首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aniridia-Wilms' tumor association: evidence for specific deletion of 11p13.   总被引:17,自引:0,他引:17  
A 7-year-old boy with aniridia, Wilms' tumor, and mental retardation, previously reported as having an interstitial deletion of the short arm of chromosome 8 resulting from a t(8p+;11q-) translocation (Ladda et al., 1974), has been restudied using high-resolution trypsin-Giemsa banding of prometaphase chromsomes. The results revealed a complex rearrangement with four break points in 8p, 11p, and 11q, leading to a net loss of an interstitial segment of 11p (region p1407 yields p1304) but not of 8p. His red blood cells contained normal activities of glutathione reductase (gene on 8p) and lactate dehydrogeanse A (gene on 11p12), indicating a gene dosage consistent with the chromosomal findings. The revised interpretation of this case agrees with seven others reported as having aniridia and interstitial 11p deletions in establishing the distal half of band 11p13 as the site of gene(s) which lead to aniridia and predispose to Wilms' tumor if present in a hemizygous state. Possible relationships between heterozygous deletion of specific chromosomal bands 11p13 and 13q14 and the autosomal dominant disorders aniridia, Wilms' tumor, and retinoblastoma, respectively, are discussed.  相似文献   

2.
Summary Isolated aniridia segregated as an autosomal dominant trait in a family with 11 affected members spanning five generations. Four of the eight individuals studied had aniridia associated with glaucoma and cataracts. Cytogenetic studies revealed an apparently balanced reciprocal translocation between chromosomes 11 and 22 [t(11;22)(p13;q12.2)], while four unaffected relatives had normal karyotypes. There is no evidence of Wilms tumor or genitourinary abnormalities in any members of the family. Restriction enzyme analysis of the human catalase gene revealed no abnormalities in the individuals with the translocation. A summary of phenotypic abnormalities in 61 cases associated with aniridia is presented, as well as a comparison of breakpoints in 44 cases of 11p deletion. These data indicate that single breaks at 11p13 are associated with isolated aniridia, while deletion of 11p13 results in aniridia combined with Wilms tumor, genitourinary abnormalities, and/or mental retardation.  相似文献   

3.
Familial aniridia and translocation t(4;11)(q22;p13) without Wilms' tumor   总被引:12,自引:2,他引:10  
A family with dominantly inherited aniridia in three generations is presented. All three patients had an apparently balanced chromosome translocation t(4;11)(q22;p13). The patients were otherwise clinically normal and without signs of Wilms' tumor; their erythrocyte catalase activities were within the normal range. We suggest that in this family aniridia is caused either by a submicroscopic deletion at the translocation breakpoint 11p13 or by a position effect on the same chromosome segment. Furthermore, the loci for aniridia and Wilms' tumor susceptibility are separate. It follows that the WAGR complex is caused by a mutation of more than one gene located at 11p13. The theoretical implications of a presumably defective allele causing a mendelian dominant phenotype are discussed.  相似文献   

4.
A gene dosage effect for catalase (CAT) was investigated in three individuals : one with 11p13 deletion, aniridia, ambiguous genitalla, and gonadoblastoma ; one trisomic for 11p with the exception of 11p13; and one trisomic for 11p13. Results were compatible with the assignment of CAT to 11p13 and its linkage with the aniridia-gonadoblastoma or Wilms' tumor complex (WAGR).  相似文献   

5.
A deletion map of the WAGR region on chromosome 11.   总被引:10,自引:2,他引:8       下载免费PDF全文
The WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) region has been assigned to chromosome 11p13 on the basis of overlapping constitutional deletions found in affected individuals. We have utilized 31 DNA probes which map to the WAGR deletion region, together with six reference loci and 13 WAGR-related deletions, to subdivide this area into 16 intervals. Specific intervals have been correlated with phenotypic features, leading to the identification of individual subregions for the aniridia and Wilms tumor loci. Delineation, by specific probes, of multiple intervals above and below the critical region and of five intervals within the overlap area provides a framework map for molecular characterization of WAGR gene loci and of deletion boundary regions.  相似文献   

6.
Del11p13/nephroblastoma without aniridia   总被引:6,自引:0,他引:6  
Summary A patient is reported with del11p13, low catalase level, nephroblastoma, chordee and cryptorchidism, no evident mental retardation, and with normal irides. This unique observation suggests the following order of loci in 11p13, from centromere to telomere: catalase, Wilms tumor, aniridia. The chromosomal origin of nephroblastoma may be more frequent than estimated on the basis of its association with aniridia.  相似文献   

