首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Ovarian cancer is the leading cause of gynaecological cancer mortality. Paclitaxel is used in the first line treatment of ovarian cancer, but acquired resistance represents the most important clinical problem and a major obstacle to a successful therapy. Several mechanisms have been implicated in paclitaxel resistance, however this process has not yet been fully explained. To better understand molecular resistance mechanisms, a comparative proteomic approach was undertaken on the human epithelial ovarian cancer cell lines A2780 (paclitaxel sensitive), A2780TC1 and OVCAR3 (acquired and inherently resistant). Proteins associated with chemoresistance process were identified by DIGE coupled with mass spectrometry (MALDI-TOF and LC-MS/MS). Out of the 172 differentially expressed proteins in pairwise comparisons among the three cell lines, 151 were identified and grouped into ten main functional classes. Most of the proteins were related to the category of stress response (24%), metabolism (22%), protein biosynthesis (15%) and cell cycle and apoptosis (11%), suggesting that alterations of those processes might be involved in paclitaxel resistance mechanisms. This is the first direct proteomic comparison of paclitaxel sensitive and resistant ovarian cancer cells and may be useful for further studies of resistance mechanisms and screening of resistance biomarkers for the development of tailored therapeutic strategies.  相似文献   

2.
Prolonged elevation of plasma free fatty acids (FFAs) induces insulin resistance and impairs pancreatic β-cell adaptation to insulin resistance. The mechanisms whereby lipid induces these impairments are not fully defined but may involve oxidative stress, inflammation, and endoplasmic reticulum stress. α-Lipoic acid (ALA), a commonly used health supplement with antioxidant, anti-inflammatory, and AMPK-activating properties, has been shown to have therapeutic value in type 2 diabetes and its complications. Here we examined the effects of ALA on insulin sensitivity and secretion in humans under the conditions of 24-h iv lipid infusion to elevate plasma FFAs. Eight overweight and obese male subjects underwent four randomized studies each, 4-6 wk apart: 1) SAL, 2-wk oral placebo followed by 24-h iv infusion of saline; 2) IH, 2-wk placebo followed by 24-h iv infusion of intralipid plus heparin to raise plasma FFAs approximately twofold; 3) IH + ALA, 2-wk ALA (1,800 mg/day) followed by 24-h infusion of intralipid plus heparin; and 4) ALA, 2-wk ALA followed by 24-h infusion of saline. Insulin secretion rates (ISR) and insulin sensitivity were assessed with a 2-h, 20-mmol/l hyperglycemic clamp and a hyperinsulinemic euglycemic clamp, respectively. ISR was not significantly different between treatments. Lipid infusion impaired insulin sensitivity with and without ALA pretreatment. These results indicate that ALA, administered orally at this dose for 2 wk, does not protect against lipid-induced insulin resistance in overweight and obese humans.  相似文献   

3.
Development of chemoresistance is a major impediment to successful treatment of patients suffering from epithelial ovarian carcinoma (EOC). Among various molecular factors, presence of MyD88, a component of TLR-4/MyD88 mediated NF-κB signaling in EOC tumors is reported to cause intrinsic paclitaxel resistance and poor survival. However, 50–60% of EOC patients do not express MyD88 and one-third of these patients finally relapses and dies due to disease burden. The status and role of NF-κB signaling in this chemoresistant MyD88negative population has not been investigated so far. Using isogenic cellular matrices of cisplatin, paclitaxel and platinum-taxol resistant MyD88negative A2780 ovarian cancer cells expressing a NF-κB reporter sensor, we showed that enhanced NF-κB activity was required for cisplatin but not for paclitaxel resistance. Immunofluorescence and gel mobility shift assay demonstrated enhanced nuclear localization of NF-κB and subsequent binding to NF-κB response element in cisplatin resistant cells. The enhanced NF-κB activity was measurable from in vivo tumor xenografts by dual bioluminescence imaging. In contrast, paclitaxel and the platinum-taxol resistant cells showed down regulation in NF-κB activity. Intriguingly, silencing of MyD88 in cisplatin resistant and MyD88positive TOV21G and SKOV3 cells showed enhanced NF-κB activity after cisplatin but not after paclitaxel or platinum-taxol treatments. Our data thus suggest that NF-κB signaling is important for maintenance of cisplatin resistance but not for taxol or platinum-taxol resistance in absence of an active TLR-4/MyD88 receptor mediated cell survival pathway in epithelial ovarian carcinoma.  相似文献   

