首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
Mean square optical anisotropies and molar Kerr constants were calculated for homopolypeptides of the 20 natural amino acids and of several enzymes and proteins in the random-coil state. The effect of hydration was taken into account in constructing the molecular potential that gives the conformational energies as a function of the rotational angles phi and psi of the backbone and chi(1) of the side chain. The Rotational Isomeric State model was used in calculated energies, the Valence Optical Scheme and the matrix calculus technique of Flory being employed in the evaluation of the optical properties. The results are compared with calculations for the same substances that were performed without taking into account the solvent, as well as with other similar studies. The Kerr constant is confirmed as being one of the most sensitive properties of a given polypeptide to the residue class and to the sequence of those residues.  相似文献   

2.
We have developed an all-atom free-energy force field (PFF01) for protein tertiary structure prediction. PFF01 is based on physical interactions and was parameterized using experimental structures of a family of proteins believed to span a wide variety of possible folds. It contains empirical, although sequence-independent terms for hydrogen bonding. Its solvent-accessible surface area solvent model was first fit to transfer energies of small peptides. The parameters of the solvent model were then further optimized to stabilize the native structure of a single protein, the autonomously folding villin headpiece, against competing low-energy decoys. Here we validate the force field for five nonhomologous helical proteins with 20-60 amino acids. For each protein, decoys with 2-3 A backbone root mean-square deviation and correct experimental Cbeta-Cbeta distance constraints emerge as those with the lowest energy.  相似文献   

3.
Two new amphipathy scales elaborated from molecular dynamics data are presented. Their applications contribute for the identification of the hydrophobic or hydrophilic regions in proteins solely from the primary structure. The new amphipathy coefficients (AC) reflect the side chain/solvent molecules configurational energies. A polar (water) and an apolar solvent, CCl4, were used resulting in the two ACwater and ACCCl4 scales. These solvents were chosen to simulate the aqueous phases and the transmembrane ambients of cellular membranes where the membrane proteins act. The new amphipathy scales were compared with some previous scales determined by different methods, which were also compared between them, indicating more than 90% of the correlation coefficients are less than 0.9: the scales are strictly dependent on the methodologies used in their determination. The ACCCl4 scale is related with the size of side chain amino acids while ACwater is related with the hydrophobicity of side chain amino acids. The quality of the scales was confirmed by an example of application where ACwater was able to identify correctly the transmembrane, hydrophobic regions of a membrane protein. These results also indicate that water is an important factor responsible for the tertiary structure of membrane proteins.  相似文献   

4.
Two new amphipathy scales elaborated from molecular dynamics data are presented. Their applications contribute for the identification of the hydrophobic or hydrophilic regions in proteins solely from the primary structure. The new amphipathy coefficients (AC) reflect the side chain/solvent molecules configurational energies. A polar (water) and an apolar solvent, CCl4, were used resulting in the two ACwater and ACCCl4 scales. These solvents were chosen to simulate the aqueous phases and the transmembrane ambients of cellular membranes where the membrane proteins act. The new amphipathy scales were compared with some previous scales determined by different methods, which were also compared between them, indicating more than 90% of the correlation coefficients are less than 0.9: the scales are strictly dependent on the methodologies used in their determination. The ACCCl4 scale is related with the size of side chain amino acids while ACwater is related with the hydrophobicity of side chain amino acids. The quality of the scales was confirmed by an example of application where ACwater was able to identify correctly the transmembrane, hydrophobic regions of a membrane protein. These results also indicate that water is an important factor responsible for the tertiary structure of membrane proteins.  相似文献   

5.
The effects of solute and hydrochloric acid concentrations on optical rotation were studied using 20 naturally occuring amino acids.

