PKC(delta)/c-Src-dependent EGFR transactivation, MEK-ERK1/2, AP-1, and NF-kappaB. These results demonstrate that in VSMCs, activation of ERK1/2, AP-1 and NF-kappaB pathways was essential for thrombin-induced COX-2 gene expression. Understanding the regulation of COX-2 expression and PGE(2) release by thrombin/PARs system on VSMCs may provide potential therapeutic targets of vascular inflammatory disorders including arteriosclerosis.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Lipopolysaccharide (LPS) has been shown to up-regulate the expression of vascular cell adhesion molecule (VCAM)-1 which contributes to the occurrence of airway inflammatory diseases. Genetic analysis reveals the existence of activator protein-1 (AP-1) binding site on VCAM-1 promoter region. However, the role of AP-1 in LPS-induced VCAM-1 expression in human tracheal smooth muscle cells (HTSMCs) is not known. Here, we show that LPS increased VCAM-1 expression and adhesiveness of HTSMCs through AP-1, since pretreatment with an AP-1 inhibitor tanshinone attenuated LPS-induced VCAM-1 expression and leukocytes adhesion. The implication of AP-1 in LPS-induced VCAM-1 expression was confirmed by animal studies showing that pretreatment of mice with tanshinone attenuated LPS-induced VCAM-1 mRNA expression in airway tissues and accumulation of leukocytes in bronchoalveolar lavage. By using the pharmacological inhibitors and transfection with siRNA of PKC, p42, p38, or JNK2, LPS-induced expression of c-Fos was mediated through protein kinase C (PKC), p42/p44 MAPK and p38 MAPK. While, c-Jun expression was mediated through PKC and mitogen-activated protein kinases (MAPKs, p42/p44 MAPK, p38 MAPK and JNK) in HTSMCs. Pretreatment with the inhibitors of PKCs or MAPKs attenuated LPS-stimulated nuclear translocation and VCAM-1 promoter binding abilities of AP-1, which attenuated promoter activity and gene expression of VCAM-1 and the adhesiveness between HTSMCs and leukocytes. These results indicated that differential regulation of AP-1 through PKCs-dependent MAPKs activation plays central roles in LPS-induced VCAM-1 expression. The altered modulation of this axis with inhibitors or siRNAs may contribute to the improvement of airway inflammatory diseases.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号