首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the relationship between auditory sensitivity, frequency selectivity, and the vocal repertoire of greater spear-nosed bats (Phyllostomus hastatus). P. hastatus commonly emit three types of vocalizations: group-specific foraging calls that range from 6 to 11 kHz, low amplitude echolocation calls that sweep from 80 to 40 kHz, and infant isolation calls from 15 to 100 kHz. To determine if hearing in P. hastatus is differentially sensitive or selective to frequencies in these calls, we determined absolute thresholds and masked thresholds using an operant conditioning procedure. Both absolute and masked thresholds were lowest at 15 kHz, which corresponds with the peak energy of isolation calls. Auditory and masked thresholds were higher at sound frequencies used for group-specific foraging calls and echolocation calls. Isolation calls meet the requirements of individual signatures and facilitate parent-offspring recognition. Many bat species produce isolation calls with peak energy between 10 and 25 kHz, which corresponds with the frequency region of highest sensitivity in those species for which audiogram data are available. These findings suggest that selection for accurate offspring recognition exerts a strong influence on the sensory system of P. hastatus and likely on other species of group-living bats.  相似文献   

2.
Hearing in the FM-bat Phyllostomus discolor: a behavioral audiogram   总被引:3,自引:3,他引:0  
Absolute auditory thresholds of six adult lesser spear-nosed bats Phyllostomus discolor (Chiroptera, Phyllostomidae) were determined in a two-alternative forced-choice procedure. Behavioral responses to pure tone stimuli could be elicited throughout the tested frequency range of 5–142 kHz. The shape of the average audiogram is characterized by two sensitivity peaks and a pronounced increase of thresholds around 55 kHz, and towards the limits of the tested frequency range. The spectral extent of both sensitivity peaks shows a close relation to the bandwidth of two types of species-specific vocalizations. The first low threshold area (> 10 and < 55 kHz) of the audiogram seems perfectly adapted to the directive call used for intraspecific communication, whereas the second sensitivity peak, centered around 85 kHz, covers most of the bandwidth of the species' echolocation calls.Abbreviations CF constant frequency - FM frequency modulation - l left - r right - SPL Sound pressure level  相似文献   

3.
It is generally thought that for species using vocal communication the spectral properties of the sender’s calls should match the frequency sensitivity of the receiver’s auditory system. Nevertheless, few studies have investigated both sender and receiver characteristics in anuran species. In the present study, auditory brainstem responses (ABRs) were recorded in the serrate legged treefrog, Philautus odontotarsus, in order to determine if male call spectral structure and hearing sensitivity in males and females have co-evolved in this species. The results showed that the spectral structures of male vocalization match both male and female hearing sensitivity, even though the dominant frequencies of male calls (2.5 kHz) are mismatched with the regions of best frequency sensitivity (1.4 and 2.8 kHz). In addition, the results show that, in contrast with most previous ABR studies in non-human animals, but consistent with human studies, there are noticeable sex differences in peripheral auditory sensitivity in Philautus insofar as females exhibit lower auditory thresholds than males across the entire 1.8–18 kHz frequency range. The results also show that the dominant frequency of male calls is negatively correlated with body size, indicating that call characteristics reflect body size in this species which may be used by females during mate choice.  相似文献   

4.
Absolute hearing thresholds in the spear-nosed bat Phyllostomus discolor have been determined both with psychophysical and neurophysiological methods. Neurophysiological data have been obtained from two different structures of the ascending auditory pathway, the inferior colliculus and the auditory cortex. Minimum auditory thresholds of neurons are very similar in both structures. Lowest absolute thresholds of 0 dB SPL are reached at frequencies from about 35 to 55 kHz in both cases. Overall behavioural sensitivity is roughly 20 dB better than neural sensitivity. The behavioural audiogram shows a first threshold dip around 23 kHz but threshold was lowest at 80 kHz (−10 dB SPL). This high sensitivity at 80 kHz is not reflected in the neural data. The data suggest that P. discolor has considerably better absolute auditory thresholds than estimated previously. The psychophysical and neurophysiological data are compared to other phyllostomid bats and differences are discussed. S. Hoffmann, L. Baier, F. Borina contributed equally to this work.  相似文献   

