首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A field experiment with predator exclosures was performed in a pond in Southern Sweden to evaluate the effects of vertebrate predators on the diversity, density and distribution of freshwater gastropods. Ten exclosures (1 × 1 × 1.5 m) were erected in the nearshore vegetation at a waterdepth of 0.5–0.7 m in early June 1983 so that they included different amounts and species of macrophytes. The exclosures and cageless controls were sampled for macrophytes and gastropods at the end of the summer. The density of gastropods in the controls, exposed to predators, was positively correlated to the abundance of macrophytes. No such correlation existed in the exclosures. Further, the density of gastropods was significantly higher in the exclosures than predicted by the regression between gastropods and macrophytes in the controls. There was no difference between species composition of gastropods between controls and exclosures, but the number of species and the density of gastropods were lower in the macrophyte stands dominated byScirpus lacustris than in the more complex stands dominated bySparganium erectum. These results indicate that vertebrate predation is a major structuring force of benthic freshwater gastropod communities.  相似文献   

2.
We investigated the influence of macrophyte composition on ciliate community structure in a large, shallow, eutrophic Lake Võrtsjärv. We hypothesized that macrophyte composition must have strong influence on the dispersal of ecologically different ciliate groups in a shallow lake and that more diverse macrophyte stands cause also a greater diversity in the ciliate community. In Võrtsjärv macrophyte distribution is spatially strongly polarized both in east–west and north–south directions in relation to abiotic factors. Phragmites australis and Myriophyllum spicatum were the most widespread species occurring in most parts of the lake. Correlation of environmental, macrophyte and planktonic ciliate variables confirmed the suggested spatial gradients. More diverse macrophyte stands supported a high species richness and abundance of epiplanktonic community but showed negative influence on the number and abundance of euplanktonic ciliate taxa. Opposite trends were found relative to the abundance of P. australis. Benthic ciliates showed a similar distribution pattern to euplanktonic taxa being most abundant in sites were the Shannon–Weaver index for macrophytes was low. Strong polarizing effect of the lake's vegetation on planktonic ciliate diversity was reflected in correlations of the number of ciliate taxa as well as the numbers of eu- and epiplanktonic taxa with geographic co-ordinates.  相似文献   

3.
The diversity of major macrophytes was assessed in cultivated areas in Bukasa and Kinawataka wetlands in Central Uganda. One thousand and seventy‐two plots of 1 × 1 m were established in 69 cultivated areas. Data were collected on species richness and abundance. Two‐way analysis of covariance (ANCOVA) showed how cropping regimes affected macrophyte species richness and abundance. There were 127 plant species belonging to 37 families in cultivated areas. Of the 127 species, 42 were macrophytes and of the 37 families, fourteen contained macrophyte species. Plant species diversity was higher in the short‐term cropping regime areas (11.3 species per 1 m2) than in the long‐term cropping regime areas (9.3 species per 1 m2). However, macrophyte species richness was similar in the short‐term (3.2 species per 1 m2) and the long‐term (3.3 species per 1 m2) cropping regimes. The dominant families were Poaceae, Asteraceae and Cyperaceae with more than ten species each. The higher plant species diversity in cultivated areas than in uncultivated was because of nonmacrophyte species, thus cropping regime does not influence macrophyte species diversity. Increase in diversity of nonmacrophyte species in short‐term cropping regime implies that the use of wetlands for agricultural crop growing may alter plant species composition and diversity during secondary succession.  相似文献   

