首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
埃兹蛋白(Ezrin)/根蛋白(Radixin)/膜突蛋白(Moesin)(ERM)是细胞膜与胞内骨架的连接蛋白,具有高度同源性。细胞外刺激因子可通过多种信号通路磷酸化ERM蛋白,使细胞骨架重构,从而调控微血管内皮细胞通透性,在感染、炎症、代谢异常等病理过程中发挥作用。ERM功能调节的一个重要环节就是其羧基末端苏氨酸残基磷酸化后引起ERM构象的改变,暴露的羧基末端尾部的肌动蛋白(actin)-细胞骨架结合位点;故通过ERM的桥接作用,可将肌动蛋白微丝与细胞膜相连,使血管内皮细胞屏障功能发生变化。目前已知能使ERM磷酸化的激酶有蛋白激酶C(PKC)、促分裂原活化蛋白激酶(MAPK)、Rho相关激酶(ROCK),分别通过p38-MAPK、Rho/ROCK、PKC信号通路参与微血管内皮屏障功能的调控。本文旨在阐述ERM及其相关信号通路在微血管内皮细胞通透性调控中发挥的作用。  相似文献   

2.
紧密连接存在于所有上皮或内皮细胞间连接的最顶端,是物质经过旁细胞途径进行物质转运的结构基础,具有"屏障"和"栅栏"的作用。在炎症及免疫因素介导的多种疾病中,如炎症性肠病、囊肿性纤维化、舍格伦综合征和神经系统炎症等,患者血清及疾病累及的上皮或内皮组织均出现多种促炎因子含量升高。促炎因子作用于相关的上皮或内皮组织,通过影响紧密连接蛋白的表达、结构和功能从而调控上皮或内皮的旁细胞途径通透性,是炎症性疾病的一个重要的发病机制。本文重点综述了促炎因子对肠道、呼吸道、唾液腺上皮以及脑微血管内皮紧密连接的调控及其相关分子机制。  相似文献   

3.
体外研究血管内皮细胞单层通透性的新方法   总被引:7,自引:1,他引:6  
血管壁通透性增高足创伤、烧伤、感染、休克和炎症等病理过程的重要变化和特征,其机理尚不十分清楚。内皮细胞是血管壁的主要通透屏障,研究内皮单层的通透性特征及其在病理情况下的变化机制对人们了解血管壁的通透性增高机制和寻找临床防治方法有着极为重要的意义。我们建立了用体外培养的内皮细胞单层研究通透性的装置,可以较为准确地测定内皮单层对液体的滤过系数Kf,便于体外研究各种体液因子和炎症介质对血管通透性的影响及其机制,也可用于研究白细胞-内皮细胞的相互作用。  相似文献   

4.
内皮在保持血管的动态平衡中起着至关重要的作用,而内皮屏障的功能损伤是很多炎症反应的重要特征。利用实时细胞电子分析系统体外研究脐静脉内皮的屏障功能,从细胞的贴附、生长到融合状态,实时监测了微电子细胞传感器阵列上细胞阻抗的动态变化。α-凝血酶以剂量依赖的方式显著诱导单层内皮细胞阻抗快速下降,而后缓慢回升。相应地,α-凝血酶显著引起细胞单层对荧光标记葡聚糖通透性的改变和F-肌动蛋白细胞骨架的重分布。结果表明,实时细胞阻抗系统可能成为一种体外研究血管内皮细胞形态和屏障功能的有力的手段。  相似文献   

5.
血管内皮屏障功能调节的研究进展   总被引:4,自引:0,他引:4  
Xiao ZL  Sun GY 《生理科学进展》1998,29(3):215-220
血管内皮屏障功能的调节机制相当复杂。α-凝血酶等炎性介质引起内皮通透生增高的机制可能是通过G蛋白激活磷脂酶,介导三磷酸肌醇等二信使产生,并进一步激活蛋白激酶C和肌球蛋白轻链激酶,最终引起肌球蛋白轻链磷酸化,从而导致内皮细胞F-肌动蛋白骨架重排,中心张力增加,细胞间裂隙形成,内皮细胞通透性发生改变。  相似文献   