7.
The distal region of 11p13 and associated genetic diseases.   总被引:3,自引:0,他引:3  
The distal region of human chromosome band 11p13 is believed to contain a cluster of genes involved in the development of the eye, kidney, urogenital tract, and possibly the nervous system. Genetic abnormalities of this region can lead to Wilms tumor, aniridia, urogenital abnormalities, and mental retardation (WAGR syndrome). Using 11 DNA markers covering the entire distal region of 11p13, including the WAGR region, we have carried out molecular studies on 58 patients with one or more features of this syndrome and patients with other diseases or structural cytogenetic abnormalities associated with 11p13. Cytogenetic analyses were performed in all cases. In 12 patients we were able to demonstrate deletions of this region. In 2 patients balanced translocations and in 2 additional patients duplications of this region were characterized. In total, 5 chromosomal breakpoints within 11p13 were identified. One of these breakpoints maps within the smallest region of overlap of WAGR deletions. Moreover, we were unable to demonstrate constitutional deletions in a candidate sequence for the Wilms tumor gene or any other marker in 2 patients with aniridia and urogenital abnormalities, 4 patients with Wilms tumor and urogenital abnormalities, 5 patients with bilateral Wilms tumors, and 3 familial Wilms tumor cases. We suggest that the molecular techniques used here (heterozygosity testing for polymorphic markers mapping between AN2 and WT1 and deletion analysis by dosage, cytogenetic analysis, or in situ hybridization) can be employed to identify sporadic aniridia patients with and without increased tumor risk.  相似文献   

8.
Fluorescence in situ hybridization (FISH) with biotin-labeled probes mapping to 11p13 has been used for the molecular analysis of deletions of the WAGR (Wilms tumor, aniridia, genitourinary abnormalities, and mental retardation) locus. We have detected a submicroscopic 11p13 deletion in a child with inherited aniridia who subsequently presented with Wilms tumor in a horseshoe kidney, only revealed at surgery. The mother, who has aniridia, was also found to carry a deletion including both the aniridia candidate gene (AN2) and the Wilms tumor predisposition gene (WT1). This is therefore a rare case of an inherited WAGR deletion. Wilms tumor has so far only been associated with sporadic de novo aniridia cases. We have shown that a cosmid probe for a candidate aniridia gene, homologous to the mouse Pax-6 gene, is deleted in cell lines from aniridia patients with previously characterized deletions at 11p13, while another cosmid marker mapping between two aniridia-associated translocation breakpoints (and hence a second candidate marker) is present on both chromosomes. These results support the Pax-6 homologue as a strong candidate for the AN2 gene. FISH with cosmid probes has proved to be a fast and reliable technique for the molecular analysis of deletions. It can be used with limited amounts of material and has strong potential for clinical applications.  相似文献   

9.
Children with associated Wilms' tumor, aniridia, genitourinary malformations, and mental retardation (WAGR syndrome) frequently have a cytogenetically visible germ line deletion of chromosomal band 11p13. In accordance with the Knudson hypothesis of two-hit carcinogenesis, the absence of this chromosomal band suggests that loss of both alleles of a gene at 11p13 causes Wilms' tumor. Consistent with this model, chromosomes from sporadically occurring Wilms' tumor cells frequently show loss of allelic heterozygosity at polymorphic 11p15 loci, and therefore it has been assumed that allelic loss extends proximally to include 11p13. We report here that in samples from five sporadic Wilms' tumors, allelic loss occurred distal to the WAGR locus on 11p13. In cells from one tumor, mitotic recombination occurred distal to the gamma-globin gene on 11p15.5. Thus, allelic loss in sporadic Wilms' tumor cells may involve a second locus on 11p.  相似文献   

10.
Seventy-seven patients with aniridia, referred for cytogenetic analysis predominantly to assess Wilms tumor risk, were studied by fluorescence in situ hybridization (FISH), through use of a panel of cosmids encompassing the aniridia-associated PAX6 gene, the Wilms tumor predisposition gene WT1, and flanking markers, in distal chromosome 11p13. Thirty patients were found to be chromosomally abnormal. Cytogenetically visible interstitial deletions involving 11p13 were found in 13 patients, 11 of which included WT1. A further 13 patients had cryptic deletions detectable only by FISH, 3 of which included WT1. Six of these, with deletions <500 kb, share a similar proximal breakpoint within a cosmid containing the last 10 exons of PAX6 and part of the neighboring gene, ELP4. Two of these six patients were mosaic for the deletion. The remaining four had chromosomal rearrangements: an unbalanced translocation, t(11;13), with a deletion including the WAGR (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation) region, and three balanced rearrangements with what appear to be position effect breakpoints 3' of PAX6: (a) a t(7;11) with the 11p13 breakpoint approximately 30 kb downstream of PAX6, (b) a dir ins(12;11) with a breakpoint >50 kb from PAX6, and (c) an inv(11)(p13q13) with a breakpoint >75 kb downstream of PAX6. The proportion and spectrum of chromosome anomalies in familial (4/14, or 28.5%) and sporadic (26/63, or 41%) cases are not significantly different. An unexpectedly high frequency of chromosomal rearrangements is associated with both sporadic and familial aniridia in this cohort.  相似文献   