4.
  1. Biological invasions can greatly alter ecological communities, affecting not only the diversity and abundance but also composition of invaded assemblages. This is because invaders’ impacts are mediated by characteristics of resident species: some may be highly sensitive to invader impacts while others are unaffected or even facilitated. In some cases, this can result in invasive species promoting further invasions; in particular, herbivory by introduced animals has been shown to disproportionately harm native plants, which can indirectly benefit non-native plants. Here, we investigated whether such patterns emerged through the effects of an invasive fish species on lake plant communities.
  2. Specifically, we tested whether invasion of Minnesota (U.S.A.) lakes by Cyprinus carpio (common carp), an omnivorous, benthivorous fish known to reduce abundance and richness of aquatic plants, differentially affected native versus non-native plant species. We applied statistical models to a large, long-term monitoring dataset (206 macrophyte taxa recorded in 913 lakes over a 20-year time period) to test whether carp altered community composition, to identify which macrophyte species were most sensitive to carp and determine whether species characteristics predicted carp sensitivity, and to characterise consequences of carp invasion on lake-level vegetation attributes.
  3. We found that carp exerted strong selective pressure on community composition. Native macrophytes, those with a more aquatic growth form, and those considered less tolerant of disturbance (i.e. higher coefficients of conservatism) were more sensitive to carp. Conversely, no introduced macrophytes exhibited sensitivity to carp and all had higher probabilities of occurrence as carp abundance increased. The net effect of carp invasion was a shift toward less species-rich plant communities characterised by more non-native and disturbance-tolerant species.
  4. These results have several implications for conservation and management. First, they reinforce the need to prevent further spread of carp outside of their native range. Where carp have already established, their control should be incorporated into efforts to restore aquatic vegetation; this may be an essential step for recovering particular plant species of high conservation importance. Furthermore, reducing carp abundance could have ancillary benefits of reducing dominance by invasive plant species. Lastly, where carp cannot be eliminated, managers should target native macrophytes that are relatively tolerant of carp in shoreline plantings and other revegetation efforts.
  相似文献   

5.
Paul Humphries 《Hydrobiologia》1996,321(3):219-233
Aquatic macrophytes are a common habitat for macroinvertebrates and may occupy depth zones in the littoral region of lowland rivers. Studies have indicated that different species of macrophyte typically support different assemblages, abundances and numbers of species of macroinvertebrates. This has often been attributed to differences in the dissectedness of stems and leaves of the macrophytes, resulting in differences in the surface area and/or the number of microhabitats available to invertebrates. I set out to measure the abundance and taxonomic richness and to describe the macroinvertebrate assemblages associated with three species of aquatic macrophyte in a pool in the Macquarie River, Tasmania and to examine responses of these variables to changes in water levels over summer. The macrophyte species sampled wereMyriophyllum simulans/variifolium, Triglochin procera} and Eleocharis sphacelata, each one differing in the dissectedness of its stems and leaves and its location in the littoral zone. Whereas the greatest abundance of macroinvertebrates was found associated in all months (i.e. at all water levels) with the structurally complex and shallowest macrophyte species, Myriophyllum, the number of taxa associated with this species was in several cases lower than for the structurally simpler and deeper water Triglochin and Eleocharis. While water depth and total plant biomass of samples were often correlated with invertebrate abundance and richness, these relationships were different for each macrophyte species. Of the nine most common invertebrate taxa collected from all samples, the abundances of more than half showed consistent differences among macrophyte species across months, two showed differences among macrophytes, but with an interaction with month and two showed no differences among macrophytes. There were major differences in the invertebrate assemblages associated with each macrophyte species in any one month, however, there was also a large turnover of taxa associated with the species of macrophytes from one month to the next. Changes in water level and concomitant changes in environmental variables are suggested as factors influencing the invertebrate fauna in the littoral zone of the pool of the Macquarie River. It is thus important for river managers to be aware that species of macroinvertebrates are not evenly distributed across species of macrophyte and that water levels and their influence on macrophytes as invertebrate habitat may play an integral part in determining the abundance, richness and assemblage of invertebrates in rivers.  相似文献   

6.
7.
Macrophytes play an important role in structuring aquatic ecosystems. In this study, we explored whether macrophyte species are involved in determining the bacterioplankton community composition (BCC) in shallow freshwater lakes. The BCC in field areas dominated by different macrophyte species in Taihu Lake, a large, shallow freshwater lake, was investigated over a 1-year period. Subsequently, microcosm experiments were conducted to determine if single species of different types of macrophytes in an isolated environment would alter the BCC. Denaturing gradient gel electrophoresis (DGGE), followed by cloning and sequence analysis of selected samples, was employed to analyze the BCC. The DGGE results of the field investigations indicated that the BCC changed significantly from season to season and that the presence of different macrophyte species resulted in lower BCC similarities in the summer and fall. LIBSHUFF analysis of selected clone libraries from the summer demonstrated different BCCs in the water column surrounding different macrophytes. Relative to the field observations, the microcosm studies indicated that the BCC differed more pronouncedly when associated with different species of macrophytes, which was also supported by LIBSHUFF analysis of the selected clone libraries. Overall, this study suggested that macrophyte species might be an important factor in determining the composition of bacterial communities in this shallow freshwater lake and that the species-specific influence of macrophytes on BCC is variable with the season and distance.  相似文献   

