首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and easy-to-perform dipstick immunoassay to detect Escherichia coli O157:H7 in retail ground beef was developed by using a sandwich-type assay (with a polyclonal antibody to E. coli O157 as the capture antibody and a monoclonal antibody to E. coli O157:H7 as the detection antibody) on a hydrophobic polyvinylidine difluoride-based membrane. E. coli O157:H7 in ground beef could be detected within 16 h, including incubation for 12 h in enrichment broth and the immunoassay, which takes 4 h. Pure culture cell suspensions of 10(5) or 10(6) E. coli O157:H7 organisms per ml produced intense color reactions in the immunoassay, whereas faint but detectable reactions occurred with 10(3) CFU/ml. The sensitivity of the combined enrichment-immunoassay procedure as determined by using ground beef inoculated with E. coli O157:H7 was 0.1 to 1.3 cells per g, with a false-positive rate of 2.0%. A survey of retail ground beef using this procedure revealed that 1 of 76 samples was contaminated by E. coli O157:H7.  相似文献   

2.
A sensitive, specific procedure was developed for detecting Escherichia coli O157:H7 in food in less than 20 h. The procedure involves enrichment of 25 g of food in 225 ml of a selective enrichment medium for 16 to 18 h at 37 degrees C with agitation (150 rpm). The enrichment culture is applied to a sandwich enzyme-linked immunosorbent assay (ELISA) with a polyclonal antibody specific for E. coli O157 antigen as the capture antibody and a monoclonal antibody specific for enterohemorrhagic E. coli of serotypes O157:H7 and O26:H11 as the detection antibody. The ELISA can be completed within 3 h. The sensitivity of the procedure, determined by using E. coli O157:H7-inoculated ground beef and dairy products, including different varieties of cheese, was 0.2 to 0.9 cell per g of food. A survey of retail fresh ground beef and farm raw milk samples with this procedure revealed that 3 (2.8%) of 107 ground beef samples and 11 (10%) of 115 raw milk samples were positive for E. coli O157:H7. Most-probable-number determinations revealed E. coli O157:H7 populations of 0.4 to 1.5 cells per g in the three ground beef samples. In addition to being highly specific, sensitive, and rapid, this procedure is easy to perform and is amenable to use by laboratories performing routine microbiological testing.  相似文献   

3.
A sensitive, specific procedure was developed for detecting Escherichia coli O157:H7 in food in less than 20 h. The procedure involves enrichment of 25 g of food in 225 ml of a selective enrichment medium for 16 to 18 h at 37 degrees C with agitation (150 rpm). The enrichment culture is applied to a sandwich enzyme-linked immunosorbent assay (ELISA) with a polyclonal antibody specific for E. coli O157 antigen as the capture antibody and a monoclonal antibody specific for enterohemorrhagic E. coli of serotypes O157:H7 and O26:H11 as the detection antibody. The ELISA can be completed within 3 h. The sensitivity of the procedure, determined by using E. coli O157:H7-inoculated ground beef and dairy products, including different varieties of cheese, was 0.2 to 0.9 cell per g of food. A survey of retail fresh ground beef and farm raw milk samples with this procedure revealed that 3 (2.8%) of 107 ground beef samples and 11 (10%) of 115 raw milk samples were positive for E. coli O157:H7. Most-probable-number determinations revealed E. coli O157:H7 populations of 0.4 to 1.5 cells per g in the three ground beef samples. In addition to being highly specific, sensitive, and rapid, this procedure is easy to perform and is amenable to use by laboratories performing routine microbiological testing.  相似文献   

4.
A solid phase fluorescence-based immunoassay was developed for the detection of Escherichia coli O157:H7 using an antigen down competition format. A soft glass capillary tube served as the solid support, to which heat-killed E. coli O157:H7 were adsorbed. Polyclonal anti- E. coli O157:H7 antibody, conjugated with biotin, was used and the bound antigen-antibody complex was detected using avidin molecules labelled with Cy5, a fluorescent cyanine dye. Any E. coli O157:H7 in the sample would compete with the formation of this complex, reducing fluorescence. This assay was tested for sensitivity with spiked ground beef and apple cider samples. The minimum detectable number of cells present in the initial inoculum was calculated to be approximately 1 colony-forming unit (cfu) per 10g of ground beef when samples were enriched in modified EC broth for 7 h at 37°C. The minimum detectable number of cells for the apple cider samples was calculated to be ∼0.5 cfu ml-1 The E. coli cells in the cider samples were captured with immunomagnetic beads, incubated for 7 h in the enrichment broth, and detected with the solid phase fluorescence immunoassay.  相似文献   

