首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KIF3A is a new microtubule-based anterograde motor in the nerve axon   总被引:24,自引:13,他引:11       下载免费PDF全文
《The Journal of cell biology》1994,125(5):1095-1107
Neurons are highly polarized cells composed of dendrites, cell bodies, and long axons. Because of the lack of protein synthesis machinery in axons, materials required in axons and synapses have to be transported down the axons after synthesis in the cell body. Fast anterograde transport conveys different kinds of membranous organelles such as mitochondria and precursors of synaptic vesicles and axonal membranes, while organelles such as endosomes and autophagic prelysosomal organelles are conveyed retrogradely. Although kinesin and dynein have been identified as good candidates for microtubule-based anterograde and retrograde transporters, respectively, the existence of other motors for performing these complex axonal transports seems quite likely. Here we characterized a new member of the kinesin super-family, KIF3A (50-nm rod with globular head and tail), and found that it is localized in neurons, associated with membrane organelle fractions, and accumulates with anterogradely moving membrane organelles after ligation of peripheral nerves. Furthermore, native KIF3A (a complex of 80/85 KIF3A heavy chain and a 95-kD polypeptide) revealed microtubule gliding activity and baculovirus-expressed KIF3A heavy chain demonstrated microtubule plus end-directed (anterograde) motility in vitro. These findings strongly suggest that KIF3A is a new motor protein for the anterograde fast axonal transport.  相似文献   

2.
The nerve axon is a good model system for studying the molecular mechanism of organelle transport in cells. Recently, the new kinesin superfamily proteins (KIFs) have been identified as candidate motor proteins involved in organelle transport. Among them KIF1A, a murine homologue of unc-104 gene of Caenorhabditis elegans, is a unique monomeric neuron– specific microtubule plus end–directed motor and has been proposed as a transporter of synaptic vesicle precursors (Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. Cell. 81:769–780). To elucidate the function of KIF1A in vivo, we disrupted the KIF1A gene in mice. KIF1A mutants died mostly within a day after birth showing motor and sensory disturbances. In the nervous systems of these mutants, the transport of synaptic vesicle precursors showed a specific and significant decrease. Consequently, synaptic vesicle density decreased dramatically, and clusters of clear small vesicles accumulated in the cell bodies. Furthermore, marked neuronal degeneration and death occurred both in KIF1A mutant mice and in cultures of mutant neurons. The neuronal death in cultures was blocked by coculture with wild-type neurons or exposure to a low concentration of glutamate. These results in cultures suggested that the mutant neurons might not sufficiently receive afferent stimulation, such as neuronal contacts or neurotransmission, resulting in cell death. Thus, our results demonstrate that KIF1A transports a synaptic vesicle precursor and that KIF1A-mediated axonal transport plays a critical role in viability, maintenance, and function of neurons, particularly mature neurons.  相似文献   

3.
beta,beta'-Iminodipropionitrile (IDPN), a neurotoxin, causes redistribution of neurofilaments in axons followed by the development of proximal axonal swellings and, in chronic intoxication, a distal decrease in axonal caliber. The latter changes are caused by a selective impairment in the slow anterograde axonal transport of neurofilament proteins. To assess the role of retrograde axonal transport in IDPN toxicity, we used [3H]N-succinimidyl propionate ([3H]NSP) to label covalently endogenous axonal proteins in sciatic nerve of the rat and measured the accumulation of radioactively labeled proteins in the cell bodies of motor and sensory neurons over time. IDPN was injected intraneurally 6 h or intraperitoneally 1 day before subepineurial injection of [3H]NSP into the sciatic nerve, and the animals were killed 1, 2, and 7 days after [3H]NSP injection. Neurotoxicity was assessed by electron microscopic observation of the nerves of similarly treated animals. Both intraneural and intraperitoneal injection of IDPN caused an acute reduction in the amount of labeled proteins transported back to the cell bodies. The early appearance of these changes suggests that alterations in retrograde transport may play a role in the production of the neuropathic changes.  相似文献   

4.
Post-Golgi carriers of various newly synthesized axonal membrane proteins, which possess kinesin (KIF5)-driven highly processive motility, were transported from the TGN directly to axons. We found that KIF5 has a preference to the microtubules in the initial segment of axon. Low dose paclitaxel treatment caused missorting of KIF5, as well as axonal membrane proteins to the tips of dendrites. Microtubules in the initial segment of axons showed a remarkably high affinity to EB1-YFP, which was known to bind the tips of growing microtubules. These findings revealed unique features of the microtubule cytoskeletons in the initial segment, and suggested that they provide directional information for polarized axonal transport.  相似文献   