5.
The matched filter hypothesis proposes that the tuning of auditory sensitivity and the spectral character of calls will match in order to maximize auditory processing efficiency during courtship. In this study, we analyzed the acoustic structure of male calls and both male and female hearing sensitivities in the little torrent frog (Amolops torrentis), an anuran species who transmits acoustic signals across streams. The results were in striking contradiction to the matched filter hypothesis. Auditory brainstem response results showed that the best hearing range was 1.6–2 kHz consistent with the best sensitive frequency of most terrestrial lentic taxa, yet completely mismatched with the dominant frequency of conspecific calls (4.3 kHz). Moreover, phonotaxis tests show that females strongly prefer high‐frequency (4.3 kHz) over low‐frequency calls (1.6 kHz) regardless of ambient noise levels, although peripheral auditory sensitivity is highest in the 1.6–2 kHz range. These results are consistent with the idea that A. torrentis evolved from nonstreamside species and that high‐frequency calls evolved under the pressure of stream noise. Our results also suggest that female preferences based on central auditory system characteristics may evolve independently of peripheral auditory system sensitivity in order to maximize communication effectiveness in noisy environments.  相似文献   

6.
Zusammenfassung Für 3 Wachteln war, abgesehen von der individuellen Variabilität, die hohe Verhaltens-Hörschwelle im Bereich der Bestfrequenzen von 1.5 kHz (34 dB) und der allmähliche Abfall der Empfindlichkeit bei hohen Frequenzen charakteristisch.
On auditory thresholds of Japanese Quail (Coturnix c. japonica)
Summary The audiogram of 3 individuals clearly differed from those of other birds by higher thresholds (34 dB) at the best frequencies around 1.5 kHz and a more gradual decrease in sensitivity at higher frequencies.


Herrn Prof. Dr. Johann Schwartzkopff zum 70. Geburtstag  相似文献   

7.
Standard operant conditioning techniques have been successfully applied to the problem of call discrimination in small birds. Budgerigars (Melopsittacus undulatus) and canaries (Serinus canarius) were trained with a GO/NOGO procedure using positive reinforcement to discriminate between both conspecific contact calls and contact calls of the other species. Budgerigars showed equal facility at each task. By contrast, canaries learned the task involving conspecific contact calls but failed, as a group, to discriminate between budgerigar contact calls. These results show that conditioning techniques can be used to study perceptual learning of species typical calls in small birds.  相似文献   

8.
In this study we examine the auditory capabilities of the sea otter (Enhydra lutris), an amphibious marine mammal that remains virtually unstudied with respect to its sensory biology. We trained an adult male sea otter to perform a psychophysical task in an acoustic chamber and at an underwater apparatus. Aerial and underwater audiograms were constructed from detection thresholds for narrowband signals measured in quiet conditions at frequencies from 0.125–40 kHz. Aerial hearing thresholds were also measured in the presence of octave-band masking noise centered at eight signal frequencies (0.25–22.6 kHz) so that critical ratios could be determined. The aerial audiogram of the sea otter resembled that of sea lions and showed a reduction in low-frequency sensitivity relative to terrestrial mustelids. Best sensitivity was ?1 dB re 20 µPa at 8 kHz. Under water, hearing sensitivity was significantly reduced when compared to sea lions and other pinniped species, demonstrating that sea otter hearing is primarily adapted to receive airborne sounds. Critical ratios were more than 10 dB higher than those measured for pinnipeds, suggesting that sea otters are less efficient than other marine carnivores at extracting acoustic signals from background noise, especially at frequencies below 2 kHz.  相似文献   

9.
The matched filter hypothesis proposes that the auditory sensitivity of receivers should match the spectral energy distribution of the senders’ signals. If so, receivers should be able to distinguish between species-specific and hetero-specific signals. We tested the matched filter hypothesis in two sympatric species, Chiromantis doriae and Feihyla vittata, whose calls exhibit similar frequency characters and that overlap in the breeding season and microenvironment. For both species, we recorded male calls and measured the auditory sensitivity of both sexes using the auditory brainstem response (ABR). We compared the auditory sensitivity with the spectral energy distribution of the calls of each species and found that (1) auditory sensitivity matched the signal spectrogram in C. doriae and F. vittata; (2) the concordance conformed better to the conspecific signal versus the hetero-specific signal. In addition, our results show that species differences are larger than sex differences for ABR audiograms.  相似文献   