6.
紧密连接是物质经旁细胞途径转运的结构和功能基础。近年来研究发现,在脑、视网膜、肺及肾等多个器官的微血管内皮细胞以及主动脉等大血管内皮细胞表达的紧密连接对维持血管稳态发挥了重要作用,一些细胞因子或环境刺激可通过调节紧密连接的表达、分布、结构和功能进而改变内皮通透性,从而影响血管及相应器官和组织的功能。本文重点综述了内皮细胞间紧密连接的研究进展,为防治与紧密连接相关的血管疾病提供新的思路。  相似文献   

7.
肺微血管内皮细胞通透性调控的信号转导机制   总被引:4,自引:0,他引:4  
肺微血管内皮细胞通透性增加是急性呼吸窘迫综合征等疾病的病理基础,多种信号转导系统参与其通透性调控,如细胞内Ca2 、蛋白激酶C、环磷酸腺苷、丝裂原激活蛋白激酶、小G蛋白.这些信号转导系统的激活和调控机制各异,并且相互关联组成复杂的信号网络.肺微血管内皮细胞中信号转导的相互作用将是研究方向之一.  相似文献   

8.
cJun氨基末端激酶(JNK)家族是促分裂原活化蛋白激酶(MAPK)超家族成员之一,MAPK信号通路是多级蛋白激酶的级联反应,包括三个关键的激酶:MAPK、MAPK的激酶(MAPKK)和MAPK激酶的激酶(MAPKKK).JNK信号通路中有许多支架蛋白,如:JIP、JAMP、POSH等,能够与JNK及JNK信号通路中相关成员结合成复合物,调节它们的活性和细胞内定位,JNK信号通路可被细胞因子、生长因子、应激等多种因素激活,大量实验提示JNK活化在细胞增殖、细胞凋亡、应激反应以及多种人类疾病的发生与发展中起着重要的作用.JNK信号通路与其他信号通路间也有着相互作用.现对JNK活化机制的研究进展进行综述.  相似文献   

9.
通过抑制微血管内皮细胞血管细胞黏附分子(VCAM)-1的表达,木犀草素可阻遏中性粒细胞与微血管内皮细胞的黏附,起到抗炎作用。木犀草素调节VCAM-1表达与三条信号通路有关:丝裂原活化蛋白激酶(MAPK)、核因子kappa B (NF-κB)/IκB和磷脂酰肌醇3激酶(PI3K)/Akt通路。其中,MAPK和NF-κB/IκB通路参与VCAM-1正向调节,PI3K/Akt通路参与VCAM-1负向调节。本文研究了木犀草素对微血管内皮细胞该三条通路中的关键蛋白p38 MAPK、p65 NF-κB、p85 PI3K磷酸化。结果表明:木犀草素在反应的30s和1min促进p38 MAPK磷酸化,在30 s、1 min和5 min促进p85 PI3K磷酸化,而在30 s、1 min、5 min和30 min抑制p65 NF-κB磷酸化。阻抑p38 MAPK通路导致VCAM-1表达下调,而p38 MAPK抑制剂SB203580可通过抑制p38 MAPK磷酸化也下调VCAM-1,提示木犀草素对微血管内皮细胞VCAM-1的调节作用独立于p38 MAPK磷酸化。由此可知,木犀草素通过抑制p65 NF-κB磷酸化或促进p85 PI3K磷酸化调节微血管内皮细胞VCAM-1表达。本文为木犀草素抗炎作用的分子机制研究提供了新的线索。  相似文献   

10.
目的 研究ERK和RSK通路影响人诱导多能干细胞(human induced pluripotent stem cells,hiPSCs)向内皮细胞分化的机制,探索提高内皮分化效率的策略。方法 利用三阶段法诱导iPS细胞向内皮细胞分化,期间用qRT-PCR检测分化相关基因的表达,Western blot检测ERK通路活化情况,免疫荧光、成管实验验证细胞分化效果,用ERK和RSK抑制剂分别抑制两个通路,比较两个通路对iPS细胞向内皮分化的影响。结果 iPS细胞可成功诱导分化为内皮细胞;iPS细胞向内皮分化具有阶段性;抑制ERK通路后会明显降低内皮分化效率,促使其向平滑肌细胞分化;抑制RSK通路无明显影响。结论ERK通路是iPS细胞向内皮分化的重要信号通路,与RSK通路差异调控iPS细胞向内皮分化。  相似文献   