5.
Neurons use kinesin and dynein microtubule-dependent motor proteins to transport essential cellular components along axonal and dendritic microtubules. In a search for new kinesin-like proteins, we identified two neuronally enriched mouse kinesins that provide insight into a unique intracellular kinesin targeting mechanism in neurons. KIF21A and KIF21B share colinear amino acid similarity to each other, but not to any previously identified kinesins outside of the motor domain. Each protein also contains a domain of seven WD-40 repeats, which may be involved in binding to cargoes. Despite the amino acid sequence similarity between KIF21A and KIF21B, these proteins localize differently to dendrites and axons. KIF21A protein is localized throughout neurons, while KIF21B protein is highly enriched in dendrites. The plus end-directed motor activity of KIF21B and its enrichment in dendrites indicate that models suggesting that minus end-directed motor activity is sufficient for dendrite specific motor localization are inadequate. We suggest that a novel kinesin sorting mechanism is used by neurons to localize KIF21B protein to dendrites since its mRNA is restricted to the cell body.  相似文献   

6.
Complex neural circuitry requires stable connections formed by lengthy axons. To maintain these functional circuits, fast transport delivers RNAs to distal axons where they undergo local translation. However, the mechanism that enables long-distance transport of RNA granules is not yet understood. Here, we demonstrate that a complex containing RNA and the RNA-binding protein (RBP) SFPQ interacts selectively with a tetrameric kinesin containing the adaptor KLC1 and the motor KIF5A. We show that the binding of SFPQ to the KIF5A/KLC1 motor complex is required for axon survival and is impacted by KIF5A mutations that cause Charcot-Marie Tooth (CMT) disease. Moreover, therapeutic approaches that bypass the need for local translation of SFPQ-bound proteins prevent axon degeneration in CMT models. Collectively, these observations indicate that KIF5A-mediated SFPQ-RNA granule transport may be a key function disrupted in KIF5A-linked neurologic diseases and that replacing axonally translated proteins serves as a therapeutic approach to axonal degenerative disorders.  相似文献   

7.
Kinesin is known as a representative cytoskeletal motor protein that is engaged in cell division and axonal transport. In addition to the mutant assay, recent advances using the PCR cloning technique have elucidated the existence of many kinds of kinesin-related proteins in yeast, Drosophila, and mice. We previously cloned five different members of kinesin superfamily proteins (KIFs) in mouse brain (Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. 1992. J. Cell Biol. 119:1287-1296) and demonstrated that one of them, KIF3A, is an anterograde motor (Kondo, S., R. Sato-Yashitake, Y. Noda, H. Aizawa, T. Nakata, Y. Matsuura, and N. Hirokawa. J. Cell Biol. 1994. 125:1095-1107). We have now characterized another axonal transport motor, KIF2. Different from other KIFs, KIF2 is a central type motor, since its motor domain is located in the center of the molecule. Recombinant KIF2 exists as a dimer with a bigger head and plus-end directionally moves microtubules at a velocity of 0.47 +/- 0.11 microns/s, which is two thirds that of kinesin's. Immunocytological examination showed that native KIF2 is abundant in developing axons and that it accumulates in the proximal region of the ligated nerves after a 20-h ligation. Soluble KIF2 exists without a light chain, and KIF2's associated-vesicles, immunoprecipitated by anti-KIF2 antibody, are different from those carried by existing motors such as kinesin and KIF3A. They are also distinct from synaptic vesicles, although KIF2 is accumulated in so-called synaptic vesicle fractions and embryonal growth cone particles. Our results strongly suggest that KIF2 functions as a new anterograde motor, being specialized for a particular group of membranous organelles involved in fast axonal transport.  相似文献   

8.
Cytoplasmic protein transport in axons (‘slow axonal transport’) is essential for neuronal homeostasis, and involves Kinesin‐1, the same motor for membranous organelle transport (‘fast axonal transport’). However, both molecular mechanisms of slow axonal transport and difference in usage of Kinesin‐1 between slow and fast axonal transport have been elusive. Here, we show that slow axonal transport depends on the interaction between the DnaJ‐like domain of the kinesin light chain in the Kinesin‐1 motor complex and Hsc70, scaffolding between cytoplasmic proteins and Kinesin‐1. The domain is within the tetratricopeptide repeat, which can bind to membranous organelles, and competitive perturbation of the domain in squid giant axons disrupted cytoplasmic protein transport and reinforced membranous organelle transport, indicating that this domain might have a function as a switchover system between slow and fast transport by Hsc70. Transgenic mice overexpressing a dominant‐negative form of the domain showed delayed slow transport, accelerated fast transport and optic axonopathy. These findings provide a basis for the regulatory mechanism of intracellular transport and its intriguing implication in neuronal dysfunction.  相似文献   