10.
Primates depend on acoustic signals and cues to avoid predators, locate food, and share information. Accordingly, the structure and function of acoustic stimuli have long been emphasized in studies of primate behavioral and cognitive ecology. Yet, few studies have addressed how well primates hear such stimuli; indeed, the auditory thresholds of most primate species are unknown. This empirical void is due in part to the logistic and economic challenges attendant on traditional behavioral testing methods. Technological advances have produced a safe and cost‐effective alternative—the auditory brainstem response (ABR) method, which can be utilized in field conditions, on virtually any animal species, and without subject training. Here we used the ABR and four methods of threshold determination to construct audiograms for two strepsirrhine primates: the ring‐tailed lemur (Lemur catta) and slow loris (Nycticebus coucang). Next, to verify the general efficacy of the ABR method, we compared our results to published behaviorally‐derived audiograms. We found that the four ABR threshold detection methods produced similar results, including relatively elevated thresholds but similarly shaped audiograms compared to those derived behaviorally. The ABR and behavioral absolute thresholds were significantly correlated, and the frequencies of best sensitivity and high‐frequency limits were comparable. However, at frequencies ≤2 kHz, ABR thresholds were especially elevated, resulting in decreased agreement with behavioral thresholds and, in Lemur, the ABR 10‐dB range starting points were more than 2 octaves higher than the behavioral points. Finally, a comparison of ABR‐ and behaviorally‐derived audiograms from various animal taxa demonstrates the widespread efficacy of the ABR for estimating frequency of best sensitivity, but otherwise suggests caution; factors such as stimulus properties and threshold definition affect results. We conclude that the ABR method is a promising technique for estimating primate hearing sensitivity, but that additional data are required to explore its efficacy for estimating low‐frequency thresholds. Am. J. Primatol. 72:217–233, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
We tested the ability of birds to detect and discriminate natural vocal signals in the presence of masking noise using operant conditioning. Masked thresholds were measured for budgerigars, Melopsittacus undulatus, and zebra finches, Taeniopygia guttata, on natural contact calls of budgerigars, zebra finches and canaries, Serinus canaria. Thresholds increased with increasing call bandwidth, the presence of amplitude modulation and high rates of frequency modulation in calls. As expected, detection thresholds increased monotonically with background noise level. Call detection thresholds varied with the spectral shape of noise. Vocal signals were masked predominantly by noise energy in the spectral region of the signals and not by energy at spectral regions remote from the signals. In all cases, thresholds for discrimination between calls of the same species were higher than thresholds for detection of those calls. Our data provide the first opportunity to estimate distances over which specific communication signals may be effective (i.e. their ‘active space’) using masked thresholds for the signals themselves. Our results suggest that measures of peak sound pressure level, combined with the spectrum level of noise within the frequency channel having the greatest signal power relative to background noise, give the most similar results for estimating a signal's maximum communication distance across a variety of sounds. We provide a simple model for estimating likely detection and discrimination distances for the signals tested here. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.  相似文献   

12.
Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31–52 dB RMS SPL), measured at the subjects’ position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18–39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41–51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7–2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39–47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.  相似文献   