5.
An immunoassay based on immunomagnetic separation and time-resolved fluorometry was developed for the detection of E. coli O157:H7 in apple cider. The time-resolved fluorescent immunoassay (TRFIA) uses a polyclonal antibody bound to immunomagnetic beads as the capture antibody and the same antibody labeled with europium as the detection antibody. Cell suspensions of 10(1) to 10(8) E. coli O157:H7 and K-12 organisms per ml were used to test the sensitivity and specificity of the assay. The sensitivity of the assay was 10(3) E. coli O157:H7 cells with no cross-reaction with K-12. Pure cultures of E. coli O157:H7 (10(1) to 10(5) CFU/ml) in apple cider could be detected within 6 h, including 4 h for incubation in modified EC broth with novobiocin and 2 h for the immunoassay. When apple cider was spiked with 1 to 10(3) CFU/ml of E. coli O157:H7 and 10(6) CFU/ml of K-12, our data show that the high level of K-12 in apple cider did not impede the detection of low levels of O157:H7. The minimum detectable numbers of cells present in the initial inoculum were 10(2) and 10(1) CFU/ml after 4- and 6-h enrichment. The TRFIA provides a rapid and sensitive means of detecting E. coli O157:H7 in apple cider.  相似文献   

6.
A total of 896 samples of retail fresh meats and poultry was assayed for Escherichia coli serogroup O157:H7 by a hydrophobic grid membrane filter-immunoblot procedure developed specifically to isolate the organism from foods. The procedure involves several steps, including selective enrichment, filtration of enrichment culture through hydrophobic grid membrane filters, incubation of each filter on nitrocellulose paper on selective agar, preparation of an immunoblot (by using antiserum to E. coli O157:H7 culture filtrate) of each nitrocellulose paper, selection from the filters of colonies which corresponded to immunopositive sites on blots, screening of isolates by a Biken test for precipitin lines from metabolites and antiserum to E. coli O157:H7 culture filtrate, and confirmation of isolates as Vero cell cytotoxic E. coli O157:H7 by biochemical, serological, and Vero cell cytotoxicity tests. E. coli O157:H7 was isolated from 6 (3.7%) of 164 beef, 4 (1.5%) of 264 pork, 4 (1.5%) of 263 poultry, and 4 (2.0%) of 205 lamb samples. One of 14 pork samples and 5 of 17 beef samples contaminated with the organism were from Calgary, Alberta, Canada, grocery stores, whereas all other contaminated samples were from Madison, Wis., retail outlets. This is the first report of the isolation of E. coli O157:H7 from food other than ground beef, and results indicate that the organism is not a rare contaminant of fresh meats and poultry.  相似文献   

7.
Escherichia coli O157:H7, a major foodborne pathogen, has been associated with numerous cases of foodborne illnesses. Rapid methods have been developed for the screening of this pathogen in foods in order to circumvent timely plate culture techniques. Unfortunately, many rapid methods are presumptive and do not claim to confirm the presence of E. coli O157:H7. The previously developed method, enzyme-linked immunomagnetic chemiluminescence (ELIMCL), has been improved upon to allow for fewer incidences of false positives when used to detect E. coli O157:H7 in the presence of mixed cultures. The key feature of this assay is that it combines the highly selective synergism of both anti-O157 and anti-H7 antibodies in the sandwich immunoassay format. This work presents application of a newly semi-automated version of ELIMCL to the detection of E. coli O157:H7 in pristine buffered saline yielding detection limits of approximately 1 x 10(5) to 1 x 10(6) of live cells/mL. ELIMCL was further demonstrated to detect E. coli O157:H7 inoculated into artificially contaminated ground beef at ca. 400 CFU/g after a 5 h enrichment and about 1.5 h assay time for a total detection time of about 6.5 h. Finally, ELIMCL was compared with USFDA's Bacteriological Analytical Manual method for E. coli O157:H7 in a double-blind study. Using McNemar's treatment, the two methods were determined to be statistically similar for the detection of E. coli O157:H7 in ground beef inoculated with mixed cultures of select bacteria.  相似文献   