There appeared to be no common factor among the amino acids as far as the inclination of optical rotation was concerned. Lutz-Jirgenson’s rule could be applied to few amino acids in the cationic form. Therefore, in the determination of the optical rotation, the concentration of the solute, nature of solvent and temperature must be rigorously controlled. The optical conditions of measurement and the specific rotation of 20 amino acids were recommended based on this work.  相似文献   

6.
N-Methyl-D-aspartate (NMDA) receptor subtypes epsilon 1 and zeta 1 were coexpressed in Xenopus oocytes for the investigation of the magnitude of augmentation of the L-glutamate response by 20 common L-amino acids and their 19 D-isoforms. Simultaneous application of L- and D-alanine, -cysteine, and -serine, or glycine and L-glutamate potentiated the glutamate-induced current. Other amino acids produced only marginal effects. Analysis of the relationship between the response and amino acid size revealed that the critical threshold size is between those of cysteine and aspartate. No amino acid alone induced a current. The effects of L- and D-alanine, -cysteine, and -serine applied with L-glutamate were concentration-dependent. Molecular modeling of these three amino acids revealed a positive relationship between the charge at an atom of the side chain and the receptor sensitivity, which may explain the efficacies of these amino acids.  相似文献   

7.
Hirudin, a potent clinical thrombin inhibitor from Hirudo medicinalis, consists of 65 amino acids in a single chain. In this paper, we systematically synthesize a series of C-terminal (desulfo hirudin45-65) peptides substituted by 20 natural L-amino acids via the Multipin method. The resulting peptide library is subsequently screened using an alpha-thrombin-mediated fibrinogen clotting assay and alpha-thrombin-induced amidolytic hydrolysis assay.  相似文献   

8.
A new computer program (CORE) is described that predicts core hydrophobic sequences of predetermined target protein structures. A novel scoring function is employed, which for the first time incorporates parameters directly correlated to free energies of unfolding (deltaGu), melting temperatures (Tm), and cooperativity. Metropolis-driven simulated annealing and low-temperature Monte Carlo sampling are used to optimize this score, generating sequences predicted to yield uniquely folded, stable proteins with cooperative unfolding transitions. The hydrophobic core residues of four natural proteins were predicted using CORE with the backbone structure and solvent exposed residues as input. In the two smaller proteins tested (Gbeta1, 11 core amino acids; 434 cro, 10 core amino acids), the native sequence was regenerated as well as the sequence of known thermally stable variants that exhibit cooperative denaturation transitions. Previously designed sequences of variants with lower thermal stability and weaker cooperativity were not predicted. In the two larger proteins tested (myoglobin, 32 core amino acids; methionine aminopeptidase, 63 core amino acids), sequences with corresponding side-chain conformations remarkably similar to that of native were predicted.  相似文献   

9.
A natural antihistamine substance (NAS) present in bile has been investigated. It was found that the antihistamine activity was not due to proteins, lipids, pigments, or amino acids. On ion exchange chromatography and thin-layer chromatography, this activity was associated with bile acids. Many bile acids could, in varying degrees, inhibit this histamine induced guinea pig ileum contraction, desoxycholic acid being the most potent. However NAS activity could be separated from bile acids and their conjugates using a different solvent system. Furthermore, NAS showed a higher antihistamine activity than bile acids. This substance seems to be responsible for 15-20% of the activity of whole bile. The substance has not yet been identified.  相似文献   

10.
本文对固有无序蛋白(IDPs)与其他蛋白质相互作用位点残基特征进行了研究.首先在数据库中选出满足条件的109条IDPs蛋白质链及与其他配体蛋白形成的299个IDPs-蛋白质复合物,然后提取复合物中作为相互作用位点的IDPs-蛋白质残基.这109条IDPs链中共含有50 031个氨基酸残基,其中处于作用位点的残基有4 822个.通过分析发现,20种氨基酸在形成IDPs-蛋白质相互作用位点残基时具有不同的倾向性,根据形成作用位点残基的倾向性,20种氨基酸可分成三大类:倾向型氨基酸(ILE、LEU、ARG、PHE、TYR、MET、TRP)、中间型氨基酸(GLN、GLU、THR、LYS、VAL、ASP、HIS)、非倾向型氨基酸(PRO、SER、GLY、ALA、ASN、CYS).研究结果还进一步表明,不同氨基酸在有序区域与无序区域形成IDPs-蛋白质作用位点残基的倾向性不同.其中,氨基酸TRP、LEU、ILE、CYS在有序和无序区域形成作用位点残基的差异性尤为明显,而氨基酸GLU、PHE、HIS、ALA则基本没有多大差别.对IDPs-蛋白质相互作用位点残基理化特征进行分析发现:疏水性强、侧链净电荷量较少、极性较小、溶剂可及性表面积较大、侧链体积较大、极化率较大的氨基酸比较倾向于形成作用位点残基.主成分分析结果显示,残基的极化率、侧链体积和溶剂可及表面积对作用位点残基影响最大.  相似文献   