13.
Summary Cochlear microphonic (CM) and evoked neural potentials (N1) were recorded from the cochlear aqueduct of awakePteronotus parnellii. The CM audiograms obtained with continuous sounds had more or less uniform thresholds except for a sharp threshold notch at about 60 kHz (Fig. 1). When brief tone bursts were presented, the envelopes of the CM responses were always similar to the envelopes of the applied signals except when tone bursts having frequencies at or close to the frequency of the tuned sensitivity notch were presented (i.e., 59–63 kHz). The CM rise-decay times for frequencies around 60kHz were much longer than those of the presented signals (Fig. 2). The prolonged decay times are thought to be due to the ringing of the basilar membrane resulting from a mechanical resonance in the cochlea.The evoked neural potential audiograms (N1-on and N1-off responses) differed considerably from the CM audiogram. Of particular importance is the N1-off audiogram which exhibited very sharp tuning in four frequency regions: 31–33 kHz, 60–63 kHz, 71–73 kHz, and 91–92 kHz (Fig. 5). The frequencies evoking the lowest thresholds of the CM and N1-off (in the 60 kHz region) were either identical or differed by only 100–400 Hz.The sharp tuning in the 60 kHz region of both the CM and N1 audiograms could be eliminated by presenting 90–100 dB continuous sounds for one min but only if the signal frequency was equal to the tuned frequency of the CM audiogram (Figs. 8–13). Presenting intense sounds having frequencies above or below the tuned 60kHz region had no effect on the audiogram. The overstimulation procedure had remarkably specific effects on the CM and N1-off audiograms causing the greatest threshold increases at the 60 kHz tuned frequency and progressively smaller threshold changes on the slopes of the tuned notch.Assuming that the sharp changes of the N1-off thresholds reflect some important underlying mechanism, the N1-off audiograms demonstrate multiple specializations in the peripheral auditory system ofPteronotus with the bat possessing at least three and possibly four sharply tuned regions. With regard to mechanism, the tuned notch in the CM audiogram, the curious CM rise-decay times evoked by tone bursts, and the ease with which the 60 kHz sensitivity notch can be eliminated all argue strongly in favor of a mechanical resonance in the cochlea which is responsible for the sharp tuning around 60 kHz. On the other hand, the absence of tuned notches in the 30 kHz and 90 kHz regions of the CM audiogram together with the absence of any discernable ringing of the CM potentials evoked by 30 kHz and 90 kHz tone bursts both argue against a resonance mechanism for the tuning at these harmonically related frequency regions. Finally, the fact that overstimulating the 60 kHz region had no discernable effect on the N1-off tuning at 30 kHz and 90 kHz demonstrates that the mechanism responsible for the tuned regions at 30 kHz and 90 kHz are independent of the resonance feature of the cochlea at 60 kHz.Abbreviations BF best frequency - CF constant frequency - CM cochlear microphonics - CM-aft after-response of the CM - FM frequency modulated - N 1 evoked neural potentials We thank Professor Alvin Novick for the generous support provided during the conduct of these experiments. We also thank Professor Gerhard Neuweiler and Dr. Gerd Schuller for their helpful comments and suggestions. Supported by PHS Grant NB7616 11.  相似文献   

14.
Thresholds for pure tone detection were examined in the common mole-rat, Cryptomys sp. (Bathyergidae, Rodentia) using a positive reinforcement procedure. To bypass the problems connected with testing isolated individuals of this extremely social species, a collective behavioural audiogram was determined for a family group of seven mole-rats. Within the tested frequency range of 225 to 18 kHz, the lowest thresholds (as low as 7.5 dB SPL, on average 24 dB SPL) were found at 800 Hz, the upper limit of hearing (at the level of 60 dB SPL) was at 18 kHz. The behavioural audiogram combines the results of previous studies on hearing in this species. It resembles the distortion threshold curve but differs from neurophysiological data as far as the high frequency cutoff is concerned. On the other hand, the region of the best hearing sensitivity is narrow in behavioural audiogram and neurophysiological curves but rather broad in the distortion threshold curve. In general, the behavioural audiogram of Cryptomys is in many aspects comparable with the available audiograms of other subterranean rodents. Accepted: 18 February 1997  相似文献   

15.
Absolute thresholds and critical masking ratios were determined behaviorally for the European barn owl (Tyto alba guttata). It shows an excellent sensitivity throughout its hearing range with a minimum threshold of −14.2 dB sound pressure level at 6.3 kHz, which is similar to the sensitivity found in the American barn owl (Tyto alba pratincola) and some other owls. Both the European and the American barn owl have a high upper-frequency limit of hearing exceeding that in other bird species. Critical masking ratios, that can provide an estimate for the frequency selectivity in the barn owl's hearing system, were determined with a noise of about 0 dB spectrum level. They increased from 19.1 dB at 2 kHz to 29.2 dB at 8 kHz at a rate of 5.1 dB per octave. The corresponding critical ratio bandwidths were 81, 218, 562 and 831 Hz for test-tone frequencies of 2, 4, 6.3 and 8 kHz, respectively. These values indicate, contrary to expectations based on the spatial representation of frequencies on the basilar papilla, increasing bandwidths of auditory filters in the region of the barn owl's auditory fovea. This increase, however, correlates with the increase in the bandwidths of tuning curves in the barn owl's auditory fovea. Accepted: 27 November 1997  相似文献   

