首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical spectroscopy and molecular docking methods were used to examine the binding of aristolochic acid I (AAI) to human serum albumin (HSA) in this paper. By monitoring the intrinsic fluorescence of single Trp214 residue and performing displacement measurements, the specific binding of AAI in the vicinity of Sudlow's Site I of HSA has been clarified. An apparent distance of 2.53 nm between the Trp214 and AAI was obtained via fluorescence resonance energy transfer (FRET) method. In addition, the changes in the secondary structure of HSA after its complexation with the ligand were studied with circular dichroism (CD) spectroscopy, which indicated that AAI does not has remarkable effect on the structure of the protein. Moreover, thermal denaturation experiments clearly indicated that the HSA−AAI complexes are conformationally more stable. Finally, the binding details between AAI and HSA were further confirmed by molecular docking studies, which revealed that AAI was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, van der Waals forces and hydrogen bonding.  相似文献   

2.
Angiotensin II type 1 receptor (AT1 receptor) blockers (ARBs) are one of the most popular anti-hypertensive agents. Control of blood pressure (BP) by ARBs is now a therapeutic target for the organ protection in patients with hypertension. Recent meta-analysis demonstrated the possibility that telmisartan was the strongest ARB for the reduction of BP in patients with essential hypertension. However, which molecular interactions of telmisartan with the AT1 receptor could explain its strongest BP lowering activity remains unclear. To address the issue, we constructed models for the interaction between commonly used ARBs and AT1 receptor and compared the docking model of telmisartan with that of other ARBs. Telmisartan has a unique binding mode to the AT1 receptor due to its distal benzimidazole portion. This unique portion could explain the highest molecular lipophilicity, the greatest volume distribution and the strongest binding affinity of telmisartan to AT1 receptor. Furthermore, telmisartan was found to firmly bind to the AT1 receptor through the unique “delta lock” structure. Our present study suggests that due to its “delta lock” structure, telmisartan may be superior to other ARBs in halting cardiovascular disease in patients with hypertension.  相似文献   

3.

Background

Binding affinity for human serum albumin (HSA) is one of the most important factors affecting the distribution and free blood concentration of many ligands. The effect of fatty acids (FAs) on HSA-ligand binding has long been studied. Since the elucidation of the 3-dimensional structure of HSA, molecular simulation approaches have been applied to studies of the structure–function relationship of HSA–FA binding.

Scope of review

We review current insights into the effects of FA binding on HSA, focusing on the biophysical insights obtained using molecular simulation approaches such as docking, molecular dynamics (MD), and binding free energy calculations.

Major conclusions

Possible conformational changes on binding of FA molecules to HSA have been observed through MD simulations. High- and low-affinity FA-binding sites on HSA have been identified based on binding free energy calculations. The relationship between the warfarin binding affinity of HSA and FA molecules has been clarified based on the results of simulations of multi-site FA binding that cannot be experimentally observed.

General significance

Molecular simulation approaches have great potentials to provide detailed biophysical insights into HSA as well as the effects of the binding of FAs or other ligands to HSA. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