11.
Competition experiments were carried out in order to determine relative reaction rates, Vrel, for the peptide-forming step. Using the liquid-phase method of peptide synthesis a model system was developed to investigate the influence of coupling method, amino component, derivatization and solvent upon Vrel. According to a standard procedure, Vrel for all 20 commonly occurring amino acids were established. A strong dependence of Vrel upon steric effects of the coupling components was found. The data obtained may serve as a guideline for optimizing the reaction conditions in peptide synthesis.  相似文献   

12.
The conformations of 23 terminally blocked dipeptide sequences were examined by conformational energy calculations that included the effects of the aqueous solvent. Starting structures were derived from combinations of minimum-energy conformations of hydrated single residues. Their conformational energies were then minimized using the ECEPP potential (Empirical Conformational Energy Program for Peptides) with hydration included. Short-range interactions dominate in stabilizing the conformations of the hydrated dipeptides. Differences between conformational stabilities of hydrated and unhydrated dipeptides in many cases are due to the competition of solute–water and intramolecular hydrogen bonds. In other cases, perturbation of the hydration shell of the solute by close approach of solute atoms alters conformational preferences. Probabilities of formation of bends were calculated and compared to the corresponding quantities for unhydrated dipeptides and to those calculated from x-ray structures. For bends in dipeptides containing two nonpolar amino acids, computations omitting hydration yield better results. However, better agreement with experimental (x-ray) bend probabilities for dipeptides containing glycine or polar amino acids is obtained only in some sequences when hydration is included. The results are rationalized by the observation that, in proteins, bends containing nonpolar sequences occur on the inside, shielded from the solvent. Bends containing glycine or polar amino acids occur frequently on the surface of the protein, but they are not completely hydrated.  相似文献   

13.
The accuracy of in vivo incorporation of amino acids during protein biosynthesis is controlled to a significant extent by aminoacyl-tRNA synthetases (aaRS). This paper describes the application of the HierDock computational method to study the molecular basis of amino acid binding to the Escherichia coli methionyl tRNA synthetase (MetRS). Starting with the protein structure from the MetRS cocrystal, the HierDock calculations predict the binding site of methionine in MetRS to a root mean square deviation in coordinates (CRMS) of 0.55 A for all the atoms, compared with the crystal structure. The MetRS conformation in the cocrystal structure shows good discrimination between cognate and the 19 noncognate amino acids. In addition, the calculated binding energies of a set of five methionine analogs show a good correlation (R(2) = 0.86) to the relative free energies of binding derived from the measured in vitro kinetic parameters, K(m) and k(cat). Starting with the crystal structure of MetRS without the methionine (apo-MetRS), the putative binding site of methionine was predicted. We demonstrate that even the apo-MetRS structure shows a preference for binding methionine compared with the 19 other natural amino acids. On comparing the calculated binding energies of the 20 natural amino acids for apo-MetRS with those for the cocrystal structure, we observe that the discrimination against the noncognate substrate increases dramatically in the second step of the physical binding process associated with the conformation change in the protein.  相似文献   