9.
The delivery of neurofilaments via axonal transport has been proposed as an important mechanism for regulating axonal caliber. If this hypothesis is correct, alterations in axonal caliber should appear coincident with changes in the delivery of neurofilaments to the axon. The purpose of this study was to determine whether alterations in the caliber of axons in the proximal stumps of transected motor fibers precede, coincide with, or occur substantially later than changes in the delivery of neurofilaments via axonal transport. Between 3 d and 12 wk after crushing the sciatic nerves of 7-wk-old rats, lumbar motor neurons were labeled by the intraspinal injection of [35S]methionine. In neurons labeled between 3 d and 6 wk after axotomy, the relative amount of neurofilament protein in the slow component, as reflected by the ratio of the radioactivities of the 145-kD neurofilament protein to tubulin, was reduced to 30-40% of the control value. Moreover, as determined by immunoreactivity on blots, the amounts of neurofilament protein and tubulin in these nerve fibers were reduced fourfold and twofold, respectively. Thus, changes in the ratio of labeled neurofilament protein to tubulin correlated with comparable changes in the quantities of these proteins in nerve fibers. This decrease in the quantity of neurofilament proteins delivered to axons coincided temporally with reductions in axonal caliber. After regeneration occurred, the delivery of neurofilament proteins returned to pre-axotomy levels (i.e., 8 wk after axotomy), and caliber was restored with resumption of normal age-related radial growth of these axons. Thus, changes in axonal caliber coincided temporally with alterations in the delivery of neurofilament proteins. These results suggest that the majority of neurofilaments in these motor fibers continuously move in the anterograde direction as part of the slow component of axonal transport and that the transport of neurofilaments plays an important role in regulating the caliber of these axons.  相似文献   

10.
In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule‐binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin‐3 (KIF1) and kinesin‐4 (KIF21) subfamily that can also target dendrites. We found that microtubule‐binding protein doublecortin‐like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1‐dependent dense‐core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule‐binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport.  相似文献   

11.
In mammals, 15 to 20 kinesins are thought to mediate vesicle transport. Little is known about the identity of vesicles moved by each kinesin or the functional significance of such diversity. To characterize the transport mediated by different kinesins, we developed a novel strategy to visualize vesicle‐bound kinesins in living cells. We applied this method to cultured neurons and systematically determined the localization and transport parameters of vesicles labeled by different members of the Kinesin‐1, ‐2, and ‐3 families. We observed vesicle labeling with nearly all kinesins. Only six kinesins bound vesicles that undergo long‐range transport in neurons. Of these, three had an axonal bias (KIF5B, KIF5C and KIF13B), two were unbiased (KIF1A and KIF1Bβ), and one transported only in dendrites (KIF13A). Overall, the trafficking of vesicle‐bound kinesins to axons or dendrites did not correspond to their motor domain preference, suggesting that on‐vesicle regulation is crucial for kinesin targeting. Surprisingly, several kinesins were associated with populations of somatodendritic vesicles that underwent little long‐range transport. This assay should be broadly applicable for investigating kinesin function in many cell types.  相似文献   

12.
KIF1A is a kinesin motor known to transport synaptic vesicle precursors in neuronal axons, but little is known about whether KIF1A mediates fast and processive axonal transport in vivo. By monitoring movements of EGFP-labeled KIF1A in living cultured hippocampal neurons, we determined the characteristics of KIF1A movements. KIF1A particles moved anterogradely along the neurites with an average velocity of 1.0 microm/s. The movements of KIF1A were highly processive, with an average duration of persistent anterograde movement of 11 s. Some KIF1A particles (17%) exhibited retrograde movements of 0.72 microm/s, although overall particle movement was in the anterograde direction. The anterograde movement of KIF1A, however, did not lead to a detectable accumulation of KIF1A in the periphery of neurons, suggesting that there are mechanisms inhibiting the peripheral accumulation of KIF1A. These results suggest that KIF1A mediates neuronal transport at a high velocity and processivity in vivo.  相似文献   