4.
Krishnakumar SS  Panda D 《Biochemistry》2002,41(23):7443-7452
Prodan (6-propionyl-2-(dimethylamino)-naphthalene), a competitive inhibitor of warfarin binding to human serum albumin (HSA) at drug site I, was used to determine the inter- and intradomain distances of HSA. The fluorescence resonance energy transfer (FRET) distances between prodan and Trp-214, prodan and 7-(diethyl amino)-4-methylcoumarin 3-maleimide (CM)-modified Cys-34, and Trp-214 and CM-Cys-34 were determined to be 25.5 +/- 0.5 A, 33.1 +/- 0.8 A, and 32.4 +/- 1 A, respectively. FRET analysis showed that low concentration of palmitic acid (5 microM) increased the interdomain distance between the Trp-214 in domain II and CM-Cys-34 in domain I by approximately 5 A without perturbing the secondary structure of HSA and the immediate environment of Trp-214. Palmitic acid (5 microM) increased the prodan fluorescence by increasing the quantum yield of bound prodan without altering the tryptophan environment. However, palmitic acid (>10 microM) decreased the prodan fluorescence and increased the tryptophan fluorescence. Our results indicate that the high affinity palmitic acid binding site is located at the interface of domains I and II. On the basis of our measurements, a schematic model representing the drug site-1, Trp-214, and Cys-34 along with the palmitic acid sites has been constructed. In addition, prodan fluorescence, FRET, and ligand binding were used to monitor guanidine hydrochloride-induced denaturation of HSA. An analysis of the equilibrium unfolding data suggests that HSA undergoes a two-state unfolding transition with no detectable intermediate. However, kinetic analysis using multiple probes and thermal denaturation studies showed that the unfolding of the prodan site in HSA preceded the unfolding of tryptophan environment. In addition, the separation of domain I and II occurred before the global unfolding of the protein. The data support the idea that HSA loses its structure incrementally during its unfolding.  相似文献   

5.
6.
Although the sartan family of angiotensin II type 1 (AT(1)) receptor blockers (ARBs), which includes valsartan, olmesartan, and losartan, have a common pharmacophore structure, their effectiveness in therapy differs. Although their efficacy may be related to their binding strength, this notion has changed with a better understanding of the molecular mechanism. Therefore, we hypothesized that each ARB differs with regard to its molecular interactions with AT(1) receptor in inducing inverse agonism. Interactions between valsartan and residues Ser(105), Ser(109), and Lys(199) were important for binding. Valsartan is a strong inverse agonist of constitutive inositol phosphate production by the wild-type and N111G mutant receptors. Substituted cysteine accessibility mapping studies indicated that valsartan, but not losartan, which has only weak inverse agonism, may stabilize the N111G receptor in an inactive state upon binding. In addition, the inverse agonism by valsatan was mostly abolished with S105A/S109A/K199Q substitutions in the N111G background. Molecular modeling suggested that Ser(109) and Lys(199) bind to phenyl and tetrazole groups of valsartan, respectively. Ser(105) is a candidate for binding to the carboxyl group of valsartan. Thus, the most critical interaction for inducing inverse agonism involves transmembrane (TM) V (Lys(199)) of AT(1) receptor although its inverse agonist potency is comparable to olmesartan, which bonds with TM III (Tyr(113)) and TM VI (His(256)). These results provide new insights into improving ARBs and development of new G protein-coupled receptor antagonists.  相似文献   

7.
BackgroundDespite valsartan’s widespread use, few studies have explored its potential carcinogenicity. We evaluated the association between valsartan and cancer.MethodsWe conducted a retrospective cohort study using data from 2002 to 2015 gathered from the National Health Insurance database. Patients with hypertension aged ≥ 30 who used valsartan or other angiotensin II receptor blockers (ARBs) were included. Eligible patients were those with no prior history of the use of any ARBs, diagnosis of cancer, or organ transplantation in the 4 years predating their first use of the drugs of interest. The primary and secondary outcomes included the occurrence of all cancers and site-specific solid cancers, respectively. After applying propensity score (PS) matching, Cox regression was used to calculate the hazard ratios (HRs) and 95 % confidence intervals (CIs).ResultsA total of 1,550,734 individuals were identified as new users of valsartan or other ARBs. Of the 153,047 valsartan users, 16,047 were diagnosed with cancer. No increased risk of overall cancer was observed in valsartan users as compared to other ARB users (aHR = 1.00; 95 % CI, 0.98–1.02). Valsartan was, however, associated with a slightly elevated risk of liver (aHR = 1.09; 95 % CI, 1.01–1.16) and kidney cancer (aHR = 1.11; 95 % CI, 1.02–1.22).ConclusionCompared with other ARBs, valsartan did not increase the risk of overall cancer. A slightly increased risk for some solid cancers was associated with valsartan use, though the absolute rate difference was small.  相似文献   

