首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Sound production in seven species of bush crickets (Tettigonia cantans, T. virridissima, Decticus verrucivorus, D. albifrons, Psorodonotus illyricus, Ephippiger ephippiger, E. discoidalis) has been investigated. Aspects of wing morphology have been compared and show that areas of the dorsal fields and the mirror are correlated with the dominant frequencies of the songs. Tooth removal from the pars stridens produces gaps in the time structure of single syllables but no change in the song power spectra. The removal of the tegminal lateral field in long- and medium-sized wing species (T.c., T.v., D.a., D.v.) produces an increase in the ultrasonic components of caudally-emitted sound. This suggests an absorbing function for the lateral fields in intact animals. In all species removal of a small portion of the mirror frame or of the mirror membrane attenuates the whole stridulatory signal, but especially the ultrasonic components. The mirror therefore functions as an amplifier, especially for high frequencies. Manipulation of the dorsal fields of long- and medium-winged species, or the distal edges of tegmina of brachypterous species, deletes or shifts the songs' dominant frequency. Thus the different tegminal structures (and especially the dorsal fields) contribute to the time structures and power spectra of the stridulatory songs of these species.  相似文献   

2.
Abstract

Comparative studies of sound production and sound emission in seven species of European tettigoniids have been carried out. The species chosen were two Tettigoniines (Tettigonia cantans, Tettigonia viridissima), two Ephippigerines (Ephippiger discoidalis, Ephippiger ephippiger), and three Decticines (Decticus albifrons, Decticus verrucivorus, Psorodonotus illyricus). The factors which determined the choice of species were the different morphology (for example body shape and weight, and wing size) of the three subfamilies. The parameters of the different songs (e.g. dominant frequency, intensity) are normally not correlated to any of the investigated morphological characteristics of the animals. In the brachypterous species intraspecific correlations exist between wing size and the dominant low frequency band of the call. This frequency band is also observable at related higher frequencies in the ultrasonic range (20–60 kHz), the observed band width increasing with frequency. Sound emission in all species is to some extent directional. This directionality is related to body size and wing structure. The song structure of the different species does not appear to be related to any observable characteristic of the habitat of die animals. A possible exception may be the song of Psorodonotus illyricus with a particularly low dominant frequency band. The phylogenetic development of the songs seems to be determined by relationships between the different species rather than to any factors contributed by the habitat.  相似文献   

3.
4.
ABSTRACT. During Drosophila courtship 'pulse song', muscle potentials occur at two points during the cycle of neuromuscular events which result in a sound pulse being produced. The dorsal longitudinal, second and third dorsal ventral and axillary muscles show potentials 18 ms before each sound pulse while the first dorsal ventral, basalar and sternobasalar muscles fire 3 ms after the onset of each pulse. The timing of these events remains unaltered in animals with the antennae removed, indicating that acoustic feedback is not an important factor. Courting vestigial flies, in the absence of detectable wing base movements, produce indirect muscle potentials at the appropriate song inter-pulse intervals. Thus proprioceptive feedback is also unimportant in determining the intervals between pulses. During putative 'sine song', 'pulse song' and flight in vestigial flies, however, the timing of basalar muscle potentials is abnormal. Also, if the wing is driven externally at a frequency different from that of normal flight, basalar and, to a lesser extent, first dorsal ventral muscles, are phase locked to the driving frequency. These two results suggest that the timing of those muscles which fire at the beginning of the sound pulses is set by proprioceptive feedback. A model of song production is proposed which takes into account the data from this and from previously published papers.  相似文献   

