首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
2.
3.
A late-flowering mutant was isolated from rice T-DNA-tagging lines. T-DNA had been integrated into the K-box region of Oryza sativa MADS50 (OsMADS50), which shares 50.6% amino acid identity with the Arabidopsis MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20). While overexpression of OsMADS50 caused extremely early flowering at the callus stage, OsMADS50 RNAi plants exhibited phenotypes of late flowering and an increase in the number of elongated internodes. This confirmed that the phenotypes observed in the knockout (KO) plants are because of the mutation in OsMADS50. RT-PCR analyses of the OsMADS50 KO and ubiquitin (ubi):OsMADS50 plants showed that OsMADS50 is an upstream regulator of OsMADS1, OsMADS14, OsMADS15, OsMADS18, and Hd (Heading date)3a, but works either parallel with or downstream of Hd1 and O. sativa GIGANTEA (OsGI). These results suggest that OsMADS50 is an important flowering activator that controls various floral regulators in rice.  相似文献   

4.
Flowering in rice is influenced by not only endogenous factors that comprise an autonomous pathway, but also environmental effects, such as photoperiod, water availability, and temperature just before floral initiation. Recent molecular genetics studies have elucidated the functional roles of genes involved in the photoperiod pathway, e.g., photoreceptors, circadian clock components, and short-day (SD) promotion factors. Although these molecular players are well conserved between rice andArabidopsis, their actual genetic functions are distinct. This is exemplified byHd1 (aCO counterpart) and phytochromes, in particular, ricePHYA. Hd1 has a dual role in regulating flowering time and the expression ofHd3a (anFT counterpart) repression under long-day (LD) conditions while promotion under SDs. Models have been proposed to explain these photoperiod-dependent antagonistic activities. Some regulatory factors are present in only one of the model systems, e.g.,FLC inArabidopsis orEhd1 in rice. Furthermore, epistatic relationships vary among such flowering regulators asHd3a (FT), OsMADS50 (SOCT), andOsMADS14 (AP1). Further experiments to probe these differences will be essential to enlarging our understanding of the diversified flowering regulation mechanisms in rice.  相似文献   

5.
6.
7.
Most short vegetative phase (SVP)-group MADS-box genes control meristem identity and flowering time. Among the three SVP-group genes in rice, OsMADS47 has been reported as a negative regulator of brassinosteroid (BR) responses. Here, we investigated the functional roles of two close homologs, OsMADS22 and OsMADS55, by generating single, double and triple RNAi lines and overexpression lines. Analyses of the plants showed that their roles in regulating meristem identity are well conserved; however, the involvement of these genes in determining flowering time has diversified. Most importantly, OsMADS55 works as a major negative regulator of BR responses, and OsMADS22 functions to support OsMADS55. Whereas single OsMADS55 RNAi plants display weak BR responses in the lamina joint (LJ), OsMADS22 - OsMADS55 double and OsMADS22 - OsMADS47 - OsMADS55 triple RNAi plants manifest dramatic BR responses with regard to LJ inclination, coleoptile elongation and senescence. Stem elongation is also notably reduced in the double and triple RNAi plants, probably because of BR oversensitivity. Expression analyses indicate the diversified roles in age-dependent BR responses. Altogether, our study demonstrates that all three rice SVP-group genes work as negative regulators of BR responses, but that their spatial and temporal roles are diversified.  相似文献   

8.
9.
10.
11.
水稻开花光周期调控相关基因研究进展   总被引:1,自引:0,他引:1  
水稻开花调控是一个极其复杂的生命过程,由自身遗传因素和外界环境共同决定。光周期途径是调控水稻开花的关键途径,在这个途径中成花素基因Hd3a和RTF1处于核心地位,其上游调控途径主要包括Hd1依赖途径、Ehd1依赖途径及不依赖于Hd1和Ehd1的途径。这3条途径在汇集了光信号的各种信息后,将信号在Hd3a和RTF1处整合,并通过成花素形式将信息传递给下游开花基因,调控水稻开花。本文从成花素、光信号感受基因和昼夜节律基因、成花素上游调控基因、互作蛋白和下游调控基因等几方面阐述水稻开花光周期调控相关基因的研究现状,为水稻开花调控的深入研究提供参考。  相似文献   

12.
Although flowering time is often associated with plant size, little is known about how flowering time genes affect plant architecture. We grew four rice lines having different flowering time genotypes (hd1 ehd1, hd1 Ehd1, Hd1 ehd1 and Hd1 Ehd1) under distinct photoperiod conditions. By using genotype-treatment combinations that resulted in similar flowering times, we were able to compare the effects of flowering time genes on traits related to plant architecture. The results revealed that the combination of Heading-date 1 (Hd1) and Early heading date 1 (Ehd1) can reduce the number of primary branches in a panicle, resulting in smaller spikelet numbers per panicle; this occurs independently of the control of flowering time. In addition, expression of the Hd3a and Rice Flowering-locus T 1 (RFT1) florigen genes was up-regulated in leaves of the Hd1 Ehd1 line at the time of the floral transition. We further revealed that Hd1 and/or Ehd1 caused up-regulation of Terminal Flower 1-like genes and precocious expression of panicle formation-related genes at shoot apical meristems during panicle development. Therefore, two key flowering time genes, Hd1 and Ehd1, can control panicle development in rice; this may affect crop yields in the field through florigen expression in leaf.  相似文献   

13.
14.
15.
16.
Hd3a and RFT1 are essential for flowering in rice   总被引:4,自引:0,他引:4  
  相似文献   

17.
18.
19.
20.
FLOWERING LOCUS T (FT), a florigen in Arabidopsis, plays critical roles in floral transition. Among 13 FT-like members in rice, OsFTL2 (Hd3a) and OsFTL3 (RFT1), two rice homologues of FT, have been well characterized to act as florigens to induce flowering under short-day (SD) and long-day (LD) conditions, respectively, but the functions of other rice FT-like members remain largely unclear. Here, we show that OsFTL12 plays an antagonistic function against Hd3a and RFT1 to modulate the heading date and plant architecture in rice. Unlike Hd3a and RFT1, OsFTL12 is not regulated by daylength and highly expressed in both SD and LD conditions, and delays the heading date under either SD or LD conditions. We further demonstrate that OsFTL12 interacts with GF14b and OsFD1, two key components of the florigen activation complex (FAC), to form the florigen repression complex (FRC) by competing with Hd3a for binding GF14b. Notably, OsFTL12-FRC can bind to the promoters of the floral identity genes OsMADS14 and OsMADS15 and suppress their expression. The osmads14 osmads15 double mutants could not develop panicles and showed erect leaves. Taken together, our results reveal that different FT-like members can fine-tune heading date and plant architecture by regulating the balance of FAC and FRC in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号