8.
A comparative biophysical study on the individual conformational adaptation embraced by two homologous serum albumins (SA) (bovine and human) towards a potential anticancer bioorganic compound 2-(6-chlorobenzo[d] thiazol-2-yl)-1H-benzo[de] isoquinoline-1,3(2H)- dione (CBIQD) is apparent from the discrimination in binding behavior and the ensuing consequences accomplished by combined in vitro optical spectroscopy, in silico molecular docking and molecular dynamics (MD) simulation. The Sudlow site I of HSA although anion receptive, harbors neutral CBIQD in Sudlow site I (subdomain IIA, close to Trp) of HSA, while in BSA its prefers to snugly fit into Sudlow site II (subdomain IIIA, close to Tyr). Based on discernable diminution of HSA mean fluorescence lifetime as a function of biluminophore concentration, facile occurrence of fluorescence resonance energy transfer (FRET) is substantiated as the probable quenching mechanism accompanied by structural deformations in the protein ensemble. CBIQD establishes itself within HSA close to Trp214, and consequently reduces the micropolarity of the cybotactic environment that is predominantly constituted by hydrophobic amino acid residues. The stronger association of CBIQD with HSA encourages an allosteric modulation leading to slight deformation in its secondary structure whereas for BSA the association is comparatively weaker. Sudlow site I of HSA is capable to embrace a favorable conformation like malleable gold to provide room for incoming CBIQD, whereas for BSA it behaves more like rigid cast-iron which does not admit any change thus forcing CBIQD to occupy an altogether different binding location i.e. the Sudlow site II. The anticancer CBIQD is found to be stable within the HSA scaffold as vindicated by root mean square deviation (RMSD) and root mean square fluctuation (RMSF) obtained by MD simulation. A competitively inhibited esterase-like activity of HSA upon CBIQD binding to Lys199 and Arg257 residues, plausibly envisions that similar naphthalimide based prodrugs, bearing ester functionality, can be particularly activated by Sudlow site I of HSA. The consolidated spectroscopic research described herein may encourage design of naphthalimide based pro-drugs for effective in vivo biodistribution using HSA-based drug delivery systems.  相似文献   

9.
Calorimetric and Binding Dissections of HSA Upon Interaction with Bilirubin   总被引:1,自引:0,他引:1  
The interactions between bilirubin and human serum albumin (HSA) were studied by isothermal titration calorimetry (ITC) and UV–vis spectrophotometry at 27°C in 100 mM phosphate buffer pH 7.4 containing 1 mM EDTA. The biphasic shape of the HSA–bilirubin binding curve depicted the existence of two bilirubin binding sets on the HSA structure which had distinct binding interactions. Each binding set contained one or more bilirubin binding site. The first binding set at subdomain IIA included one binding site and had a more hydrophobic microenvironment than the other two binding sites in the second bilirubin binding set (subdomain IIIA). With our method of analysis, the calculated dissociation constant of the first binding site is 1.28×10−6 M and 4.80×10−4 M for the second and third binding sites. Here, the typical Boltzmann’s equation was used with a new approach to calculate the dissociation constants as well as the standard free energy changes for the HSA–bilirubin interactions. Interestingly, our calculations obtained using the Wyman binding potential theory confirmed that our analysis method had been correct (especially for the second binding phase). The molar extinction coefficient determined for the first bound bilirubin molecule depicted that the bilirubin molecules (in low concentrations) should interact with the nonpolar microenvironment of the first high affinity binding site. Binding of the bilirubin molecules to the first binding site was endothermic (ΔHo>0) and occurred through the large increase in the binding entropy established when the hydrophobic bilirubin molecules escaped from their surrounding polar water molecules and into the hydrophobic medium of the first binding site. On the other hand, the calculated molar extinction coefficient illustrated that the microenvironment of the second binding set (especially for the third binding site) was less hydrophobic than the first one but still more hydrophobic than the buffer medium. The binding of the third bilirubin molecule to the HSA molecule was established more through exothermic (electrostatic) interactions.  相似文献   