4.
Topical zinc applications promote wound healing and epithelialization. "Leaky" MDCKII epithelia exposed to apical ZnCl? (10 mM) showed a time-dependent increase (t (0.5) 22.2 ± 2.7 min) of transepithelial resistance (R (t)) from 82.3 ± 2.4 Ω cm2 to 1,551 ± 225.6 Ω cm2; the increase was dose-dependent, being observed at 3 mM but not at 1 mM. Basal Zn2+ applications also increased epithelial resistance (at 10 mM to 323 ± 225.6 Ω cm2). The linear current-voltage relationship in control epithelia changed after apical 10 mM ZnCl? to show rectification. Voltage deflections resulting from inward currents showed time-dependent relaxation (basal potential difference (p.d.)-positive), with outward currents being time-independent. Cation selectivity was tested after apical ZnCl? elevated resistance; both the NaCl:mannitol (basal replacement) dilution p.d. and the choline:Na bi-ionic p.d. decreased (P(Na)/P(Cl) from 4.9 to 2.3 and P(Na)/P(choline) from 3.8 to 2.1, respectively). Transepithelial paracellular basal to apical ??Ca fluxes increased approximately twofold when driven by a basal positive Na:NMDG bi-ionic p.d., but with basal 10 mM ZnCl?, ??Ca fluxes decreased approximately twofold. Neither ZO-1 nor occludin distribution was altered after ~2-h exposure to apical 10 mM ZnCl?. However, claudin-2, though present at the tight junction, increased within the cell. Increased epithelial barrier resistance by Zn2+ is due to modification of the paracellular pathway, most probably by multiple mechanisms.  相似文献   

5.
Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics.  相似文献   

6.
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver and is a major cause of cancer related deaths worldwide. Only 10 to 20% of HCC can be surgically excised. Therefore, chemotherapeutic intervention and treatment is essential for achieving favorable prognosis. However, therapeutic outcome of chemotherapy is generally poor owing to inherent resistance of cancer cells to the treatment or due to development of acquired resistance. To differentiate and delineate the molecular events, we developed drug resistant Hep3B cells (DRC) by treating cells with the increasing concentration of paclitaxel. We also developed a unique single cell clone of Hep3B cells (SCC) by selecting single cell colonies and screening them for resistant phenotype. Interestingly, both DRC and SCC were resistant to paclitaxel in comparison to parental Hep3B cells. We analyzed the contributory factors that may be involved in the development of resistance. As expected, level of P-glycoprotein (P-gp) was elevated in DRC. In addition, Caveolin-1 (Cav-1), Fatty acid synthase (FASN) and Cytochrome P450 (CYP450) protein levels were elevated in DRC whereas in SCC, FASN and CYP450 levels were elevated. Downregulation of these molecules by respective siRNAs and/or by specific pharmacological inhibitors resensitized cells to paclitaxel. Interestingly, these drug resistant cells were also less sensitive to vinblastine, doxorubicin and methotrexate with the exception of cisplatin. Our results suggested that differential levels of P-gp, Cav-1 and FASN play a major role in acquired resistant phenotype whereas FASN level was associated with the presentation of inherent resistant phenotype in HCC.  相似文献   

7.
The microenvironment is central to many aspects of cancer pathobiology and has been proposed to play a role in the development of cancer cell resistance to therapy. To examine the response to microenvironmental conditions, two paclitaxel resistant prostate cancer (PCa) cell lines (stable and reversible) and one reversible heat resistant cell line were studied. In comparison to their parental cell lines, both paclitaxel resistant cell lines (stable and reversible) were more sensitive to microenvironmental heat, potentially yielding a synergistic therapeutic opportunity. In the two phenotypic cells repopulated after acute heat or paclitaxel treatments, there was an inverse correlation between paclitaxel and heat resistance: resistance to paclitaxel imparted sensitivity to heat; resistance to heat imparted sensitivity to paclitaxel. These studies indicate that as cancer cells evolve resistance to single microenvironmental stress they may be more sensitive to others, perhaps allowing us to design new approaches for PCa therapy.  相似文献   