5.
SOUND PRODUCTION BY AQUATIC INSECTS   总被引:1,自引:0,他引:1  
1. Sound production by aquatic insects is found in four orders — Trichoptera, Odonata, Heteroptera and Coleoptera. 2. Immature aquatic insects that produce sound are rare, stridulation being present in one family of Trichoptera (Hydropsychidae) and one genus and species in a relic suborder of Odonata (Anisozygoptera) - Epiophlebia superstes. Hydropsychid larvae produce sound with a head/fore femur mechanism and use sound as part of aggressive behaviour for defence of feeding nets. Larval E. superstes use a hind femur/abdominal mechanism to dissuade predators. 3. Sound production has been documented in adults of all families of aquatic Heteroptera except Helotrephidae. In corixids and notonectids, acoustic signals play a role in mating. Members of the genus Buenoa (Notonectidae) are unique in having two stridulatory mechanisms in the same individual. Sound production has been most intensively studied in the Corixidae. Although sounds are used in mating by all singing corixids, their use seems to be facultative in some species and obligatory in others. Recent experiments by Theiss (1982) have shown that the air stores carried by corixids are used for both sound radiation and reception. 4. The adephagan beetle families Hygrobiidae, Dytiscidae and Haliplidae have all been shown to produce sound. Mechanisms of sound production have been established for haliplids and hygrobiids but have yet to be for most dytiscids. Sound production is used by beetles as part of sequences of aggressive/defensive and reproductive behaviour. 5. Sound production is especially well documented in the Hydrophilidae (Polyphaga). Hydrophilids use an abdominal/elytral mechanism and sound appears to be used in the same contexts as in adephagans. 6. Insects that produce sound under water must contend with the physical problems of sound transmission in a relatively dense, viscous medium with sharp boundaries. Because of potential distortion of the frequency components in a signal by reflection from the air/water interface in very shallow water, frequency is unreliable for encoding information. Aquatic insects use instead amplitude modulation and temporal patterning of signals. 7. For aquatic invertebrates, sound fields are different than those in air because the extent of the near field is approximately four times greater in water. This near field, a region in which displacement waves are predominant over pressure waves, extends to a greater distance than most aquatic insects communicate over. Such displacement waves could have important but as yet unconsidered effects. 8. The mass and viscosity of the water dictates that sound producing structures of aquatic insects should be heavier and more massive than those of terrestrial insects. A survey of stridulatory organs of aquatic insects reveals this to be true and reveals that the relatively fragile, membranous stridulatory organs of some terrestrial insects (especially Orthoptera) are absent. 9. The elaboration of sound producing structures in aquatic insects probably occurred at the family or subfamily level and for Heteroptera, Trichoptera and Odonata evolved after the invasion of the water. Acoustic signals used reproductively would probably be more closely associated with the emergence of new taxa. 10. Stridulatory structures have been derived from either structures devoted to some other function or from structures involved in the behaviour currently enhanced by sound production.  相似文献   

6.
Rubbed wings, analysed calls and a peculiar sound generator structure in males of a conocephaline katydid, Xiphelimum amplipennis, give insight into the making of broadband spectra. High shear forces are indicated by a robust forewing morphology. Intensity is high for frequencies in a 20–60 kHz ultrasonic band. Besides a typical katydid sound-radiating mirror and harp, this insect has a long costal series of semi-transparent specular sound radiators. These wing cells are loaded behind by an enlarged and partitioned subwing air space. Calls repeat steadily with five different time domain sound elements. Distinctive spectra are associated with two of these, giving stepwise frequency modulation that combines to create the exceptionally wide spectral breadth. Broadcast sound levels at 10 cm dorsal, right and left, are near 100 dB. Costal wing-cell sound radiation was explored by loading the costal “speculae” with wax. This produced almost no decrease in lateral sound levels, but did alter spectral content. Apparently, this insect’s costal region both baffles and radiates. The species lives at high densities in cluttered vegetation and sound signal attenuation should code via spectral shape for distance ranging.  相似文献   