8.
Four central Florida lakes were monitored for 3 years to determine the effects of macrophyte reduction and elimination by grass carp and herbicide on phytoplankton populations. Clear Lake, in which grass carp were stocked after a year of baseline studies, had all macrophytes eliminated within 14 months. The density of phytoplankton increased significantly from an initial 24-month mean of 165 000 cells 1−1 to a mean level of 787 900 cells 1−1 in the third year. In Little Lake Fairview, stocked with grass carp in both the first and third years of study, vegetation was not eliminated until the 34th month. Phytoplankton density increased significantly from a 24-month mean of 64 200 cells 1−1 to a mean of 370 200 cells 1−1 in the third year. Lake Orienta, stocked with grass carp in the first year, had all vegetation eliminated within 6 months. Phytoplankton abundance did not change significantly over the course of the study (mean: 2 700 000 cells 1−1). Lake Mann was treated with herbicide alone after an initial year of baseline data collection. Submerged vegetation was reduced in the second year but increased to near initial biomass levels in Year 3, with Nitella sp. replacing Hydrilla verticillata (L.f.) Royle as the dominant macrophyte. No significant yearly changes were noted in density of phytoplankton in this lake. Lake Orienta was the only lake in which the number of phytoplankton species collected differed significantly between years. Cyanophytes (notably species of Anacystis, Microcystis and Anabaena) and the diatom, Fragilaria sp., predominated in all lakes as macrophytes were removed. Most changes observed were in the direction of apparent increased trophic state. Major shifts in the phytoplankton assemblage (e.g., Shannon diversity indices and abundance) coincided with periods of maximal fluctuation in vegetation. Reversals of these tendencies were observed during prolonged stable periods of both high and low macrophute biomass.  相似文献   

9.
Change in the abundance of benthic macroinvertebrates and the stable isotope composition (C, N) of benthic invertebrates and zooplankton in Lake Vaeng, Denmark, was investigated over an 18-year period following biomanipulation (removal of cyprinids). During the first nine years after biomanipulation, the lake was clear and submerged macrophytes were abundant; after this period, a shift occurred to low plant abundance and high turbidity. Two years after the biomanipulation, total density of benthic macroinvertebrates reached a maximum of 17042 (±2335 SE) individuals m−2 and the density was overall higher when the lake was in a clear state. Redundancy analysis (RDA) suggested macrophyte abundance and total nitrogen (TN) concentration were the dominant structuring forces on the benthic macroinvertebrate assemblage. Stable isotope analysis revealed that δ13C of macroinvertebrates and zooplankton was markedly higher in years with high submerged macrophyte abundance than in years without macrophytes, most likely reflecting elevated δ13C of phytoplankton and periphyton mediated by a macrophyte-induced lowering of lake water CO2 concentrations. We conclude that the strong relationship between macrophyte coverage and δ13C of macroinvertebrates and cladocerans may be useful in paleoecological studies of past changes in the dynamics of shallow lakes, as change in macrophyte abundance may be tracked by the δ13C of invertebrate remains in the sediment.  相似文献   

10.
We investigated how land use at multiple scales affects functional macrophytes groups and ecological status index in the boreal region. We employed a variance partitioning analysis to quantify the relative role of lake characteristics, multiple-scaled land use (catchment, buffer zones of 100, 300 and 500 m), and space in explaining the composition and richness of functional macrophyte groups (emergent and submerged macrophytes and hydrophytes) and ecological status of macrophytes in 110 Finnish lakes. Partial redundancy analysis (community composition) and partial linear regression (richness and status index) revealed that macrophyte community composition, richness, and status index were mostly explained by the pure effect of lake characteristics, which dominated over space for most macrophyte variables. Land use adjacent to shoreline had a higher effect on emergent macrophytes and status index compared to the land use of the whole catchment. Our findings suggest that emergent macrophytes can indicate changes in water quality and hydro-morphology originated from the close vicinity of the littoral zone. Ecological quality assessment based on emergent macrophytes only is probably not sufficient, but including emergent species in the assessments is recommended, especially in the species-poor boreal region.  相似文献   