8.
Drug resistance remains a barrier to the effective long term treatment of ovarian cancer. We have established an RNAi-based screen to identify genes which confer resistance to carboplatin or paclitaxel. To validate the screen we showed that siRNA interfering with the apoptosis regulators FLIP and Bcl-XL conferred sensitivity to paclitaxel and carboplatin respectively. The expression of 90 genes which have previously been shown to be over-expressed in drug-resistant ovarian cancer was inhibited using siRNA and the impact on sensitivity to carboplatin and paclitaxel was assessed. ENPP2 was identified as a candidate gene causing drug resistance. ENPP2 encodes autotaxin, a phospholipase involved in the synthesis of the survival factor lysophosphatidic acid. siRNA directed to ENPP2 resulted in earlier apoptosis following treatment with carboplatin. 2-carbacyclic phosphatidic acid (ccPA 16:1), a small molecule inhibitor of autotaxin, also accelerated apoptosis induced by carboplatin. Stable ectopic expression of autotaxin in OVCAR-3 cells led to a delay in apoptosis. When serum was withdrawn to remove exogenous LPA, ccPA caused a pronounced potentiation of apoptosis induced by carboplatin in cells expressing autotaxin. These results indicate that autotaxin delays apoptosis induced by carboplatin in ovarian cancer cells.  相似文献   

9.
Phenoxodiol is an experimental anticancer drug under development as a chemosensitizer intended to reverse multidrug resistance mechanisms in ovarian and prostate cancer cells to most standard cytotoxics. The putative molecular target of phenoxodiol is a cell-surface, tumor-specific NADH oxidase, ENOX2 (tNOX), with phenoxodiol having no apparent effect on the constitutive form of this enzyme ENOX1 (CNOX). Using ENOX2 as the target, this study was conducted to explore the temporal relationship between phenoxodiol and paclitaxel or cisplatin in achieving chemosensitization in HeLa cells which are relatively resistant to both paclitaxel and cisplatin. Sequential addition of phenoxodiol and paclitaxel or phenoxodiol and cisplatin showed greater inhibition of HeLa cell ENOX1 activity and growth compared to adding the drugs simultaneously or individually. In parallel, a similar chemosensitizing response of phenoxodiol for cisplatin was observed. ENOX1 was not affected and trans-platinum had no effect. With spent media from phenoxodiol-treated cells sensitivity was enhanced to both paclitaxel and cisplatin if the cells were first pretreated with phenoxodiol. Similar results were obtained with ENOX2-enriched preparations stripped from the surfaces of phenoxodiol-treated cells. In keeping with a speculative prion model, it seems as though the ENOX2 “remembers” the phenoxodiol and “teaches” other ENOX2 molecules to respond to paclitaxel and cisplatin as if phenoxodiol were still present.  相似文献   

10.
朱砂叶螨抗药性监测   总被引:7,自引:4,他引:3  
陈秋双  赵舒  邹晶  石力  何林 《昆虫知识》2012,49(2):364-369
本文采用药膜法建立了朱砂叶螨Tetranychus cinnabarinus(Boisduval)对5种杀螨剂的敏感基线,并对6个不同地理种群的朱砂叶螨进行了抗药性监测,结果表明:5种药剂杀螨活性由高到低分别为阿维菌素〉丁氟螨酯〉氧化乐果〉炔螨特〉甲氰菊酯,其对朱砂叶螨雌成螨的LC50值分别为0.08、2.19、67.89、201.19和605.27mg/L;朱砂叶螨各地理种群已对甲氰菊酯和炔螨特产生了低、中水平的抗性,其抗性倍数分别介于2.93~16.22与4.85~14.35之间,其中云南种群对这2种杀螨剂抗性最高,对氧化乐果与丁氟螨酯处于敏感性降低阶段,其抗性倍数分别介于2.35~4.26与1.56~2.11之间,对阿维菌素还未产生明显抗性;对阿维菌素和甲氰菊酯的增效剂生物测定结果表明,三类解毒酶系(多功能氧化酶、谷胱甘肽S-转移酶和酯酶)都不同程度地参与了朱砂叶螨抗药性的形成。  相似文献   