7.
A functional analysis of the striated swim-bladder muscles engaged in the sound production of the toadfish has been performed by simultaneous recording of muscle action potentials, mechanical effects, and sound. Experiments with electrical nerve stimulation were made on excised bladder, while decerebrate preparations were used for studies of reflex activation of bladders in situ. The muscle twitch in response to a single maximal nerve volley was found to be very fast. The average contraction time was 5 msec. with a range from 3 to 8 msec., the relaxation being somewhat slower. The analysis of muscle action potentials with surface electrodes showed that the activity of the muscle fibers running transversely to the long axis of the muscle was well synchronized both during artificial and reflex activation. With inserted metal microelectrodes monophasic potentials of 0.4 msec. rise time and 1.2 to 1.5 msec. total duration were recorded. The interval between peak of action potential and onset of contraction was only 0.5 msec. Microphonic recordings of the characteristic sound effect accompanying each contraction showed a high amplitude diphasic deflection during the early part of the contraction. During relaxation a similar but smaller deflection of opposite phase could sometimes be distinguished above the noise level. The output from the microphone was interpreted as a higher order derivative function of the muscle displacement. This interpretation was supported by complementary experiments on muscle sound in mammalian muscle. The dependence of the sound effects on the rate of muscle contraction was demonstrated by changing the temperature of the preparation and, in addition, by a special series of experiments with repeated stimulation at short intervals. Results obtained by varying the pressure within the bladder provided further evidence for the view that the sound initiated in the muscle is reinforced by bladder resonance. Analysis of spontaneous grunts confirmed the finding of a predominant sound frequency of about 100 per second, which was also found in reflexly evoked grunts. During these, muscle action potentials of the same rate as the dominant sound frequency were recorded, the activity being synchronous in the muscles on both sides. Some factors possibly contributing to rapid contraction are discussed.  相似文献   

8.
γ-氨基丁酸能抑制对大棕蝠听皮层神经元声反应特性的影响   总被引:11,自引:0,他引:11  
为了探讨γ-氨基丁酸(γ-aminobutyric acid,GABA)能抑制对大棕蝠(Eptesicus fuscus)听皮层(auditory cortex,AC)神经元声反应特性的影响,采用多管微电极电泳方法,观察了8只大棕蝠AC神经元去ABA能抑制前后声刺激诱发的反应。结果显示,微电泳GABAa受体拮抗剂荷包牡丹碱(bicuculline,Bic)去ABA能抑制可改变声刺激诱发的反应模式;极大地增加神经元冲动发放率,缩短反应的潜伏期和降低反应的最小阈值;不同程度地改变强度-发放率和强度-潜伏期函数。结果提示:1、GABA能抑制对AC神经元声信号处理起重要作用;2、GABA能抑制可改变AC神经元兴奋性支配或输入的效应,并因此定型AC神经元的声反应性质,即发放模式、阈值、强度-发放率和强度-潜伏期函数;3、GABA能抑制为AC神经元的声诱发活动提供一种调制性抑制。  相似文献   

9.
Male katydids produce mating calls by stridulation using specialized structures on the forewings. The right wing (RW) bears a scraper connected to a drum‐like cell known as the mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral side, the stridulatory file. Sound is generated with the scraper sweeping across the file, producing vibrations that are amplified by the mirror. Using this sound generator, katydids exploit a range of song carrier frequencies (CF) unsurpassed by any other insect group, with species singing as low as 600 Hz and others as high as 150 kHz. Sound generator size has been shown to scale negatively with CF, but such observations derive from studies based on few species, without phylogenetic control, and/or using only the RW mirror length. We carried out a phylogenetic comparative analysis involving 94 species of katydids to study the relationship between LW and RW components of the sound generator and the CF of the male's mating call, while taking into account body size and phylogenetic relationships. The results showed that CF negatively scaled with all morphological measures, but was most strongly related to components of the sound generation system (file, LW and RW mirrors). Interestingly, the LW mirror (reduced and nonfunctional) predicted CF more accurately than the RW mirror, and body size is not a reliable CF predictor. Mathematical models were verified on known species for predicting CF in species for which sound is unknown (e.g. fossils or museum specimens).  相似文献   