10.
Five‐nanosecond molecular dynamics (MD) simulations were performed on human serum albumin (HSA) to study the conformational features of its primary ligand binding sites (I and II). Additionally, 11 HSA snapshots were extracted every 0.5 ns to explore the binding affinity (Kd) of 94 known HSA binding drugs using a blind docking procedure. MD simulations indicate that there is considerable flexibility for the protein, including the known sites I and II. Movements at HSA sites I and II were evidenced by structural analyses and docking simulations. The latter enabled the study and analysis of the HSA–ligand interactions of warfarin and ketoprofen (ligands binding to sites I and II, respectively) in greater detail. Our results indicate that the free energy values by docking (Kd observed) depend upon the conformations of both HSA and the ligand. The 94 HSA–ligand binding Kd values, obtained by the docking procedure, were subjected to a quantitative structure‐activity relationship (QSAR) study by multiple regression analysis. The best correlation between the observed and QSAR theoretical (Kd predicted) data was displayed at 2.5 ns. This study provides evidence that HSA binding sites I and II interact specifically with a variety of compounds through conformational adjustments of the protein structure in conjunction with ligand conformational adaptation to these sites. These results serve to explain the high ligand‐promiscuity of HSA. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 161–170, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
Carbapenems are used to control the outbreak of β-lactamases expressing bacteria. The effectiveness of drugs is influenced by its interaction with human serum albumin (HSA). Strong binding of carbapenems to HSA may lead to decreased bioavailability of the drug. The non-optimal drug dosage will provide a positive selection pressure on bacteria to develop resistance. Here, we investigated the interaction between meropenem and HSA at physiological pH 7.5 (N-isoform HSA) and non-physiological pH 9.2 (B-isoform HSA). Results showed that meropenem quenches the fluorescence of both ‘N’ and ‘B’ isoforms of HSA (ΔG < 0 and binding constant ~104 M?1). Electrostatic interactions and van der Waal interactions along with H-bonds stabilized the complex of meropenem with ‘N’ and ‘B’ isoforms of HSA, respectively. Molecular docking results revealed that meropenem binds to HSA near Sudlow’s site II (subdomain IIIA) close to Trp-214 with a contribution of a few residues of subdomain IIA. CD spectroscopy showed a change in the conformation of both the isoforms of HSA upon meropenem binding. The catalytic efficiency of HSA (only N-isoform) on p-nitrophenyl acetate was increased primarily due to a decrease in Km and an increase in kcat values. This study provides an insight into the molecular basis of interaction between meropenem and HSA.  相似文献   

12.
Virstatin is a small molecule that inhibits Vibrio cholerae virulence regulation, the causative agent for cholera. Here we report the interaction of virstatin with human serum albumin (HSA) using various biophysical methods. The drug binding was monitored using different isomeric forms of HSA (N form ~pH 7.2, B form ~pH 9.0 and F form ~pH 3.5) by absorption and fluorescence spectroscopy. There is a considerable quenching of the intrinsic fluorescence of HSA on binding the drug. The distance (r) between donor (Trp214 in HSA) and acceptor (virstatin), obtained from Forster-type fluorescence resonance energy transfer (FRET), was found to be 3.05 nm. The ITC data revealed that the binding was an enthalpy-driven process and the binding constants K(a) for N and B isomers were found to be 6.09×10(5 )M(-1) and 4.47×10(5) M(-1), respectively. The conformational changes of HSA due to the interaction with the drug were investigated from circular dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. For 1:1 molar ratio of the protein and the drug the far-UV CD spectra showed an increase in α- helicity for all the conformers of HSA, and the protein is stabilized against urea and thermal unfolding. Molecular docking studies revealed possible residues involved in the protein-drug interaction and indicated that virstatin binds to Site I (subdomain IIA), also known as the warfarin binding site.  相似文献   