8.
AIMS: The lack of baseline data on the prevalence of Escherichia coli O157:H7 in retail minced beef in France prompted this survey of industrial minced beef production. METHODS AND RESULTS: An automated enzyme-linked fluorescence immunoassay (ELFA), the VIDAS E. coli O157 method, was used to detect E. coli O157 in industrial minced beef samples. Confirmation of samples positive according to the ELFA was performed using an automated immunoconcentration (ICE) system, VIDAS ICE, which allows the selective capture and release of target organisms. The ICE was followed by culture on cefixime tellurite sorbitol MacConkey agar and a chromogenic medium, O157:H7 ID. Of the 3450 minced beef samples tested, 175 samples were positive with the ELFA method and, of these, four were confirmed by the ICE method. They were identified as sorbitol-negative, O157-positive, H7-positive, mobile, verotoxin-producing E. coli. CONCLUSIONS: The prevalence of E. coli O157:H7 in industrial French minced beef was 0.12%, consistent with many other reports. SIGNIFICANCE AND IMPACT OF THE STUDY: The low infective dose of E. coli O157:H7 presents a major threat. The main means of combating this organism are thermal destruction and good food hygiene covering activities on-farm, in the abattoir and in minced beef industries.  相似文献   

9.
AIM: To develop an improved, rapid and sensitive sample preparation method for PCR-based detection of Escherichia coli O157:H7 in ground beef. METHODS AND RESULTS: Fresh ground beef samples were experimentally inoculated with varying concentrations of E. coli O157:H7. PCR inhibitors were removed and bacterial cells were concentrated by filtration and centrifugation, and lysed using enzymatic digestion and successive freeze/thaw cycles. DNA was purified and concentrated via phenol/chloroform extraction and the Shiga toxin 1 gene (stx1) was amplified using PCR to evaluate the sample preparation method. Without prior enrichment of cells in broth media, the detection limit was 103 CFU g-1 beef. When a 6 h enrichment step was incorporated, the detection limit was 1 CFU g-1 beef. The total time required from beginning to end of the procedure was 12 h. CONCLUSIONS: The sample preparation method developed here enabled substantially improved sensitivity in the PCR-based detection of E. coli O157:H7 in ground beef, as compared to previous reports. SIGNIFICANCE AND IMPACT OF THE STUDY: Superb sensitivity, coupled with quick turn-around time, relative ease of use and cost-effectiveness, makes this a useful method for detecting E. coli O157:H7 in ground beef.  相似文献   

10.
An O-antigen-specific monoclonal antibody, labeled by horseradish peroxidase-protein A, was used in a hydrophobic grid membrane filter-enzyme-labeled antibody method for rapid detection of Escherichia coli O157 in foods. The method yielded presumptive identification within 24 h and recovered, on average, 95% of E. coli O157:H7 artificially inoculated into comminuted beef, veal, pork, chicken giblets, and chicken carcass washings. In food samples from two outbreaks involving E. coli O157:H7, the organism was isolated at levels of up to 10(3)/g. The lower limit of sensitivity was 10 E. coli O157 per g of meat. Specific typing for E. coli O157:H7 can be achieved through staining with labeled H7 antiserum or tube agglutination.  相似文献   

11.
An O-antigen-specific monoclonal antibody, labeled by horseradish peroxidase-protein A, was used in a hydrophobic grid membrane filter-enzyme-labeled antibody method for rapid detection of Escherichia coli O157 in foods. The method yielded presumptive identification within 24 h and recovered, on average, 95% of E. coli O157:H7 artificially inoculated into comminuted beef, veal, pork, chicken giblets, and chicken carcass washings. In food samples from two outbreaks involving E. coli O157:H7, the organism was isolated at levels of up to 10(3)/g. The lower limit of sensitivity was 10 E. coli O157 per g of meat. Specific typing for E. coli O157:H7 can be achieved through staining with labeled H7 antiserum or tube agglutination.  相似文献   