11.
《Aquatic Botany》2007,86(1):25-29
Waterfowl exclusion cages were set up in Sentiz Lake, an eutrophic shallow lake in León (NW of Spain) in order to determine the role of waterfowl herbivory on macrophyte biomass and species composition. Total macrophyte biomass was high during the study (250 g DW m−2 in summer). The macrophyte community was mainly formed by Myriophyllum alterniflorum (95% cover), Ceratophyllum demersum (5%) and Potamogeton gramineus (<0.5%). High densities of co-occurring coots (Fulica atra; 24 ind/ha) and ducks (Anas penelope, A. strepera and A. platyrhynchos; 18 ind/ha) did not have a significant effect on macrophyte biomass in the lake. There were no statistical differences between total biomass inside and outside the exclosures, although plant biomass reached a higher value inside the cages than in the lake. Biomass species composition was significantly different inside and outside exclosures; C. demersum was more abundant in the cages than in the lake. P. gramineus, almost absent in the lake, became co-dominant with M. alterniflorum in some exclosures. The detailed study of M. alterniflorum flower buds in summer showed significant herbivory by coots. Flower bud abundance was lower in the lake (35% lower in June; 85% lower in July) than under waterfowl exclusion. The effect of waterfowl on macrophyte biomass in Mediterranean wetlands seems to be negligible as compared to effects identified in northern European lakes. Apart from an important role in dispersal, waterfowl in Mediterranean areas have a strong qualitative effect on the structure of plant communities by selecting most palatable species or their reproductive structures.  相似文献   

12.
The faunal composition of “interrhizon” invertebrate communities associated with submerged parts of three kinds of macrophytes, Eichhornia crassipes, Gramineae spp. and Polygonum tomentosum, were studied in an oxbow lake, Lake Tundai, with acidic water (pH 3.9–4.4) in the peat swamp area of Central Kalimantan. The pH, turbidity, and chlorophyll-a concentration in the surface waters tended to be higher in macrophyte stands than in open waters near the stands. Thirty-one taxa belonging to three groups of invertebrates, Arachnida, Insecta, especially chironomids, and Isopoda, were found from the root systems, of which insects were the most abundant in every macrophyte stand. The interrhizon invertebrates accounted for 0.16–8.7 g wet wt m?2 among three vegetational stands. The diversity and abundance of interrhizon invertebrates are low in Lake Tundai; this could be due to low pH and/or low productivity in the lake water.  相似文献   

13.
The species composition, distribution and diversity of macrophytes in Lake Ziway were determined at the end of dry and wet seasons along nine littoral sites during 2010 using a belt transect method. Some physicochemical parameters were also measured. Fourteen macrophyte species were identified with low species diversity for the lake (H' value of 1.805). The macrophyte species composition of the lake has undergone many changes during the last few decades. Arundo donax, which was never reported earlier, attained the highest relative density (30.7%) and frequency (30.5%) in this study, followed by Echinochloa colona, Potamogeton schweinfurthii, Cyperus articulatus, Typha latifolia and Cyperus papyrus. The average densities of A. donax, C. articulatus, E. colona and Pistia stratiotes were positively correlated with nutrients, whereas the density of the other species had negative correlation with physicochemical variables (CCA). Generally, the present macrophyte composition and abundance indicates healthy ecological condition of the lake. But if nutrient levels continue to increase and water levels continue to decline, we expect further changes in macrophyte composition and especially a shift towards invasive floating species.  相似文献   