13.
To clarify the role of the neurofilament (NF) medium (NF-M) and heavy (NF-H) subunits, we generated mice with targeted disruption of both NF-M and NF-H genes. The absence of the NF-M subunit resulted in a two- to threefold reduction in the caliber of large myelinated axons, whereas the lack of NF-H subunits had little effect on the radial growth of motor axons. In NF-M-/- mice, the velocity of axonal transport of NF light (NF-L) and NF-H proteins was increased by about two-fold, whereas the steady-state levels of assembled NF-L were reduced. Although the NF-M or NF-H subunits are each dispensable for the formation of intermediate filaments, the absence of both subunits in double NF-M; NF-H knockout mice led to a scarcity of intermediate filament structures in axons and to a marked approximately twofold increase in the number of microtubules. Protein analysis indicated that the levels of NF-L and alpha-internexin proteins were reduced dramatically throughout the nervous system. Immunohistochemistry of spinal cord from the NF-M-/-;NF-H-/- mice revealed enhanced NF-L staining in the perikaryon of motor neurons but a weak NF-L staining in axons. In addition, axonal transport studies carried out by the injection of [35S]methionine into spinal cord revealed after 30 days very low levels of newly synthesized NF-L proteins in the sciatic nerve of NF-M-/-;NF-H-/- mice. The combined results demonstrate a requirement of the high-molecular-weight subunits for the assembly of type IV intermediate filament proteins and for the efficient translocation of NF-L proteins into the axonal compartment.  相似文献   

14.
Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration) on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose) for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal neurons, which may lead to changes in synaptic proteins, thus contributing to changes in hippocampal neurotransmission and to cognitive and memory impairments.  相似文献   

15.
The prolonged nonintensive physical activity by swimming without load (12 +/- 2 h.) has no effect on the overall amount of fast and slow transported proteins of transport velocity in rat central and peripheral sensory fibres of the sciatic nerve. However, the rate of fast axonal transport in the motor fibres decreases by 18% and the amount of proteins by a factor of 2 as compared with control. The rate of slow axonal transport does not change, but the mean level of transported labeled proteins decreases by 1.9 times. The relatively short-term but more intensive activity (swimming with the load during 60 +/- 10 min.) provokes an increase of the rate by 10% and the overall amount of fast transported proteins by 2 times. The rest of the animals during 6 h. returns the above parameters to control values. A suggestion is made that the rate and the amount of transported proteins depend on the variations in functional state of the neurons and their axons.  相似文献   

16.
Transport of material and signals between extensive neuronal processes and the cell body is essential to neuronal physiology and survival. Slowing of axonal transport has been shown to occur before the onset of symptoms in amyotrophic lateral sclerosis (ALS). We have previously shown that several familial ALS-linked copper–zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interacted and colocalized with the retrograde dynein–dynactin motor complex in cultured cells and affected tissues of ALS mice. We also found that the interaction between mutant SOD1 and the dynein motor played a critical role in the formation of large inclusions containing mutant SOD1. In this study, we showed that, in contrast to the dynein situation, mutant SOD1 did not interact with anterograde transport motors of the kinesin-1 family (KIF5A, B and C). Using dynein and kinesin accumulation at the sciatic nerve ligation sites as a surrogate measurement of axonal transport, we also showed that dynein mediated retrograde transport was slower in G93A than in WT mice at an early presymptomatic stage. While no decrease in KIF5A-mediated anterograde transport was detected, the slowing of anterograde transport of dynein heavy chain as a cargo was observed in the presymptomatic G93A mice. The results from this study along with other recently published work support that mutant SOD1 might only interact with and interfere with some kinesin members, which, in turn, could result in the impairment of a selective subset of cargos. Although it remains to be further investigated how mutant SOD1 affects different axonal transport motor proteins and various cargos, it is evident that mutant SOD1 can induce defects in axonal transport, which, subsequently, contribute to the propagation of toxic effects and ultimately motor neuron death in ALS.  相似文献   