12.
In this paper, we describe a novel method for detecting Escherichia coli (E. coli) O157:H7 by using a quartz crystal microbalance (QCM) immunosensor based on beacon immunomagnetic nanoparticles (BIMPs), streptavidin-gold, and growth solution. E. coli O157-BIMPs were magnetic nanoparticles loaded with polyclonal anti-E. coli O157:H7 antibody (target antibody, T-Ab) and biotin-IgG (beacon antibody, B-Ab) at an optimized ratio of 1:60 (T-Ab:B-Ab). E. coli O157:H7 was captured and separated by E. coli O157-BIMPs in a sample, and the streptavidin-gold was subsequently conjugated to E. coli O157-BIMPs by using a biotin-avidin system. Finally, the gold particles on E. coli O157-BIMPs were enlarged in growth solution, and the compounds containing E. coli O157:H7, E. coli O157-BIMPs, and enlarged gold particles were collected using a magnetic plate. The QCM immunosensor was fabricated with protein A from Staphylococcus aureus and monoclonal anti-E. coli O157:H7 antibody. The compounds decreased the immunosensor's resonant frequency. E. coli O157-BIMPs and enlarged gold particles were used as "mass enhancers" to amplify the frequency change. The frequency shift was correlated to the bacterial concentration. The detection limit was 23 CFU/ml in phosphate-buffered saline and 53 CFU/ml in milk. This method could successfully detect E. coli O157:H7 with high specificity and stability. The entire procedure for the detection of E. coli O157:H7 took only 4 h.  相似文献   

13.
An impedance biosensor based on interdigitated array microelectrode (IDAM) coupled with magnetic nanoparticle-antibody conjugates (MNAC) was developed and evaluated for rapid and specific detection of E. coli O157:H7 in ground beef samples. MNAC were prepared by immobilizing biotin-labeled polyclonal goat anti-E. coli antibodies onto streptavidin-coated magnetic nanoparticles, which were used to separate and concentrate E. coli O157:H7 from ground beef samples. Magnitude of impedance and phase angle were measured in a frequency range of 10 Hz to 1 MHz in the presence of 0.1M mannitol solution. The lowest detection limits of this biosensor for detection of E. coli O157:H7 in pure culture and ground beef samples were 7.4 x 10(4) and 8.0 x 10(5)CFU ml(-1), respectively. The regression equation for the normalized impedance change (NIC) versus E. coli O157:H7 concentration (N) in ground beef samples was NIC=15.55 N-71.04 with R(2)=0.95. Sensitivity of the impedance biosensor was improved by 35% by concentrating bacterial cells attached to MNAC in the active layer of IDAM above the surface of electrodes with the help of a magnetic field. Based on equivalent circuit analysis, it was observed that bulk resistance and double layer capacitance were responsible for the impedance change caused by the presence of E. coli O157:H7 on the surface of IDAM. Surface immobilization techniques, redox probes, or sample incubation were not used in this impedance biosensor. The total detection time from sampling to measurement was 35 min.  相似文献   

14.
The aim of this research was to elaborate fast and sensitive method ofdetection of E. coli O157:H7 in food samples. Raw ground meat obtained from retail was artificially inoculated with low numbers of E. coli O157:H7. 18 h enrichment culture allowed pathogenic bacteria to multiply to the levels detectable in multiplex PCR. Immunomagnetic separation with magnetic beads coated with an antibody against E. coli O157:H7 were used to concentrate target bacteria and to separate PCR inhibitors. A portion of the bacterial suspension was used in a multiplex PCR to amplify eae (attaching and effacing) gene, stx (shiga toxin) genes and 90 kbp plasmid. The sensitivity of E. coli O157:H7 detection method was shown to be 1 cfu per 25 g of food sample. The total analysis can be completed within 24 h, whilst traditional methods involves enrichment, direct plating and confirmation tests with entire time at least 3 days.  相似文献   