14.
Invertebrate species carried incidentally (i.e., ‘hitchhikers’) in the aquarium trade have gained increasing attention in recent years, but factors affecting the movement of species from stores to homes are poorly understood. We aimed to determine how macrophytes bought from stores act as vectors for transport of non-indigenous invertebrate species. We tested whether incidental invertebrate faunas carried on macrophytes vary internationally by comparing the New Zealand and Canadian trades, and if macrophyte species with different morphologies carry different risks. We recorded a large variety of invertebrate species associated with Vallisneria spp., Sword plants (Echinodorus spp.) and Elodea canadensis bought from stores, including species non-indigenous to both countries. Community composition of incidental fauna differed significantly between New Zealand (primarily domestically cultivated) and Canadian (primarily imported) bought macrophytes. Differences in composition between different macrophyte species were only statistically significant between wild-collected E. canadensis and the cultured species in New Zealand. Behaviours observed in stores, such as the amount of time macrophytes were removed from water before being placed in plastic bags for transport, did not affect the abundances or richness of incidental invertebrates transported, and thus did not appear to be effective in reducing invasion risk. We therefore recommend chemical treatment for removal of invertebrates from macrophytes at or pre-border, and from tanks containing plants at culture facilities and in stores. Such management will reduce the probability of introduction of hitchhikers to home aquaria, from which risk of release to natural waters is greatest.  相似文献   

15.
1. To evaluate the effect of habitat patch heterogeneity on abundance and growth of macroinvertebrates in arctic lakes, macroinvertebrate abundance, individual biomass, and potential food resources were studied in three patch types in two arctic lakes on the Alaskan North Slope near the Toolik Lake Field Station. An experiment was conducted to determine which sediment patch type supported higher growth rates for Chironomus sp., a commonly occurring macroinvertebrate. 2. Potential organic matter (OM) resources were significantly higher in both rock and macrophyte patches than in open‐mud patches. Total macroinvertebrate densities in both lakes were highest in rock patches, intermediate in macrophytes and lowest in open‐mud. The open‐mud patches also had lower species richness compared with other patch types. Additionally, individual biomass for one clam species and two chironomid species was significantly greater in rock patches than in open‐mud. 3. In a laboratory experiment, Chironomus showed two to three times greater mass increase in sediments from macrophyte and rock patches than from open‐mud patches. Rock and macrophyte experimental sediments had at least 1.5 × the percentage OM as open‐mud sediments. 4. Chlorophyll a appeared to be the best predictor for invertebrate abundances across all patch types measured, whereas OM content appeared to be the variable most closely associated with Chironomus growth. 5. Our results combined with previous studies show that the relationships between macroinvertebrate community structure, individual growth, and habitat heterogeneity are complex, reflecting the interaction of multiple resources, and biotic interactions, such as the presence or absence of a selective vertebrate predator (lake trout, Salvelinus namaycush).  相似文献   

16.
SUMMARY. 1. A regression method is proposed for the estimation of populations of epiphytic invertebrates. Small samples of macrophytes and attached animals are taken by gentle enclosure. Regression analysis is used to relate the number of animals collected to the macrophyte species composition and ibiomass in these small samples. These relationships estimate the number of organisms of each taxon per unit mass of each macrophyte species. Areal population density is estimated by multiplication of macrophyte mass-specific invertebrate density by standing macrophyte biomass. 2. The regression method yields population density estimates several times greater than the best of current methods for several fauna. Differences are most pronounced for active organisms such as water mites, amphipods, cladocerans, copepods, lepidopterans, ostracods, and trichopterans. 3. Precision levels obtained using the regression method are comparable to other techniques. The regression technique automatically provides estimates of macrophyte species-specific colonization density and the abundance of organisms swimming among macrophytes in littoral areas.  相似文献   

17.
Wetland restoration efforts require practical models for predicting the effects of various measures on ecosystem structure and function. The present study examined the species diversity and abundance of macrophytes in relation to hydrological parameters in the Alluvial Zone National Park along the Austrian Danube with a main focus on the Lobau, an urban riverine wetland within the city limits of Vienna. A macrophyte regression model was developed based on the output of a 2D hydraulic model for different wetland management options. These management options describe possible rehabilitation measures by re-connecting the riverine wetland with the Danube. Stepwise multiple regressions revealed that the most important predictors of macrophyte diversity and abundance were water velocity at bankfull discharge (maximum water velocity) and size of shallow water areas (<1 m depth) during the growing season. Macrophyte abundance and diversity increased with decreasing water velocity and increasing shallow water area. These parameters integrate information about environmental features such as nutrients, light availability and hydrological disturbance for macrophytes and explained between 65 and 85% of the macrophyte distribution in an analysis. The model results enabled us to predict quantitatively the development and spatial distribution of macrophytes for different management options in this urban riverine wetland. These predictions suggest that partial reconnection could be a compromise solution at the scale of the whole riverine wetland, increasing the availability of suitable aquatic habitats and diversifying the types of existing wetland water bodies to establish potential new habitats for macrophyte species.  相似文献   