13.
Ivacaftor is a novel cystic fibrosis (CF) transmembrane conductance regulator (CFTR) potentiator that improves the pulmonary function for patients with CF bearing a G551D CFTR‐protein mutation. Because ivacaftor is highly bound (>97%) to plasma proteins, there is the strong possibility that co‐administered CF drugs may compete for the same plasma protein binding sites and impact the free drug concentration. This, in turn, could lead to drastic changes in the in vivo efficacy of ivacaftor and therapeutic outcomes. This biochemical study compares the binding affinity of ivacaftor and co‐administered CF drugs for human serum albumin (HSA) and α1‐acid glycoprotein (AGP) using surface plasmon resonance and fluorimetric binding assays that measure the displacement of site‐selective probes. Because of their ability to strongly compete for the ivacaftor binding sites on HSA and AGP, drug–drug interactions between ivacaftor are to be expected with ducosate, montelukast, ibuprofen, dicloxacillin, omeprazole, and loratadine. The significance of these plasma protein drug–drug interactions is also interpreted in terms of molecular docking simulations. This in vitro study provides valuable insights into the plasma protein drug–drug interactions of ivacaftor with co‐administered CF drugs. The data may prove useful in future clinical trials for a staggered treatment that aims to maximize the effective free drug concentration and clinical efficacy of ivacaftor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.

Background

Human serum albumin is the principal protein in human serum. It participates in regulation of plasma oncotic pressure and transports endogenous and exogenous ligands such as thyroxine, free fatty acids, bilirubin, and various drugs. Therefore, studying its ligand binding mechanism is important in understanding many functions of the protein.

Scope of review

This review discusses the pleiotropic biochemical effects and their relevance to physiologic functions of albumin.

Major conclusions

Although HSA is traditionally recognized for its ligand transport and oncotic effects in human circulation, our studies have revealed its participation in several other important physiological functions. In some instances, it may function as a catalyst. Pleiotropic properties of HSA have been exploited by development of recombinant HSA and its mutants, and the use of these recombinant proteins in studies with various biochemical and biophysical techniques. These studies allowed us to obtain new insights on the diverse roles of HSA in human physiology. The following aspects of HSA were discussed in this review: 1) HSA and its mutants' role in thyroxine transport, 2) structural details of the ligand binding functions of HSA to ligands such as warfarin, digoxin, halothane anesthetics, nitric oxide, bilirubin, free fatty acids, etc, and 3) the formation of modified albumin during myocardial ischemia, its diagnostic significance, and HSA's role in cardiovascular disease.

General significance

The appreciation and understanding of structural details and new physiological roles has provided a renewed interest in HSA research. Specific structural information gained on various mechanisms of HSA–ligand interaction can be used to develop a model to better understand protein–drug interactions, aid in the development of new drugs with improved pharmacokinetic effects, and ultimately be used to improve the quality of healthcare. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

15.
Human serum albumin (HSA) is a major plasma protein and binding of drugs with this plasma protein has a great importance. It possess esterase activity which can cleave the drugs containing ester bond and thus, can regulate the effect of drugs. Till date no systematic study has been done to analyse binding of such drugs and to compare the results with the drugs which do not have ester bond. Therefore, in the present study two different categories—ester and non-ester drugs have been considered to analyse their interaction with HSA at two principle drug binding sites using molecular modelling tools. It is observed that the drugs irrespective of ester or non-ester nature prefer either Sudlow site I or II by hydrogen bond and hydrophobic interactions. The information obtained from the study can assist to study pharmacokinetics of the drugs and that in turn will help in noval drug discoveries.  相似文献   