15.
Universal Preenrichment (UP) medium was used successfully for the simultaneous recovery of two strains each of Escherichia coli O157:H7 and Yersinia enterocolitica in the presence of Listeria monocytogenes and Salmonella typhimurium. E. coli O157:H7 and Y. enterocolitica populations reached ca. 108 CFU/ml in UP medium in 18 h from an initial level ofca. 102 CFU/ml. Addition of OxyraseTM enhanced the growth of both E. coli O157:H7 strains and one strain of Y. enterocolitica. These three strains were able to recover from heat injury by 6 h when 24-h cultures were tested, but not when 18-h cultures were used. Injured and noninjured E. coli O157:H7 could be recovered from artificially inoculated food samples (shredded cheddar cheese, turkey ham, hot dogs, mayonnaise, and ground beef) in UP medium supplemented with OxyraseTM (UPO) by 18 h using immunoblotting. Y. enterocolitica could be recovered from turkey ham, hog dogs, and mayonnaise by direct plating on CIN agar from UPO medium. However, recovery of Y. enterocolitica from shredded cheddar cheese and ground beef required subsequent selective enrichment in sorbitol bile broth and isolation on Cefsulodin Irgasan Novobiocin agar (CIN). UPO medium can be used for simultaneous detection of E. coli O157:H7 and Y. enterocolitica from foods. However, subsequent selective enrichment and isolation on selective plating media are required for isolation of Y. enterocolitca from raw foods containing high population levels of background microflora.  相似文献   

16.
C. VERNOZY-ROZAND, C. MAZUY, S. RAY-GUENIOT, S. BOUTRAND-LOEï, A. MEYRAND AND y. richard. 1997. Two commercially available screening methods, an automated enzyme-linked fluorescent immunoassay (VIDASTM E. coli O157) and an immunomagnetic separation followed by culture onto cefixime tellurite sorbitol MacConkey agar (CT-SMAC), were compared for detection of Escherichia coli O157 in naturally and artificially contaminated food samples. A total of 250 naturally contaminated food samples, including raw milk cheeses, poultry, raw sausages and ground beef retail samples, were examined. Four poultry, one raw sausage and one ground beef sample were found to be positive for E. coli O157 by both methods. Of the six positive samples, five were shown to contain sorbitol-positive, O157-positive, H7-negative, motile and non-verotoxin-producing E. coli .  相似文献   

17.
Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors consisting of a piezoelectric and a borosilicate glass layer with a sensing area of 4 mm2 were fabricated. An antibody specific to Escherichia coli (anti-E. coli) O157:H7 was immobilized on PEMC sensors, and exposed to samples containing E. coli O157:H7 (EC) prepared in various matrices: (1) broth, broth plus raw ground beef, and broth plus sterile ground beef without inoculation of E. coli O157:H7 served as controls, (2) 100 mL of broth inoculated with 25 EC cells, (3) 100 mL of broth containing 25 g of raw ground beef and (4) 100 mL of broth with 25 g of sterile ground beef inoculated with 25 EC cells. The total resonant frequency change obtained for the broth plus EC samples were 16+/-2 Hz (n=2), 30 Hz (n=1), and 54+/-2 Hz (n=2) corresponding to 2, 4, and 6h growth at 37 degrees C, respectively. The response to the broth plus 25 g of sterile ground beef plus EC cells were 21+/-2 Hz (n=2), 37 Hz (n=1), and 70+/-2 Hz (n=2) corresponding to 2, 4, and 6 h, respectively. In all cases, the three different control samples yielded a frequency change of 0+/-2 Hz (n=6). The E. coli O157:H7 concentration in each broth and beef samples was determined by both plating and by pathogen modeling program. The results indicate that the PEMC sensor detects E. coli O157:H7 reliably at 50-100 cells/mL with a 3 mL sample.  相似文献   