11.
Various alterations underlying acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have been described. Although treatment strategies specific for these mechanisms are under development, cytotoxic agents are currently employed to treat many patients following failure of EGFR-TKIs. However, the effect of TKI resistance on sensitivity to these cytotoxic agents is mostly unclear. This study investigated the sensitivity of erlotinib-resistant tumor cells to five cytotoxic agents using an in vitro EGFR-TKI-resistant model. Four erlotinib-sensitive lung adenocarcinoma cell lines and their resistant derivatives were tested. Of the resistant cell lines, all but one showed a similar sensitivity to the tested drugs as their parental cells. HCC4006ER cells with epithelial mesenchymal transition features acquired resistance to the three microtubule-targeting agents, docetaxel, paclitaxel and vinorelbine, but not to cisplatin and gemcitabine. Gene expression array and immunoblotting demonstrated that ATP-binding cassette subfamily B, member 1 (ABCB1) was up-regulated in HCC4006ER cells. ABCB1 knockdown by siRNA partially restored sensitivity to the anti-microtubule agents but not to erlotinib. Moreover, the histone deacetylase inhibitor entinostat sensitized HCC4006ER cells to anti-microtubule agents through ABCB1 suppression. Our study indicates that sensitivity of tumor cells to cytotoxic agents in general does not change before and after failure of EGFR-TKIs. However, we describe that two different molecular alterations confer acquired resistance to EGFR-TKIs and cytotoxic agents, respectively. This phenomenon should be kept in mind in selection of subsequent therapy after failure of EGFR-TKIs.  相似文献   

12.
To better understand the role of active oxygen species (AOS) in acquired resistance to increased levels of ultraviolet (UV)-B irradiation in plants, we isolated an Arabidopsis mutant that is resistant to methyl viologen, and its sensitivity to UV-B was investigated. A complementation test revealed that the obtained mutant was allelic to the ozone-sensitive radical-induced cell death1-1 (rcd1-1). Therefore, this mutant was named rcd1-2. rcd1-2 was recessive and nearly 4-fold more resistant to methyl viologen than wild type. It exhibited a higher tolerance to short-term UV-B supplementation treatments than the wild type: UV-B-induced formation of cyclobutane pyrimidine dimers was reduced by one-half after 24 h of exposure; the decrease in quantum yield of photosystem II was also diminished by 40% after 12 h of treatment. Furthermore, rcd1-2 was tolerant to freezing. Steady-state mRNA levels of plastidic Cu/Zn superoxide dismutase and stromal ascorbate peroxidase were higher in rcd1-2 than in wild type, and the mRNA level of the latter enzyme was enhanced by UV-B exposure more effectively in rcd1-2. UV-B-absorbing compounds were more accumulated in rcd1-2 than in wild type after UV-B exposure for 24 h. These findings suggest that rcd1-2 methyl viologen resistance is due to the enhanced activities of the AOS-scavenging enzymes in chloroplasts and that the acquired tolerance to the short-term UV-B exposure results from a higher accumulation of sunscreen pigments. rcd1 appears to be a mutant that constitutively shows stress responses, leading to accumulation of more pigments and AOS-scavenging enzymes without any stresses.  相似文献   

13.
14.
Although insulin resistance and type 2 diabetes (T2DM) are associated with upper body fat distribution, it is unknown whether insulin resistance predisposes to upper body fat gain or whether upper body fat gain causes insulin resistance. Our objective was to determine whether insulin sensitivity predicts abdominal (subcutaneous and/or visceral) fat gain in normal weight adults. Twenty-eight (15 men) lean (BMI = 22.1 ± 2.5 kg/m(2)), healthy adults underwent ~8 weeks of overfeeding to gain ~4 kg fat. Body composition was assessed before and after overfeeding, using dual-energy X-ray absorptiometry (DXA) and abdominal computed tomography to measure total and regional (visceral, abdominal, and lower body subcutaneous) fat gain. We assessed insulin sensitivity with an intravenous glucose tolerance test (IVGTT) and the 24-h insulin area under the curve (AUC). We found a wide range of insulin sensitivity and a relatively narrow range of body fat distribution in this normal weight cohort. Participants gained 3.8 ± 1.7 kg of body fat (4.6 ± 2.2 kg body weight). The baseline 24-h AUC of insulin concentration was positively correlated with percent body fat (r = 0.43, P < 0.05). The contribution of leg fat gain to total fat gain ranged from 29 to 79%, whereas the contributions of abdominal subcutaneous fat and visceral fat gain to total fat gain ranged from 17 to 69% and -5 to 22%, respectively. Baseline insulin sensitivity, whether measured by an IVGTT (S(i)) or the 24-h AUC insulin, did not predict upper body subcutaneous or visceral fat gain in response to overfeeding. We conclude that reduced insulin sensitivity is not an obligate precursor to upper body fat gain.  相似文献   