17.
Kinesin family in murine central nervous system   总被引:27,自引:15,他引:12       下载免费PDF全文
《The Journal of cell biology》1992,119(5):1287-1296
In neuronal axons, various kinds of membranous components are transported along microtubules bidirectionally. However, only two kinds of mechanochemical motor proteins, kinesin and brain dynein, had been identified as transporters of membranous organelles in mammalian neurons. Recently, a series of genes that encode proteins closely related to kinesin heavy chain were identified in several organisms including Schizosaccharomyces pombe, Aspergillus niddulans, Saccharomyces cerevisiae, Caenorhabditus elegans, and Drosophila. Most of these members of the kinesin family are implicated in mechanisms of mitosis or meiosis. To address the mechanism of intracellular organelle transport at a molecular level, we have cloned and characterized five different members (KIF1-5), that encode the microtubule-associated motor domain homologous to kinesin heavy chain, in murine brain tissue. Homology analysis of amino acid sequence indicated that KIF1 and KIF5 are murine counterparts of unc104 and kinesin heavy chain, respectively, while KIF2, KIF3, and KIF4 are as yet unidentified new species. Complete amino acid sequence of KIF3 revealed that KIF3 consists of NH2-terminal motor domain, central alpha-helical rod domain, and COOH-terminal globular domain. Complete amino acid sequence of KIF2 revealed that KIF2 consists of NH2-terminal globular domain, central motor domain, and COOH-terminal alpha-helical rod domain. This is the first identification of the kinesin-related protein which has its motor domain at the central part in its primary structure. Northern blot analysis revealed that KIF1, KIF3, and KIF5 are expressed almost exclusively in murine brain, whereas KIF2 and KIF4 are expressed in brain as well as in other tissues. All these members of the kinesin family are expressed in the same type of neurons, and thus each one of them may transport its specific organelle in the murine central nervous system.  相似文献   

18.
Kinesin superfamily proteins (KIFs) comprise several dozen molecular motor proteins. The KIF3 heterotrimer complex is one of the most abundantly and ubiquitously expressed KIFs in mammalian cells. To unveil the functions of KIF3, microinjection of function-blocking monovalent antibodies against KIF3 into cultured superior cervical ganglion (SCG) neurons was carried out. They significantly blocked fast axonal transport and brought about inhibition of neurite extension. A yeast two-hybrid binding assay revealed the association of fodrin with the KIF3 motor through KAP3. This was further confirmed by using vesicles collected from large bundles of axons (cauda equina), from which membranous vesicles could be prepared in pure preparations. Both immunoprecipitation and immunoelectron microscopy indicated the colocalization of fodrin and KIF3 on the same vesicles, the results reinforcing the evidence that the cargo of the KIF3 motor consists of fodrin-associating vesicles. In addition, pulse-labeling study implied partial comigration of both molecules as fast flow components. Taken together, the KIF3 motor is engaged in fast axonal transport that conveys membranous components important for neurite extension.  相似文献   

19.
《The Journal of cell biology》1995,130(6):1413-1422
The carboxy-terminal tail domains of neurofilament subunits neurofilament NF-M and NF-H have been postulated to be responsible for the modulation of axonal caliber. To test how subunit composition affects caliber, transgenic mice were generated to increase axonal NF- M. Total neurofilament subunit content in motor and sensory axons remained essentially unchanged, but increases in NF-M were offset by proportionate decreases in both NF-H and axonal cross-sectional area. Increase in NF-M did not affect the level of phosphorylation of NF-H. This indicates that (a) in vivo NF-H and NF-M compete either for coassembly with a limiting amount of NF-L or as substrates for axonal transport, and (b) NF-H abundance is a primary determinant of axonal caliber. Despite inhibition of radial growth, increase in NF-M and reduction in axonal NF-H did not affect nearest neighbor spacing between neurofilaments, indicating that cross-bridging between nearest neighbors does not play a crucial role in radial growth. Increase in NF- M did not result in an overt phenotype or neuronal loss, although filamentous swellings in perikarya and proximal axons of motor neurons were frequently found.  相似文献   

20.
Axonal transport of neurofilament (NFs) is considered to be regulated by phosphorylation. While existing evidence for this hypothesis is compelling, supportive studies have been largely restricted to correlative evidence and/or experimental systems involving mutants. We tested this hypothesis in retinal ganglion cells of normal mice in situ by comparing subunit transport with regional phosphorylation state coupled with inhibition of phosphatases. NF subunits were radiolabeled by intravitreal injection of 35S-methionine. NF axonal transport was monitored by following the location of the peak of radiolabeled subunits immunoprecipitated from 9x1.1 mm segments of optic axons. An abrupt decline transport rate was observed between days 1 and 6, which corresponded to translocation of the peak of radiolabeled subunits from axonal segment 2 into segment 3. Notably, this is far downstream from the only caliber increase of optic axons at 150 mu from the retina. Immunoblot analysis demonstrated a unique threefold increase between segments 2 and 3 in levels of a "late-appearing" C-terminal NF-H phospho-epitope (RT97). Intravitreal injection of the phosphatase inhibitor okadaic acid increased RT97 immunoreactivity within retinas and proximal axons, and markedly decreased NF transport rate out of retinas and proximal axons. These findings provide in situ experimental evidence for regulation of NF transport by site-specific phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号