11.
Abstract: Brain capillary endothelial cells are coupled by a continuous belt of complex high-electrical-resistance tight junctions that are largely responsible for the blood-brain barrier. We have investigated mechanisms regulating tight junction permeability in brain endothelial cells cultured to maintain high-resistance junctions. The phospholipid lysophosphatidic acid (LPA) was found to cause a rapid, reversible, and dose-dependent decrease in transcellular electrical resistance in brain endothelial cells. LPA also increased the paracellular flux of sucrose, which, together with the resistance decrease, indicated increased tight junction permeability. Activation of protein kinase C attenuated the effect of LPA, suggesting that it was mediated by activation of a signalling pathway. LPA did not cause any obvious relocalization of adherens junction- or tight junction-associated proteins. However, it did stimulate the formation of stress fibres, the recruitment of focal adhesion components, and the appearance of tyrosine phosphorylated protein at focal contacts. Our study shows that LPA is a modulator of tight junction permeability in brain endothelial cells in culture and raises the possibility that it triggers blood-brain barrier permeability changes under (patho)physiological conditions.  相似文献   

12.
An important function of the endothelium is to regulate the transport of liquid and solutes across the semi-permeable vascular endothelial barrier. Two cellular pathways have been identified controlling endothelial barrier function. The normally restrictive paracellular pathway, which can become "leaky" during inflammation when gaps are induced between endothelial cells at the level of adherens and tight junctional complexes, and the transcellular pathway, which transports plasma proteins the size of albumin via transcytosis in vesicle carriers originating from cell surface caveolae. During non-inflammatory conditions, caveolae-mediated transport may be the primary mechanism of vascular permeability regulation of fluid phase molecules as well as lipids, hormones, and peptides that bind avidly to albumin. Src family protein tyrosine kinases have been implicated in the upstream signaling pathways that lead to endothelial hyperpermeability through both the paracellular and transcellular pathways. Endothelial barrier dysfunction not only affects vascular homeostasis and cell metabolism, but also governs drug delivery to underlying cells and tissues. In this review of the field, we discuss the current understanding of Src signaling in regulating paracellular and transcellular endothelial permeability pathways and effects on endogenous macromolecule and drug delivery.  相似文献   

13.
Endothelial cells line the inner surface of all blood vessels and constitute a selective barrier between blood and tissue. Permeation of solutes across the endothelial cell monolayer occurs either paracellularly through specialized endothelial cell-cell junctions or transcellularly via special transport mechanisms including transcytosis, via the formation of transcellular channels, or by cell membrane transport proteins. Several in vitro assays have been developed in the past few decades to analyze the molecular mechanisms of transendothelial permeability. Measurement of the electrical resistance of the cell monolayer has proven to be particularly suitable for analyzing paracellular barrier function with high-time resolution over long time periods. We review the various permeability assays and focus on the electrical impedance analysis of endothelial cell monolayers. We also address current progress in the development of techniques used to investigate endothelial permeability with high-lateral resolution and under mechanical loads.  相似文献   