15.
Glycosylation, one of the most common post translational modifications (PTMs) of proteins, is often associated with carcinogenesis and tumor malignancy. Ovarian cancer is the sixth cause of cancer-related death in Western countries. Currently, it is treated by debulking surgery followed by chemotherapy based on paclitaxel, alone or in combination with other drugs. However, chemoresistance represents a major obstacle to positive clinical outcome. We used two approaches, Multiplexed Proteomics (MP) technology and Multilectin Affinity Chromatography (MAC) to characterize the glycoproteome of the human ovarian cancer cell line A2780 and its paclitaxel resistant counterpart A2780TC1. Furthermore proteins were separated by traditional 2DE or DIGE and identified by MS (MALDI TOF or LC MS/MS). Seventy glycoproteins were successfully identified in ovarian cancer cells and 10 were found to be differentially expressed between sensitive and resistant cell lines. We focused on four glycoproteins (tumor rejection antigen (gp96) 1, triose phosphate isomerase, palmitoyl-protein thioesterase 1 precursor and ER-associated DNAJ) which were remarkably upregulated in A2780TC1 compared to A2780 cell line and which may represent biomarkers for paclitaxel resistance in ovarian cancer.  相似文献   

16.
Molecular markers enabling the prediction of sensitivity/resistance to rapamycin may facilitate further clinical development of rapamycin and its derivatives as anticancer agents. In this study, several human ovarian cancer cell lines (IGROV1, OVCAR-3, A2780, SK-OV-3) were evaluated for susceptibility to rapamycin-mediated growth inhibition. The differential expression profiles of genes coding for proteins known to be involved in the mTOR signaling pathway, cell cycle control and apoptosis were studied before and after drug exposure by RT-PCR. In cells exposed to rapamycin, we observed a dose-dependent downregulation of CCND1 (cyclin D1) and CDK4 gene expression and late G1 cell cycle arrest. Among these cell lines, SK-OV-3 cells resistant to both rapamycin and RAD001 were the sole to show the expression of the anti-apoptotic gene Bcl-2. Bcl-2/bclxL-specific antisense oligonucleotides restored the sensitivity of SK-OV-3 cells to apoptosis induction by rapamycin and RAD001. These results indicate that baseline Bcl-2 expression and therapy-induced downexpression of CCND1 and CDK4 may be regarded as molecular markers enabling the prediction and follow-up of the cellular effects on cell cycle and apoptosis induction of rapamycin in ovarian cancer. Furthermore, strategies to down regulate Bcl-2 in ovarian cancer may prove useful in combination with rapamycin or RAD001 for ovarian cancer.  相似文献   

17.
目的 探讨一组多重耐药肺炎克雷伯菌(MDR-KPN)中获得性耐药相关基因和可移动遗传元件遗传标记的存在状况以及二者的相关性.方法 收集2008年8月至2010年5月浙江省杭州市和湖州市6所医院共47株MDR-KPN,采用聚合酶链反应(PCR)的方法分析74种获得性耐药基因和24种可移动遗传元件遗传标记,并用指标聚类分析(SPSS法)分析获得性耐药相关基因和可移动遗传元件遗传标记的相关性.结果 47株MDR-KPN共检出5种β-内酰胺类获得性耐药基因、6种氨基糖苷类获得性耐药基因、3种喹诺酮类获得性耐药基因、6种其他获得性耐药基因、1种整合子遗传标记、2种转座子遗传标记、4种插入序列遗传标记、2种接合性质粒遗传标记和1种噬菌体原标记;指标聚类分析(SPSS法)将上述阳性检出基因分成A、B两大簇.结论 指标聚类分析提示获得性耐药相关基因和可移动遗传元件密切相关;由Ⅰ类整合子( intI1)、插入序列(IS26、ISEcp1、ISKpn6)、耐药质粒(trbC)介导的TEM-1和KPC是本组菌株的特征.在肺炎克雷伯菌中做指标聚类分析为国内首次报道.  相似文献   