16.
What did Morganucodon hear?   总被引:1,自引:0,他引:1  
The structure of the middle and inner ear of Morganucodon , one of the oldest known mammals, is reviewed and compared to the structure of the ears of extant mammals, reptiles and birds with known auditory capabilities. Specifically, allometric relationships between ear dimensions (basilar-membrane length, tympanic-membrane area and stapes-footplate area) and specific features of the audiogram are defined in extant ears. These relationships are then used to make several predictions of auditory function in Morganucodon. The results point out that the ear structures of Morganucodon–Art similar in dimensions to ear structures in both extant small mammals–with predominantly high-frequency (10 kHz) auditory capabilities, and reptiles and birds- with better low and middle-frequency hearing (< 5 kHz). Although the allometric analysis cannot by itself determine whether Morganucodon heard more like present-day small mammals, or birds and reptiles, the apparent stiffness of the Morganucodon middle ear is both more consistent with the high-frequency mammalian middle ear and would act to decrease the sensitivity of a bird-reptile middle ear to low-frequency sound. Several likely hearing scenarios for Morganucodon are defined, including a scenario in which these animals had ears like those of modern small mammals that are selectively sensitive to high-frequency sounds, and a second scenario in which the Morganucodon ear was moderately sensitive to sounds of a narrow middle-frequency range (5–7 kHz) and relatively insensitive to sounds of higher or lower frequency. The evidence needed to substantiate either scenario includes some objective measure of the stiffness of the Morganucodon ossicular system, while a key datum needed to distinguish between the two hypotheses includes confirmation of the presence or absence of a cochlear lamina in the Morganucodon inner ear.  相似文献   

17.
Summary Twenty four castrated male, 6 intact male, and 11 intact female Hyla cinerea were injected subcutaneously with 25 g arginine-vasotocin (AVT) and induced to call 1 h later in response to the playback of a conspecific mating call. Eighteen castrated males and 8 intact females were implanted 5 mg androgen pellets for 3 weeks prior to the neuropeptide injection. Among castrated males, 6/9 testosterone (T) implanted, 4/9 dihydrotestosterone (DHT) implanted and 2/6 non implanted individuals produced calls after being administered AVT. 5/6 intact non implanted males and 6/8 T intact implanted females also called, and 3 intact non implanted females remained silent after the injection. Evoked calls had a mid-frequency spectral peak at about 1900 Hz which is absent in field-recorded mating calls of this species. Calls of implanted females and castrated non implanted males were shorter than those of castrated implanted and intact non implanted males. Audiograms measured before hormone implants showed dips of enhanced sensitivity at about 0.5, 0.9 and 3.0 kHz in males and females. After AVT injection, thresholds at frequencies within the 0.7–1.5 kHz range were increased in castrated males. Such reduction in sensitivity points to an inhibition of the auditory system during hormone induced vocal activation.Abbreviations AVT arginine-vasotocin - DHT dihydrotestosterone - T testosterone - TS torus semicircularis  相似文献   

18.
The genus Kawanaphila (Tettigoniidae: Zaprochilinae) is unusual among the Tettigoniidae in the possession of sexually dimorphic auditory organs. We examined the auditory system and acoustic behaviour of two previously unstudied species in this genus to test whether reduced hearing in males is consistently associated with reduced male–male competition. Kawanaphila yarraga (Rentz, 1993) and K. mirla (Rentz, 1993) are both sexually dimorphic with respect to their auditory system, but to different degrees. Males of both species produce songs consisting of trains of brief (< 1 ms) pure-tone sound pulses at ultrasonic frequencies (K. yarraga, 40 kHz;K. mirla, 70 kHz). In both species, female hearing is more sensitive than that of males by 10 dB. In addition, male K. mirla are most sensitive at lower frequencies than females. Male and female K. yarraga differed only in sensitivity, not in tuning. The two species also differ in their degree of sexual dimorphism in auditory anatomy. Kawanaphila mirla males lack some auditory specializations of the prothoracic tracheal system, which are present in the normal tettigoniid condition in females. In K. yarraga males these structures are present, but reduced in size relative to females. The acoustic behaviour of males of the two species is consistent with this pattern of relative auditory sensitivity. Males of both species interact acoustically by altering the timing of their sound output to synchronize with neighbouring males. However, K. mirla males only interact in this way over very short distances (< 5 m), whereas K. yarraga males interact with neighbours up to at least 10 m distant. These results indicate that, although males of the two species differ in hearing sensitivity, the nature of their responses to conspecific calls are similar to one another and to those of other acoustic insects. This suggests that acoustically mediated male–male competition may be maintained even while selection favours a reduction in male auditory sensitivity.  相似文献   