10.
Jonsson T  Kravitz EA  Heinrich R 《Fly》2011,5(1):29-38
Male Drosophila fruit flies acquire and defend territories in order to attract females for reproduction. Both, male-directed agonistic behavior and female-directed courtship consist of series of recurrent stereotypical components. Various studies demonstrated the importance of species-specific sound patterns generated by wing vibration as being critical for male courtship success. In this study we analyzed the patterns and importance of sound signals generated during agonistic interactions of male Drosophila melanogaster. In contrast to acoustic courtship signals that consist of sine and pulse patterns and are generated by one extended wing, agonistic signals lack sine-like components and are generally produced by simultaneous movements of both wings. Though intra-pulse oscillation frequencies (carrier frequency) are identical, inter-pulse intervals are twice as long and more variable in aggression signals than in courtship songs, where their precise temporal pattern serves species recognition. Acoustic signals accompany male agonistic interactions over their entire course but occur particularly often after tapping behavior which is a major way to identify the gender of the interaction partner. Since similar wing movements may either be silent or generate sound and wing movements with sound have a greater impact on the subsequent behavior of a receiver, sound producing wing movements seem to be generated intentionally to serve as a specific signal during fruit fly agonistic encounters.  相似文献   

11.
We studied the effect of irradiation with Q-switched Nd:YAG laser light (1064 nm) on spinal cord dorsal column and dorsolateral white matter in anesthetized rats. To evoke a synchronous sensory input, the sciatic nerve was stimulated electrically and the resulting evoked spinal cord potential (SCP) recorded from the dorsal columns of the ipsilateral side. The waveshape of the SCP showed three components: an early positive peak (P1), representing the responses of the most rapidly conducting fibers, followed by two negative peaks (N1 and N2), which are mainly due to synaptic effects of the volley on dorsal horn cells located in dorsal grey matter. Laser irradiation at 50 mJ/pulse and above resulted in severe reduction in the amplitudes of N1 and N2. In contrast, there was either no reduction at all or only a slight decrease in the amplitude of P1. The selective loss of the synaptic field might be mediated by impairment of synaptic transmission or by loss of high threshold fiber input to dorsal horn neurones. In either event it is likely that the mechanism of the differential effects of laser irradiation on the components of the electrically evoked SCP is at least in part photothermally mediated, since intracord temperatures during laser application greatly exceeded the physiological range.  相似文献   

12.
In a two-alternative, forced-choice task lesser bulldog bats were trained to distinguish between a pure tone pulse and a pulse composed of a series of brief tonal steps oscillating between two different frequencies. The tone-step pulse gradually approximates the pure tone pulse as the frequency difference between the steps becomes progressively smaller. Frequency difference limens for the brief tonal frequency steps were determined for a broad range of ultrasonic frequencies. The variation in tone-step difference limens with frequency appears to be correlated to the frequency structure of the bat's short-constant-frequency/frequency-modulated echolocation sound. There was a marked decline in the value of the relative frequency difference limens (Weber ratio) over a fairly narrow range of frequencies above the constant frequency and a sharp increase in threshold above this range. The relative thresholds for frequency discrimination were small and uniform over the frequency range of the frequency-modulated sweep and increased for frequencies below the frequency- modulated sweep. Thus, the most accurate frequency-discrimination abilities occur over a narrow frequency range around the frequency of the constant-frequency component of returning echoes. Frequency discrimination over the range of frequencies of the frequency-modulated component is relatively good. Accepted: 20 March 1999  相似文献   