18.
Biomanipulation improved water transparency of Lake Zwemlust (The Netherlands) drastically. Before biomanipulation no submerged vegetation was present in the lake, but in summer 1987, directly after the measure, submerged macrophyte stands developed following a clear-water phase caused by high zooplankton grazing in spring. During the summers of 1988 and 1989 Elodea nuttallii was the most dominant species and reached a high biomass, but in the summers of 1990 and 1991 Ceratophyllum demersum became dominant. The total macrophyte biomass decreased in 1990 and 1991. In 1992 and 1993 C. demersum and E. nuttallii were nearly absent and Potamogeton berchtholdii became the dominant species, declining to very low abundance during late summer. Successively algal blooms appeared in autumn of those years reaching chlorophyll-a concentrations between 60–130 µg l–1. However, in experimental cages placed on the lake bottom, serving as exclosures for larger fish and birds, E. nuttallii still reached a high abundance during 1992 and 1993. Herbivory by coots (Fulica atra) in autumn/winter, and by rudd (Scardinius erythrophthalmus) in summer, most probably caused the decrease in total abundance of macrophytes and the shift in species composition.  相似文献   

19.
Clear Lake, Iowa, USA is a shallow, agriculturally eutrophic lake that has changed drastically over the past century. Eight macrophyte surveys since 1896 were pooled and examined to characterize long-term impacts of eutrophication on macrophyte community composition and relative abundance. Surveys in 1981 and 2000 revealed few submergent and floating-leaved species and a dominance in emergent species (Scirpus, Typha). Over the past century, however, species richness has declined from a high of 30 species in 1951 to 12 found today, while the community composition has shifted from submergent-(99%) to emergent-dominated floras (84%). Potamogeton praelongus was the first emergent species to disappear but was followed by several other clear water Potamogeton species. Several floating leaved and emergent genera increased in relative abundance with eutrophication, notably Nuphar, Nymphaea, Phragmites, Polygonum, Sagittaria, Scirpus, and Typha. P. pectinatus was present over the entire century due to its tolerance of eutrophic conditions. Macrophyte growth was generally light-limited, with 93% of the variance in relative abundance of submergent species explained by changes in water transparency. Clear Lake exhibits signs of alternative stable states, oscillating between clear and turbid water, coupled with high and low submerged species relative abundance. The maximum macrophyte richness occurred as the lake oscillated between submergent- and emergent-dominated states. Changes in the water level have also impacted macrophyte growth since the area of the lake occupied by emergent macrophytes was negatively correlated with water level. Strongest correlations indicated that macrophytes respond to water level variations with a 2-year time-lag.  相似文献   

20.
This study tested the hypothesis that lake augmentation with well water impacts the distribution and abundance of aquatic plants in lakes. Water chemistry was measured from 14 wells, 14 augmented lakes, and 14 lakes without augmentation. Nine in-lake aquatic macrophyte abundance and species distribution metrics were measured in all lakes. Net photosynthetic rate (NPR) of nine submersed species was also measured in well and lake water. Augmentation increased alkalinity in receiving lakes, but total phosphorus was significantly lower, which resulted in lower chlorophyll and greater Secchi depths. Although measured NPR was higher for all plants incubated in well water, only one (emergent species richness) in-lake aquatic macrophyte metric was different in lakes with and without augmentation. Lake augmentation significantly changed water chemistry of receiving waters, but effects on aquatic macrophytes were minimal, suggesting that other environmental factors are limiting the distribution and abundance of macrophytes in the study lakes. The lower phosphorus levels in augmented lakes were unexpected because phosphorus concentrations in well water were significantly greater than in lakes with or without augmentation. Precipitation of calcium phosphate likely accounts for the reduced phosphorus levels in augmented lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号