11.
Summary We attempted to determine wheter all cases of AWTA (anirida-Wilms tumor association) or any of the following groups of patients show 11p deletion: cases of Wilms tumor with congenital abnormalities other than aniridia, those without any congenital abnormalities, tumor itself in cases of Wilsm tumor without constitutional 11p deletion and cases of aniridia or hemihypertrophy without Wilms tumor. We studied a total of 29 index patients including five cases of AWTA, four cases of Wilms tumor with various congenital abnormalities, 16 cases of Wilms tumor without other abnormalities, three cases of aniridia in one of which Wilms tumor developed later and a case of hemihypertrophy.In all five cases of AWTA and in a case of aniridia who later developed Wilms tumor, 11p deletion involving the p13 band was detected. The mother of the latter also showed an identical 11p deletion. The common segment of deletion was the middle part of the p13. Two possible hypotheses on the mechanism through which Wilms tumor might develop were evaluated, based on the distribution of break points. All other cases, including five with tumor culture, showed a normal karyotype.  相似文献   

12.
Summary Two unrelated patients with clinical features of 11p13 deletion syndrome, 3 years old and 3 months old, are reported. The clinical features of the patients included mental retardation, aniridia, nystagmus, blepharophimosis, and genitourinary abnormalities. Both patients were apparently free from Wilms' tumor and gonadoblastoma. Prometaphase banding analyses revealed a 46,XY,del(11)(p 1300p 1500) karyotype in one patient and 46,XX,dir ins(11;2)(p13;q12q23) in the other. Catalase activities in the erythrocytes in the two patients were respectively 65% and 56% of those of normal controls, close to the expected values in hemizygosity of the catalase gene. These findings confirmed a close linkage of the gene for catalase and those for the aniridia-Wilms' tumor or gonadoblastoma complex.  相似文献   

13.
14.
Genetic analysis of the cells of a WAGR patient (W, predisposition to Wilms tumor; A, aniridia; G, genitourinary abnormalities; R, mental retardation), bearing a partial deletion of band 11p13, was performed with biochemical and antigenic 11p markers by using gene dosage, somatic hybridization, molecular hybridization, and indirect immunofluorescence techniques. These studies allowed the regional assignment of the gene for catalase, which is linked to the Wilms tumor locus, between MIC4 and MIC11, two loci encoding for membrane antigens previously mapped to band 11p13.  相似文献   

15.
Unbalanced interstitial deletions of the p13 region of human chromosome 11 have been associated with congenital hypoplasia or aplasia of the iris, mental retardation, ambiguous genitalia, and predisposition to Wilms tumor of the kidney. Utilizing somatic cell hybrids containing either the normal or abnormal chromosome 11 from a child with Wilms tumor and aniridia, we previously mapped the E7 cell-surface antigen to the 11p1300-to-11p15.1 region. To localize even further the site of this antigen on chromosome arm 11p, we have produced somatic cell hybrids from the fibroblasts of a second child with Wilms tumor and aniridia and a different deletion of 11p [46,XY, del (11)(pter----p14.1::p11.2----qter)]. Furthermore, the normal and deleted chromosome 11 could also be distinguished on the basis of a restriction fragment length polymorphism for the beta-globin gene. Hybrid cells containing the deleted chromosome were not killed in the presence of complement and the E7 monoclonal antibody (which recognizes E7 cell surface antigen), while hybrid cells containing the patient's normal chromosome 11 were killed. Thus, expression of the E7-associated cell-surface antigen can be mapped to the 11p13 region, and it appears to be a potential marker of the chromosome abnormality associated with aniridia-Wilms tumor.  相似文献   