13.
Analysis of background multicellular activity of neuronal populations in the dorsal hyperstriatum of chick embryos and baby-chicks, incubated either in darkness or under periodic illumination, revealed an impulse volley structure which is characterized by onset of discharges which follow each other in a form of small series at close intervals. These series originally may be observed in the background activity of the left dorsal hyperstriatum in "illuminated" chick embryos at the 19th day of incubation, and only at the 1st day after hatching--in the right dorsal hyperstriatum of embryos, "illuminated" although they are present in both left and right dorsal hyperstriatum in embryos incubated in darkness, the difference being presumably due to asymmetric input of visual afferentation to this structure. Series of impulse volleys with repeating intervals are considered as a reflection of the activity of local microsystems of neurons which exhibit cyclic structure and which are capable to maintain stable impulse activity in its intrinsic system of connections, which is one of the elements of a mechanism of synaptic stabilization and formation of organized neuronal complexes.  相似文献   

14.
Male Club-winged Manakins, Machaeropterus deliciosus (Aves: Pipridae), produce a sustained tonal sound with specialized wing feathers. The fundamental frequency of the sound produced in nature is approximately 1500 Hz and is hypothesized to result from excitation of resonance in the feathers'' hypertrophied shafts. We used laser Doppler vibrometry to determine the resonant properties of male Club-winged Manakin''s wing feathers, as well as those of two unspecialized manakin species. The modified wing feathers exhibit a response peak near 1500 Hz, and unusually high Q-values (a measure of resonant tuning) for biological objects (Q up to 27). The unmodified wing feathers of the Club-winged Manakin do not exhibit strong resonant properties when measured in isolation. However, when measured still attached to the modified feathers (nine feathers held adjacent by an intact ligament), they resonate together as a unit near 1500 Hz, and the wing produces a second harmonic of similar or greater amplitude than the fundamental. The feathers of the control species also exhibit resonant peaks around 1500 Hz, but these are significantly weaker, the wing does not resonate as a unit and no harmonics are produced. These results lend critical support to the resonant stridulation hypothesis of sound production in M. deliciosus.  相似文献   

15.
蝉的变音调复合声和发声机制的分析   总被引:3,自引:1,他引:2  
蒋锦昌  徐慕玲 《昆虫学报》1991,34(2):159-165
蛙鸣蝉(Meimuna opalifera (Walk).ab.punctata Kato)的自然鸣声为“ji…guái”的重复单变调复合声.“ji”为主音频约4800Hz的准单音;“guái”的波形和主音频呈明显的演变,优势主频约2100Hz和2800Hz的变音调声.鸟鸣蝉(Meimuna opalifera (Walk)var.formosana Kato)的自然鸣声由重复的“jiū…ruǎ”和“jiū…gū…”合成的双变调复合声.“jiū”为基频和主频分别约625Hz和2100—2300Hz的准单音;“ruǎ”的波形和主音频呈明显的演变,基音和优势主频分别约575—625Hz和1550—1750Hz的变音调声.“gū”为优势主频约625Hz的准单音.变音调复合声不仅与腹部运动有关,而主要取决于发声肌的收缩特性和发声膜肋结构的振动特性.  相似文献   

16.
The new stick insect family Gallophasmatidae, based on Gallophasma longipalpis gen. et sp.n. , from the Earliest Eocene French amber has a pattern of tegmina venation typical of Archaeorthoptera, also present in at least some Mesozoic ‘Phasmatodea’. On the other hand, Gallophasma displays in its body anatomy some apomorphies of the extant Euphasmatodea, e.g. fusion of metatergum and abdominal tergum 1, correlated with the reduction of abdominal sternum 1 to lateral triangular sclerites. A unique autapomorphy of Gallophasma is the presence of annulated and apparently multi‐segmented or pseudo‐segmented cerci; all other Phasmatodea have one‐segmented cerci. The venation of the tegmina of Gallophasma differs from that of extant winged Phasmatodea in the plesiomorphic absence of a knob‐like dorsal eversion. This and other differences in the wing venation between extant and extinct Phasmatodea might have been caused by the loss of wings at some point in the evolutionary history of the order and their secondary gain in a subclade of the extant phasmids.  相似文献   

17.
ABSTRACT

Several batrachoidids have been known to produce sounds associated with courtship and agonistic interactions, and their repertoires have been studied acoustically and behaviourally. In contrast, sound production of the Lusitanian toadfish Halobatrachus didactylus, although often noted, has not been acoustically studied.