14.
Blood vessels are covered with endothelial cells on their inner surfaces, forming a selective and semipermeable barrier between the blood and the underlying tissue. Many pathological processes, such as inflammation or cancer metastasis, are accompanied by an increased vascular permeability. Progress in live cell imaging techniques has recently revealed that the structure of endothelial cell contacts is constantly reorganized and that endothelial junctions display high heterogeneities at a subcellular level even within one cell. Although it is assumed that this dynamic remodeling is associated with a local change in endothelial barrier function, a direct proof is missing mainly because of a lack of appropriate experimental techniques. Here, we describe a new assay to dynamically measure local endothelial barrier function with a lateral resolution of ~15 μm and a temporal resolution of 1 min. In this setup, fluorescence-labeled molecules are added to the apical compartment of an endothelial monolayer, and the penetration of molecules from the apical to the basal compartment is recorded by total internal reflection fluorescence microscopy utilizing the generated evanescent field. With this technique, we found a remarkable heterogeneity in the local permeability for albumin within confluent endothelial cell layers. In regions with low permeability, stimulation with the proinflammatory agent histamine results in a transient increase in paracellular permeability. The effect showed a high variability along the contact of one individual cell, indicating a local regulation of endothelial barrier function. In regions with high basal permeability, histamine had no obvious effect. In contrast, the barrier-enhancing drug forskolin reduces the permeability for albumin and dextran uniformly along the cell junctions. Because this new approach can be readily combined with other live cell imaging techniques, it will contribute to a better understanding of the mechanisms underlying subcellular junctional reorganization during wound healing, inflammation, and angiogenesis.  相似文献   

15.
The blood-brain barrier, formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. Diabetes is known to compromise the blood-brain barrier, although the underlying mechanism remains unknown. The aim of this study was to elucidate the molecular mechanisms underlying disruption of the blood-brain barrier in diabetes and to determine whether activation of AMP-activated protein kinase prevents diabetes-induced blood-brain barrier dysfunction. Exposure of human brain microvascular endothelial cells to high glucose (25mmol/L d-glucose), but not to high osmotic conditions (20mmol/L l-glucose plus 5mmol/L d-glucose), for 2h to 1 week significantly increased the permeability of the blood-brain barrier in parallel with lowered expression levels of zonula occludens-1, occludin, and claudin-5, three proteins that are essential to maintaining endothelial cell tight junctions. In addition, high glucose significantly increased the generation of superoxide anions. Adenoviral overexpression of superoxide dismutase or catalase significantly attenuated the high-glucose-induced reduction of endothelial cell tight-junction proteins. Furthermore, administration of apocynin reversed the effects of high glucose on endothelial cell tight-junction proteins. Finally, activation of AMP-activated protein kinase with 5-amino-4-imidazole carboxamide riboside or adenoviral overexpression of constitutively active AMP-activated protein kinase mutants abolished both the induction of NAD(P)H oxidase-derived superoxide anions and the tight-junction protein degradation induced by high glucose. We conclude that high glucose increases blood-brain barrier dysfunction in diabetes through induction of superoxide anions and that the activation of AMP-activated protein kinase protects the integrity of the blood-brain barrier by suppressing the induction of NAD(P)H oxidase-derived superoxide anions.  相似文献   