18.
The tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) enhanced sensitivity to cis-diamminedichloroplatinum(II) (DPP) in human ovarina carcinoma 2008 cells by a factor of 2.53 +/- 0.74 fold (S.D.). Sensitization was maximum 3 h after a 1-h exposure to TPA and had disappeared completely by 7 h after treatment. An equivalent degree of sensitization was produced in a 2008 variant selected for 10-fold resistance to DDP. TPA neither increased nor decreased cellular accumulation of DDP. Phorbol, a TPA analog which does not activate protein kinase C, did not cause sensitization. This synergistic interaction between TPA and DDP was completely inhibited by pretreatment with staurosporine, a protein kinase C inhibitor. Cellular cAMP was not altered by TPA stimulation. Furthermore, cycloheximide, a potent protein synthesis inhibitor, did not block the TPA-induced enhancement of drug sensitivity. These results strongly suggest that DDP sensitivity can be modulated by protein kinase C and regulated by phosphorylation of a protein kinase C substrate in both intrinsically sensitive and DDP-resistant cells.  相似文献   

19.
Immune parameters, haemocyte lifespan, and gene expressions of lipopolysaccharide and β-glucan-binding protein (LGBP), peroxinectin (PX), integrin β, and α2-macroglobulin (α2-M) were examined in white shrimp Litopenaeus vannamei juveniles (0.48 ± 0.05 g) which had been reared at different salinity levels of 2.5‰, 5‰, 15‰, 25‰, and 35‰ for 24 weeks. All shrimp survived during the first 6 weeks. The survival rate of shrimp reared at 2.5‰ and 5‰ was much lower (30%) than that of shrimp reared at 15‰, 25‰, and 35‰ (76%~86%) after 24 weeks. Shrimp reared at 25% grew faster. Shrimp reared at 2.5‰ and 5‰ showed lower hyaline cells (HCs), granular cells (GCs), phenoloxidase activity (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, and lysozyme activity, but showed a longer haemocyte lifespan, and higher expressions of LGBP, PX, integrin β, and α2-M. In another experiment, shrimp which had been reared at different salinity levels for 24 weeks were challenged with Vibrio alginolyticus (6 × 10(6) cfu shrimp(-1)), and WSSV (10(3) copies shrimp(-1)) and then released to their respective seawater. At 96-144 h, cumulative mortalities of shrimp reared at 2.5‰ and 5‰ were significantly higher than those of shrimp reared at 15‰, 25‰, and 35‰. It was concluded that following long-term exposure to 2.5‰ and 5‰ seawater, white shrimp juveniles exhibited decreased resistance against a pathogen due to reductions in immune parameters. Increases in the haemocyte lifespan and gene expressions of LGBP, integrin β, PX, and α2-M indicated that shrimp had the ability to expend extra energy to modulate the innate immune system to prevent further perturbations at low salinity levels.  相似文献   

20.
The contribution of defective DNA mismatch repair (MMR) to acquired resistance to cis-diamminedichloroplatinum(II) (cisplatin) has been investigated in two model systems: E coli dam mutants and the A2780 ovarian carcinoma cell line. Inactivation of MMR-as indicated by the acquisition of an elevated spontaneous mutator phenotype-was observed frequently among survivors of cisplatin-treated dam mutants. These survivors exhibited a stable resistance to further cisplatin treatment. In contrast, none of twelve independent clones of A2780 that had survived cisplatin exposure and acquired stable drug resistance were repair defective. None exhibited the hallmark methylation tolerant phenotype associated with a MMR defect, mRNAs encoding five MMR proteins were easily detectable in all twelve variants, and the levels of four key MMR proteins were similar to those in the repair proficient parental cells. Further analysis indicated two different mechanisms of acquired resistance in A2780. The first was a protective effect that reduced the level of DNA platination. The second was observed as a reduced sensitivity to cell cycle arrest after cisplatin treatment and a consequent reduced apoptosis. The data suggest that although loss of MMR is a significant mechanism of acquired drug resistance in dam bacteria, alterations related to DNA protection or cell cycle progression after drug damage appear to be more probable than abrogation of MMR as resistance modulators in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号