16.
Human serum albumin (HSA) is the most abundant protein found in blood serum. It carries essential metabolites and many drugs. The glycation of HSA causes abnormal biological effects. Importantly, glycated HSA (GHSA) is of interest as a biomarker for diabetes. Recently, the first HSA structure with bound pyranose (GLC) and open-chain (GLO) glucose at Sudlow site I has been crystallised. We therefore employed molecular dynamics (MD) simulations and ONIOM calculations to study the dynamic nature of two bound glucose in a pre-glycated HSA (pGHSA) and observe how those sugars alter a protein structure comparing to wild type (Apo) and fatty acid-bound HSA (FA). Our analyses show that the overall structural stability of pGHSA is similar to Apo and FA, except Sudlow site II. Having glucose induces large protein flexibility at Sudlow site II. Besides, the presence of glucose causes W214 to reorient resulting in a change in W214 microenvironment. Considering sugars, both sugars are exposed to water, but GLO is more solvent-accessible. ONIOM results show that glucose binding is favoured for HSA (?115.04 kcal/mol) and GLO (?85.10 kcal/mol) is more preferable for Sudlow site I over GLC (?29.94 kcal/mol). GLO can strongly react with K195 and K199, whereas K195 and K199 provide slightly repulsive forces for GLC. This can confirm that an open-chain GLO is more favourable inside a pocket.  相似文献   

17.
18.
Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. It is also an active component in traditional Chinese medicines which are used to treat various diseases. In this study, fluorescence spectroscopy in combination with UV–Vis absorption spectroscopy was employed to investigate the specific binding of CGA to human serum albumin (HSA) under the physiological conditions. In the mechanism discussion, it was proved that the fluorescence quenching of HSA by CGA is a result of the formation of CGA–HSA complex. Binding parameters calculating from Stern–Volmer method and Scatchard method showed that CGA bind to HSA with the binding affinities of the order 104 l mol−1. The thermodynamic parameters studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the electrostatic interactions play a major role for CGA–HSA association. Site marker competitive displacement experiments demonstrated that CGA specific bind to site I (subdomain IIA) of HSA. The binding distance r (3.10 nm) between donor (Trp-214) and acceptor (CGA) was obtained according to fluorescence resonance energy transfer. Furthermore, the effect of metal ions on CGA–HSA system was studied.  相似文献   

19.
The interaction between cromolyn sodium (CS) and human serum albumin (HSA) was investigated using tryptophan fluorescence quenching. In the discussion of the mechanism, it was proved that the fluorescence quenching of HSA by CS is a result of the formation of a CS–HSA complex. Quenching constants were determined using the Sterns–Volmer equation to provide a measure of the binding affinity between CS and HSA. The thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures were calculated. The distance r between donor (Trp214) and acceptor (CS) was obtained according to fluorescence resonance energy transfer (FRET). Furthermore, synchronous fluorescence spectroscopy data and UV–vis absorbance spectra have suggested that the association between CS and HSA changed the molecular conformation of HSA and the electrostatic interactions play a major role in CS–HSA association.  相似文献   

20.
While the molecular structures of angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) are very similar, they are also slightly different. Although each ARB has been shown to exhibit a unique mode of binding to AT1 receptor, different positions of the AT1 receptor have been analyzed and computational modeling has been performed using different crystal structures for the receptor as a template and different kinds of software. Therefore, we systematically analyzed the critical positions of the AT1 receptor, Tyr113, Tyr184, Lys199, His256 and Gln257 using a mutagenesis study, and subsequently performed computational modeling of the binding of ARBs to AT1 receptor using CXCR4 receptor as a new template and a single version of software. The interactions between Tyr113 in the AT1 receptor and the hydroxyl group of olmesartan, between Lys199 and carboxyl or tetrazole groups, and between His256 or Gln257 and the tetrazole group were studied. The common structure, a tetrazole group, of most ARBs similarly bind to Lys199, His256 and Gln257 of AT1 receptor. Lys199 in the AT1 receptor binds to the carboxyl group of EXP3174, candesartan and azilsartan, whereas oxygen in the amidecarbonyl group of valsartan may bind to Lys199. The benzimidazole portion of telmisartan may bind to a lipophilic pocket that includes Tyr113. On the other hand, the n-butyl group of irbesartan may bind to Tyr113. In conclusion, we confirmed that the slightly different structures of ARBs may be critical for binding to AT1 receptor and for the formation of unique modes of binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号