16.
A human aniridia candidate (AN) gene on chromosome 11p13 has been cloned and characterized. The AN gene is the second cloned gene of the contiguous genes syndrome WAGR (Wilms' tumor, aniridia, genitourinary malformations, mental retardation) on chromosome 11p13, WT1 being the first gene cloned. Knowledge about the position of the AN and WT1 genes on the map of 11p13 makes the risk assessment for Wilms' tumor development in AN patients possible. In this study, we analyzed familial and sporadic aniridia patients for deletions in 11p13 by cytogenetic analyses, in situ hybridization, and pulsed field gel electrophoresis (PFGE). Cytogenetically visible deletions were found in 3/11 sporadic AN cases and in one AN/WT patient, and submicroscopic deletions were identified in two sporadic AN/WT patients and in 1/9 AN families. The exact extent of the deletions was determined with PFGE and, as a result, we could delineate the risk for Wilms' tumor development. Future analyses of specific deletion endpoints in individual AN cases with the 11p13 deletion should result in a more precise risk assessment for these patients.  相似文献   

17.
Although the occurrence of bladder cancer is common, the molecular events underlying the pathogenesis of this cancer remain ill-defined. A loss of heterozygosity (LOH) at specific chromosomal loci may predispose individuals to the development of bladder cancer but this has not been examined in detail. Furthermore, the role that deletion or inactivation of putative tumour suppressor genes might play in the genesis of bladder cancer has not been established. In this study, allelic deletion analysis on the short arm of chromosome 17 of patients with primary bladder tumours failed to show deletion at 17p13 (0/7), a region known to contain the p53 tumour suppressor gene. Chromosome 11p15 showed allelic deletion at the IGF2 locus (2/7: 29%) and the PTH locus (1/11: 9%). However, no deletion was observed at the CALCA locus (0/6). LOH at 11p13, a region containing the Wilm's tumour suppressor gene (WT1), was also studied. Analysis of LOH at 11p13 showed deletion at the CAT locus (13/18: 72%), the J/D11S414 locus (5/15: 33%), the WT1 locus (7/14: 50%) and the FSHB locus (6/16: 38%). The significance of these findings is discussed.  相似文献   

18.
Children with constitutional deletions of chromosome 11p13 suffer from aniridia, genitourinary malformations, and mental retardation and are predisposed to develop bilateral Wilms tumor (the WAGR syndrome). The critical region for these defects has been narrowed to a segment of band 11p13 between the catalase and the beta-follicle-stimulating hormone genes. In this report, we have cloned the endpoints from a WAGR patient whose large cytogenetic deletion, del(11)(p14.3::p13), does not include the catalase gene. The deletion was characterized using DNA polymorphisms and found to originate in the paternally derived chromosome 11. The distal endpoint was identified as a rearrangement of locus D11S21 in conventional Southern blots of the patient's genomic DNA, but was not detected in leukocyte DNA from either parent or in sperm DNA from the father. The proximal endpoint was isolated by cloning the junction fragment and was mapped in relation to other markers and breakpoints. It defines a new locus in 11p13-delta J, which is close to the Wilms tumor gene and the breakpoint cluster region (TCL2) of the frequent t(11;14)(p13;q11) translocation in acute T-cell leukemia. An unusual concentration of base pair substitutions was discovered at delta J, in which 9 of 44 restriction sites tested (greater than 20%) vary in the population. This property makes delta J one of the most polymorphic loci on chromosome 11 and may reflect an underlying instability that contributed to the original mutation. The breakpoint extends the genetic map of this region and provides a useful marker for linkage studies and the analysis of allelic segregation in tumor cells.  相似文献   

19.
Summary There is considerable interest in the 11p13 region because of its involvement in Wilms tumor, sporadic aniridia, and other congenital abnormalities. Cloned DNA sequences from this region might be useful in understanding the chromosomal abnormalities which lead to such disorders. However, few such markers exist. Using somatic cell hybrids which contain defined 11p deletions, two cloned DNA sequences which flank a deletion generated in an hepatocellular carcinoma (as a consequence of hepatitis B virus integration) were mapped to 11p13. Thus both ends of the deletion observed in an hepatocellular carcinoma are within 11p13.  相似文献   

20.
Use of catalase polymorphisms in the study of sporadic aniridia   总被引:1,自引:1,他引:0  
Summary Catalase is known to map at chromosome 11p13. It is one of the closest known markers to the WAGR locus. Restriction fragment length polymorphisms (RFLP) of the catalase gene may be invaluable for studying rearrangements in somatic tumours, linkage in cases of familial Wilms tumour, and the relationship between sporadic and familial aniridia. We describe a catalase RFLP with two different enzymes and use these polymorphisms to exclude deletion of the catalase gene in patients with sporadic aniridia, including one who is known to have a deletion and another suspected of having a deletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号