This sedentary predator of Northeastern Atlantic coastal waters is usually found in sandy and muddy substrates, under rocks or crevices. Sound recordings were made in Ria Formosa, a lagoon complex in southern Portugal. The sound producing apparatus was studied in adult individuals of both sexes captured by local fishermen.

It is shown that this species produces acoustic emissions similar to other batrachoidids. It produces a long, rhythmical, tonal sound, often in choruses, which is comparable to the boatwhistle or hum signals of Opsanus and Porichthys, and a complex of signals that were classified as grunts, croaks, double croaks and mixed calls (‘grunt-croak’). As in other toadfishes, H. didactylus presents sonic muscles connected to a bi-lobed swimbladder. Asynchronous contractions of the sonic muscles were detected when massaging the ventral surface of the fish.  相似文献   

18.
根据产自缅甸北部白垩纪中期克钦琥珀中的一块昆虫化石标本,建立了1新种——克钦雅翅蝉(Ornatiala kachinensis sp. nov.),归于华翅蝉科(Sinoalidae Wang and Szwedo, 2012)。根据新化石材料,对雅翅蝉属的鉴别特征进行了修订。此外,利用支序分类学分析手段对新种的生物系统学地位进行了确定,并对华翅蝉前翅色型、翅脉变异等问题进行了探讨。新材料的发现进一步证实克钦琥珀生物群中的华翅蝉生物多样性程度较高,为优势昆虫类群。  相似文献   

19.
ABSTRACT

Male gobies of the genus Bathygobius are soniferous during courtship. The mechanism by which the sounds are produced is, however, unknown. Early studies on sound production by males of B. soporator suggested that these sounds are hydrodynamic in nature, being produced by the forcible ejection of water through the gill opening. The mechanism of sound production by the closely related species B. curacao was investigated and three lines of evidence are presented which support the hydrodynamic hypothesis. First, similarities between the sounds produced by courting males and by ejecting water through a pipette demonstrated that hydrodynamic forces can readily produce such sounds. Second, the behavioural motor patterns occurring during sound production are consistent with the hypothesis that water is being ejected through the gill openings. Finally, morphological examination revealed an apparent lack of specialised features associated with sound production, effectively eliminating stridulatory and swim bladder mechanisms. These results represent the strongest evidence to date in support of any proposed mechanism of sound production in the gobiids.  相似文献   

20.
Male field crickets generate calls to attract distant females through tegminal stridulation: the rubbing together of the overlying right wing which bears a file of cuticular teeth against the underlying left wing which carries a sclerotized scraper. During stridulation, specialized areas of membrane on both wings are set into oscillating vibrations to produce acoustic radiation. The location of females is unknown to the calling males and thus increasing effective signal range in all directions will maximize transmission effectiveness. However, producing an omnidirectional sound field of high sound pressure levels may be problematic due to the mechanical asymmetry found in this sound generation system. Mechanical asymmetry occurs by the right wing coming to partially cover the left wing during the closing stroke phase of stridulation. As such, it is hypothesized that the sound field on the left-wing side of the animal will contain lower sound pressure components than on the right-wing side as a result of this coverage. This hypothesis was tested using a novel method to accurately record a high-resolution, three dimensional mapping of sound pressure levels around restrained Gryllus bimaculatus field crickets singing under pharmacological stimulation. The results indicate that a bilateral asymmetry is present across individuals, with greater amplitude components present in the right-wing side of the animal. Individual variation in sound pressure to either the right- or left-wing side is also observed. However, statistically significant differences in bilateral sound field asymmetry as presented here may not affect signalling in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号