首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
4.
Many experiments in plant molecular biology require processing of a large number of RNA samples and in some cases large quantities are required for a single application. In turmeric, a major spice and medicinal plant, a protocol for RNA isolation is not available. The major difficulty encountered while using other popular protocols is the low yield and quality of RNA which hampers the downstream applications like qRT-PCR, cDNA synthesis and micro RNA isolation. Commercial kits though available are costly and were found to be unsuccessful in case of rhizomes and root tissues that are rich in polyphenols, polysaccharides and alkaloids. It was thus felt that a quick, handy and cheap protocol of total RNA isolation from different tissues of turmeric was required for day to day working in our lab. The new protocol utilizes SDS based extraction buffer including β-mercaptoethanol and PVP with sequential acid phenol:chloroform extraction to remove polyphenols and proteins, followed by the purification with sodium acetate to eliminate polysaccharides. The protocol is simple and can be completed in less than 3 h. The RNA yield from rhizome was higher by more than fivefold with both A260/280 and A260/230 ratio in the range of 1.8–2.0. The protocol worked well with leaf, rhizome, pseudostem and root tissues with RIN >7.0 and the isolated RNA could be successfully used for cDNA synthesis, RT-PCR, qRT-PCR and small RNA isolation including microRNA.  相似文献   

5.
In the present protocol for extraction of RNA, hexadecyltrimethylammoniumbromide (CTAB) and insoluble polyvinylpyrrolidone were used followed by LiCl precipitation, CsCl ultracentrifugation and finally poly (A)+ mRNA was isolated with the help of oligo(dT)-cellulose columns. The isolated poly (A)+ mRNA was found to be suitable for cDNA-AFLP and suppression subtractive hybridization applications. It is a modified and consolidated protocol based on previously described methods for isolated steps and works better for medicinal and aromatic plants. High yield of poly (A)+ mRNA coupled with its amenability for downstream reactions like RT-PCR, northern blotting and cDNA synthesis for library construction is a key feature of the present protocol.  相似文献   

6.
7.
一种从苏铁叶片中有效提取RNA的方法   总被引:2,自引:0,他引:2  
由于苏铁( Cycas revoluta) 叶片中含有大量的多糖多酚等次生代谢物, 常规RNA 提取方法很难获得优质的RNA。在常规的CTAB 法中加入了硼砂和β- 巯基乙醇来消除多酚和多糖的干扰, 得到了一个从苏铁叶片中有效提取RNA 的方法, 每克鲜叶片可获得约930μg RNA。A260 280 和A260 230 的纳米波长的吸收比值都约为2 , 表明RNA 的质量较好。获得的RNA 可用于Northern blot 和反转录PCR 等分析, 也说明RNA 的质量比较好。此外, 改进的提取方法也适合于含有次生代谢产物的其它植物, 同样可以获得优质RNA。  相似文献   

8.
9.
10.
Isolation of RNA from recalcitrant tree tissues has been problematic due to large amounts of secondary metabolites and interfering compounds in their cells. We have developed an efficient RNA extraction method, which yielded high-quality RNA preparations from tissues of the lychee tree. The method reported here utilized EDTA, LSS, and CTAB to successfully inhibit RNase activities. It was found that a high ionic strength brought about by 2 M NaCl was necessary. In addition, secondary metabolites and other interfering compounds were effectively removed using sodium borate and PVPP under a deoxidized condition. The quality of purified RNA was tested by both RACE and Northern blotting analysis, ensuring that the RNA could be used for subsequent gene expression analysis. This method has been successfully applied to purify RNA from 15 other plant species. In conclusion, the protocol reported here is expected to have excellent applications for RNA isolation from recalcitrant plant tissues.  相似文献   

11.
12.
13.
14.
15.
Over the last years, massively parallel sequencing has rapidly evolved and has now transitioned into molecular pathology routine laboratories. It is an attractive platform for analysing multiple genes at the same time with very little input material. Therefore, the need for high quality DNA obtained from automated DNA extraction systems has increased, especially to those laboratories which are dealing with formalin-fixed paraffin-embedded (FFPE) material and high sample throughput. This study evaluated five automated FFPE DNA extraction systems as well as five DNA quantification systems using the three most common techniques, UV spectrophotometry, fluorescent dye-based quantification and quantitative PCR, on 26 FFPE tissue samples. Additionally, the effects on downstream applications were analysed to find the most suitable pre-analytical methods for massively parallel sequencing in routine diagnostics. The results revealed that the Maxwell 16 from Promega (Mannheim, Germany) seems to be the superior system for DNA extraction from FFPE material. The extracts had a 1.3–24.6-fold higher DNA concentration in comparison to the other extraction systems, a higher quality and were most suitable for downstream applications. The comparison of the five quantification methods showed intermethod variations but all methods could be used to estimate the right amount for PCR amplification and for massively parallel sequencing. Interestingly, the best results in massively parallel sequencing were obtained with a DNA input of 15 ng determined by the NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). No difference could be detected in mutation analysis based on the results of the quantification methods. These findings emphasise, that it is particularly important to choose the most reliable and constant DNA extraction system, especially when using small biopsies and low elution volumes, and that all common DNA quantification techniques can be used for downstream applications like massively parallel sequencing.  相似文献   

16.
17.

Background  

Illumina's second-generation sequencing platform is playing an increasingly prominent role in modern DNA and RNA sequencing efforts. However, rapid, simple, standardized and independent measures of run quality are currently lacking, as are tools to process sequences for use in downstream applications based on read-level quality data.  相似文献   

18.
19.
20.
RNA isolation is the first step in the study of gene expression and recombinant protein production. However, the isolation of high quantity and high-quality RNA from tissues containing large amounts of polysaccharides has proven to be a difficult process. Cupressus arizonica pollen, in addition to containing high polysaccharide levels, is a challenging starting material for RNA isolation due to the roughness of the pollen grain’s walls. Here, we describe an improved technique for RNA isolation from C. arizonica pollen grains. The protocol includes a special disruption and homogenization process as well as a two-step modified RNA isolation technique which consists of an acid phenol extraction followed by a final cleanup using a commercial kit. Resulting RNA proved to be free of contaminants as determined by UV spectrophotometry. The quality of the RNA was analyzed on a bioanalyzer and showed visible 25S and 18S bands. This RNA was successfully used in downstream applications such as RT–PCR and phage display library construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号