14.
In this study an attempt is made to explore the effect of a peptide's size, charge, and hydrophobicity on its electrophoretic mobility (mu) as measured by free-solution capillary electrophoresis with the aim of developing a semiempirical model which incorporates these effects. The effects of peptide size (which is measured by the number of amino acids in the polypeptide chain (n] and charge on mu are independently determined by experiment in a single solvent system and combined to give the relationship (formula; see text) where the constant 5.23 X 10(-4) is postulated to depend on the solvent system used. The form of Eq. [A.1] was confirmed, and the values of the constants 5.23 X 10(-4) and 2.47 X 10(-5) were determined, by measuring the electrophoretic mobilities of 40 peptides varying in size from 3 to 39 amino acids and varying in charge from 0.33 to 14.0. Furthermore, the effect of noncharged neutral amino acids on mobility was investigated and shown to be present, but only as a minor perturbation on the effects of size and charge.  相似文献   

15.
The screening of natural deep eutectic solvents (NADES) to identify those with the ability to strongly solvate rutin was conducted using the COSMO-RS methodology. A NADES model was constructed that took into account the possible ionic and neutral forms of its constituents. The distributions of all forms were computed based on the equilibrium constants of neutralization reactions between amino and carboxylic acids. The proposed model was validated against the experimental solubilities of 15 NADES. A linear relationship between these data and the estimated activity coefficient values was found. The screening encompassed 126 different NADES. It was found that ten of them outperformed the best reference system. The most effective two-component solvent comprised proline combined with 2,3-diaminosuccinic acid, and the solubility of rutin in this solvent was found to be 130% greater than its solubility in the best reference system. The amino acids associated with the highest rutin solubilities were all cyclic, and the use of carboxylic acids with two carboxyl groups and a main chain consisting of two methylene groups with two amino substituents was observed to yield the best rutin solubilities. Because of the acidic properties of rutin, the presence of basic sites on the components of the NADES generally leads to enhanced solubility.  相似文献   

16.
Amino acid propensities for the collagen triple-helix   总被引:2,自引:0,他引:2  
Determination of the tendencies of amino acids to form alpha-helical and beta-sheet structures has been important in clarifying stabilizing interactions, protein design, and the protein folding problem. In this study, we have determined for the first time a complete scale of amino acid propensities for another important protein motif: the collagen triple-helix conformation with its Gly-X-Y repeating sequence. Guest triplets of the form Gly-X-Hyp and Gly-Pro-Y are used to quantitate the conformational propensities of all 20 amino acids for the X and Y positions in the context of a (Gly-Pro-Hyp)(8) host peptide. The rankings for both the X and Y positions show the highly stabilizing nature of imino acids and the destabilizing effects of Gly and aromatic residues. Many residues show differing propensities in the X versus Y position, related to the nonequivalence of these positions in terms of interchain interactions and solvent exposure. The propensity of amino acids to adopt a polyproline II-like conformation plays a role in their triple-helix rankings, as shown by a moderate correlation of triple-helix propensity with frequency of occurrence in polyproline II-like regions. The high propensity of ionizable residues in the X position suggests the importance of interchain hydrogen bonding directly or through water to backbone carbonyls or hydroxyprolines. The low propensity of side chains with branching at the C(delta) in the Y position supports models suggesting these groups block solvent access to backbone C=O groups. These data provide a first step in defining sequence-dependent variations in local triple-helix stability and binding, and are important for a general understanding of side chain interactions in all proteins.  相似文献   

17.
Energies required to transfer amino acid side chains from water to less polar environments were calculated from results of several studies and compared with several statistical analyses of residue distributions in soluble proteins. An analysis that divides proteins into layers parallel with their surfaces is more informative than those that simply classify residues as exposed or buried. Most residues appear to be distributed as a function of the distance from the protein-water interface in a manner consistent with partition energies calculated from partitioning of amino acids between water and octanol phases and from solubilities of amino acids in water, ethanol, and methanol. Lys, Arg, Tyr, and Trp residues tend to concentrate near the water-protein interface where their apolar side-chain components are more buried than their polar side-chain components. Residue distributions calculated in this manner do not correlate well with side-chain solvation energies calculated from vapor pressures of side-chain analogs over a water phase. Results of statistical studies that classify residues as exposed to solvent or buried inside the protein interior appear to depend on the method used to classify residues. Data from some of these studies correlate better with solvation energies, but other data correlate better with partition energies. Most other statistical methods that have been used to evaluate effects of water on residue distributions yield results that correlate better with partition energies than with solvation energies.  相似文献   