19.
The design of acoustic signals and hearing sensitivity in socially communicating species would normally be expected to closely match in order to minimize signal degradation and attenuation during signal propagation. Nevertheless, other factors such as sensory biases as well as morphological and physiological constraints may affect strict correspondence between signal features and hearing sensitivity. Thus study of the relationships between sender and receiver characteristics in species utilizing acoustic communication can provide information about how acoustic communication systems evolve. The genus Gekko includes species emitting high-amplitude vocalizations for long-range communication (loud callers) as well as species producing only low-amplitude vocalizations when in close contact with conspecifics (quiet callers) which have rarely been investigated. In order to investigate relationships between auditory physiology and the frequency characteristics of acoustic signals in a quiet caller, Gekko subpalmatus we measured the subjects’ vocal signal characteristics as well as auditory brainstem responses (ABRs) to assess auditory sensitivity. The results show that G. subpalmatus males emit low amplitude calls when encountering females, ranging in dominant frequency from 2.47 to 4.17 kHz with an average at 3.35 kHz. The auditory range with highest sensitivity closely matches the dominant frequency of the vocalizations. This correspondence is consistent with the notion that quiet and loud calling species are under similar selection pressures for matching auditory sensitivity with spectral characteristics of vocalizations.  相似文献   

20.
Size, peripheral auditory tuning and target strength in noctuid moths   总被引:1,自引:0,他引:1  
We investigated relationships among body size, the frequency of peak auditory sensitivity (best frequency) and acoustic conspicuousness (measured as target strength) to simulated bat echolocation calls in a range of tympanate moths (Lepidoptera: Noctuidae). Audiograms of Amphipyra pyramidea Linnaeus, Agrotis exclamationis Linnaeus, Omphaloscelis lunosa Haworth and Xestia xanthographa Denis and Schiffermüller are described for the first time. Best frequency was inversely related to forewing length, an index of body size. Models predict that target strength falls off rapidly once wavelength (1/frequency) exceeds some defined feature of target size (e.g. circumference for spheres). We investigated how target strength varies in relation to target size and emitted frequency for simple targets (paper discs) and for moths. Target strength fell rapidly when target radius/wavelength < 2 for paper discs of similar size to many noctuid moths. Target strength fell rapidly below wing‐length/wavelength ratios of 2 in relatively small (O. lunosa, wing‐length = 15.2 ± 0.4 mm, best frequency = 45 kHz) and large (N. pronuba, wing‐length = 24.6 ± 0.8 mm, best frequency = 15 kHz) noctuid species, and decreased rapidly at frequencies below 25 kHz in both species. These target strengths were used to predict the detection distance of the moths by bat sonar between 10 and 55 kHz. Predicted detection distances of both species were maximal for fictive call frequencies of 20 kHz, and were reduced at lower frequencies due to decreased target strength and at higher frequencies by excess atmospheric attenuation. Both relatively large and small noctuid moths are therefore strong acoustic targets to bats that echolocate at relatively low frequencies. Bats may emit allotonic calls at low frequency because the costs of reduced detection range are smaller than the benefits of reduced audibility to moths. Because best frequency scales with body size and maximum detection distance is not very sensitive to body size, noctuid moths in the size range examined do not necessarily have best frequencies that would match the call frequencies of bats that may detect the moths at greatest distance precisely. Hence, best frequency may be constrained in part by body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号