18.
An immunochromatographic-based assay (Quixtrade mark E. coli O157 Sprout Assay) and a polymerase chain reaction (PCR)-based assay (TaqMan E. coli O157:H7 Kit) were used to detect Escherichia coli O157:H7 strain 380-94 in spent irrigation water from alfalfa sprouts grown from artificially contaminated seeds. Ten, 25, 60, or 100 seeds contaminated by immersion for 15 min in a suspension of E. coli O157:H7 at concentrations of 10(6) or 10(8) cfu/ml were mixed with 20 g of non-inoculated seeds in plastic trays for sprouting. The seeds were sprayed with tap water for 15 s every hour and spent irrigation water was collected at intervals and tested. E. coli O157:H7 was detected in non-enriched water by both the TaqMan PCR (30 of 30 samples) and the immunoassay (9 of 24 samples) in water collected 30 h from the start of the sprouting process. However, enrichment of the spent irrigation water in brain heart infusion (BHI) broth at 37 degrees C for 20 h permitted detection of E. coli O157:H7 in water collected 8 h from the start of sprouting using both methods, even in trays containing as few as 10 inoculated seeds. The TaqMan PCR assay was more sensitive (more positive samples were observed earlier in the sprouting process) than the immunoassay; however, the immunoassay was easier to perform and was more rapid. At 72 h after the start of the sprouting process, the sprouts were heated at 100 degrees C for 30 s to determine the effectiveness of blanching for inactivation of E. coli O157:H7. All of the 32 samples tested with the TaqMan assay and 16 of 32 samples tested with the Quixtrade mark assay gave positive results for E. coli O157:H7 after enrichment of the blanched sprouts at 37 degrees C for 24 h. In addition, the organism was detected on Rainbow Agar O157 in 9 of 32 samples after 24 h of enrichment of the blanched sprouts. In conclusion, E. coli O157:H7 was detected in spent irrigation water collected from sprouts grown from artificially contaminated seeds by both the TaqMan and Quixtrade mark assays. The data also revealed that blanching may not be effective to completely inactivate all the E. coli O157:H7 that may be present in sprouts.  相似文献   

19.
A modified procedure for magnetic capture of antibody-conjugated bacteria for light addressable potentiometric sensor (LAPS) detection using the Threshold System was developed. Streptavidin coated magnetic beads, partially labeled with biotinylated anti Escherichia coli O157 antibodies, were used to capture Escherichia coli O157:H7. Captured bacteria were further labeled with fluorescein-conjugated anti -E. coli O157:H7 antibodies and urease-labeled. anti-fluorescein antibody. Magnetically concentrated bacteria-containing complexes were then immobilized through streptavidin-biotin interactions on 0.45 μ biotinylated nitro-cellulose membranes assembled as sample sticks for the Threshold instrument. The rate of pH change associated with the production of NH3 by the urease in urea-containing solution was measured by a LAPS incorporated in the Threshold instrument. This approach allowed us to detect 103 to 104 CPU of cultured E. coli O157:H7 in PBS solutions. Furthermore, detectable LAPS signals of the sample sticks remained relatively constant for at least 24 h at 4C. The developed approach was applied to detect the E. coli in beef hamburger spiked with the bacteria. After a 5 to 6-h enrichment at 37C, as low as 1 CFU/g of E. coli O157:H7 in beef hamburger could be detected.  相似文献   

20.
Undercooked and raw meat has been linked to outbreaks of hemorrhagic diarrhea due to the presence of Escherichia coli O157:H7; therefore, treatment with ionizing radiation was investigated as a potential method for the elimination of this organism. Response-surface methods were used to study the effects of irradiation dose (0 to 2.0 kGy), temperature (-20 to +20 degrees C), and atmosphere (air and vacuum) on E. coli O157:H7 in mechanically deboned chicken meat. Differences in irradiation dose and temperature significantly affected the results. Ninety percent of the viable E. coli in chicken meat was eliminated by doses of 0.27 kGy at +5 degrees C and 0.42 kGy at -5 degrees C. Small, but significant, differences in radiation resistance by E. coli were found when finely ground lean beef rather than chicken was the substrate. Unlike nonirradiated samples, no measurable verotoxin was found in finely ground lean beef which had been inoculated with 10(4.8) CFU of E. coli O157:H7 per g, irradiated at a minimum dose of 1.5 kGy, and temperature abused at 35 degrees C for 20 h. Irradiation is an effective method to control this food-borne pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号