18.
Protein phosphorylation is one of the major signal transduction mechanisms for controlling and regulating intracellular processes. Phosphorylation of specific hydroxylated amino acid side chains (Ser, Thr, Tyr) by protein kinases can activate numerous enzymes; this effect can be reversed by the action of protein phosphatases. Here we report ab initio (HF/6-31G* and Becke3LYP/6-31G*) and semiempirical (PM3) molecular orbital calculations pertinent to the ion pair formation of the phosphorylated amino acids with the basic side chains of Lys and Arg. Methyl-, ethyl-, and phenylphosphate, as well as methylamine and methylguanidinium were used as model compounds for the phosphorylated and basic amino acids, respectively. Phosphorylated amino acids were calculated as mono- and divalent anions. Our results indicate that the PSer/PThr ion pair interaction energies are stronger than those with PTyr. Moreover, the interaction energies with the amino group of Lys are generally more favorable than with the guanidinium group of Arg. The Lys amino groups form stable bifurcated hydrogen bonded structures; while the Arg guanidinium group can form a bidentate hydrogen bonded structure. Reasonable values for the interaction free energies in aqueous solution were obtained for some complexes by the inclusion of a solvent reaction field in the computation (PM3-SM3).  相似文献   

19.
The use of appropriate fluorometric derivatization procedures is of considerable importance for accurate determination of amino acids in biological samples and in metal-assisted peptide hydrolysis reactions. It is especially critical for the relative fluorescence intensities (RFI) of equal amounts of amino acids to be as similar as possible. While fluorescamine and naphthalene-2,3-dicarboxaldehyde (NDA) have proven to be excellent fluorogenic reagents for amino acid detection, the effects of various factors such as organic solvent, buffer, and pH have never been rigorously evaluated with respect to normalizing the relative fluorescence intensities of individual amino acids. To this end, here we describe optimized fluorescamine and NDA derivatization reactions that enhance the accuracy of microplate-based detection of amino acids. For both fluorescamine and NDA, we have shown that the RFI values of 16 of 19 amino acids are greater than 70%. Although determination of tryptophan is problematic, this difficulty is overcome by the addition of beta-cyclodextrin to the NDA reaction. In principle, the optimized fluorescamine and NDA microplate procedures reported here can be utilized as complementary techniques for the detection of 19 of 20 naturally occurring amino acids.  相似文献   

20.
Like all other complex biological systems, proteins exhibit properties not found in free amino acids (i.e., emergent properties). Here, we explore top-down constraints experienced by the residue side chains in proteins compared to amino acids in increasingly complex molecular environments: free amino acids, end-capped amino acids, and the central residue in an alpha-helical nonapeptide. The crystalline structure of the contractile protein profilin Ib and the enzyme trypsin were chosen as objects of study, and submitted to 10 ns molecular dynamics (MD) simulations. The results revealed increased conformational constraints on the side chains when going from the simpler to the more complex compounds. A Shannon entropy (SE) analysis of the conformational behavior of the side chains showed in most cases a progressive and marked decrease in the SE of the chi1 and chi2 dihedral angles. This is equivalent to stating that conformational constraints on the side chain of residues increase their information content and, hence, recognition specificity compared to free amino acids. In other words, the vastly increased information content of a protein relative to its free monomers is embedded not only in the tertiary structure of the backbone, but also in the conformational behavior of the side chains. The postulated implication is that both backbone and side chains, by virtue of being conformationally constrained, contribute to the protein's recognition specificity toward other macromolecules and ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号