16.
Prostaglandins prevent gastrointestinal mucosal injury and promote healing following mucosal injury by various noxious agents. Preservation or repair of microvascular function appears to be crucial in these processes. The processes involved in prostaglandin-mediated repair and preservation of endothelial function are unclear. In the present study, we investigated the role of prostaglandins on endothelial paracellular barrier function using the filter-grown bovine aortic endothelial cell monolayers. Endothelial paracellular barrier function was assessed using a paracellular marker, mannitol. Prostaglandin analogs 16,16-dimethyl prostaglandin E2 (DMPGE2) and prostaglandin I2 (PGI2) caused an enhancement of endothelial monolayer paracellular barrier function as evidenced by a dose-dependent decrease in endothelial paracellular permeability. DMPGE2 induced enhancement of endothelial paracellular barrier function correlated directly with increasing intracellular cAMP levels. Agents which increase intracellular cAMP levels at different stages of cAMP amplification cascade including phosphodiesterase inhibitor (3-isobutyl-1 methylxanthine [IBMX]), membrane permeable cAMP (8-bromo cAMP), and adenylate cyclase activators (isoproterenol and forskolin) also produced enhancement in endothelial paracellular barrier function. DMPGE2 enhancement of paracellular barrier function correlated with dense accumulation of actin microfilaments near the intercellular junctions. IBMX, isoproterenol, forskolin, and 8-bromo cAMP also produced similar changes in endothelial actin microfilaments. Cytochalasin B prevented the DMPGE2 enhancement of paracellular barrier function. Indomethacin (INDO), a cyclooxygenase inhibitor, caused a dose-dependent increase in endothelial paracellular permeability. Pharmacologic doses of INDO resulted in condensation and disruption of actin microfilaments with formation of large paracellular openings or gaps between the adjacent cells. Pretreatment of endothelial monolayers with DMPGE2 prevented INDO-induced disturbance of actin microfilaments and paracellular barrier function. IBMX, isoproterenol, forskolin, and 8-bromo cAMP also prevented INDO-induced changes in actin microfilaments and paracellular barrier function. These findings indicate that DMPGE2 has a paracellular barrier enhancing effect on filter-grown endothelial monolayers. This effect appears to be mediated through intracellular cAMP and actin microfilaments. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Increased cerebrovascular permeability is an important factor in the development of cerebral oedema after stroke, implicating the blood-brain barrier (BBB). To investigate the effect of hypoxia on the permeability changes, we used a cell culture model of the BBB consisting of a co-culture of brain capillary endothelial cells and glial cells. When endothelial cells from this co-culture model were submitted alone to hypoxic conditions, long exposures (48 h) were necessary to result in an increase in endothelial cell monolayer permeability to [3H]inulin. When endothelial cells were incubated in presence of glial cells, a huge increase in permeability occurred after 9 h of hypoxic conditions. Oxygen glucose deprivation (OGD) resulted in a much shorter time (i.e. 2 h) required for an increase in permeability. We have demonstrated that this OGD-induced permeability increase involves a transcellular rather than a paracellular pathway. Conditioned medium experiments showed that glial cells secrete soluble permeability factors during OGD. However, endothelial cells have to be made sensitive by OGD in order to respond to these glial soluble factors. This work shows that an early cross-talk between glial and endothelial cells occurs during ischaemic stroke and alters BBB transcellular transport by means of glial factor secretions.  相似文献   

18.
During neuroinflammation, cytokines such as TNF-α and IFN-γ secreted by activated leukocytes and/or CNS resident cells have been shown to alter the phenotype and function of brain endothelial cells (BECs) leading to blood-brain barrier breakdown. In this study, we show that the human BEC line hCMEC/D3 expresses the receptors for TNF-α, TNF receptor 1 and TNF receptor 2, and for IFN-γ. BEC activation with TNF-α alone or in combination with IFN-γ induced endothelial leakage of paracellular tracers. At high cytokine concentrations (10 and 100 ng/ml), this effect was associated with caspase-3/7 activation and apoptotic cell death as evidenced by annexin V staining and DNA fragmentation (TUNEL) assays. In addition, inhibition of JNK and protein kinase C activation at these doses partially prevented activation of caspase-3/7, although only JNK inhibition was partially able to prevent the increase in BEC paracellular permeability induced by cytokines. By contrast, lower cytokine concentrations (1 ng/ml) also led to effector caspase activation, increased paracellular flux, and redistribution of zonula occludens-1 and VE-cadherin but failed to induce apoptosis. Under these conditions, specific caspase-3 and caspase-9, but not caspase-8, inhibitors partially blocked cytokine-induced disruption of tight and adherens junctions and BEC paracellular permeability. Our results suggest that the concentration of cytokines in the CNS endothelial microenvironment determines the extent of caspase-mediated barrier permeability changes, which may be generalized as a result of apoptosis or more subtle as a result of alterations in the organization of junctional complex molecules.  相似文献   

19.
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.  相似文献   

20.
Diperoxovanadate (DPV), a potent tyrosine kinase activator and protein tyrosine phosphatase inhibitor, was utilized to explore bovine pulmonary artery endothelial cell barrier regulation. DPV produced dose-dependent decreases in transendothelial electrical resistance (TER) and increases in permeability to albumin, which were preceded by brief increases in TER (peak TER effect at 10-15 min). The significant and sustained DPV-mediated TER reductions were primarily the result of decreased intercellular resistance, rather than decreased resistance between the cell and the extracellular matrix, and were reduced by pretreatment with the tyrosine kinase inhibitor genistein but not by inhibition of p42/p44 mitogen-activating protein kinases. Immunofluorescent analysis after DPV challenge revealed dramatic F-actin polymerization and stress-fiber assembly and increased colocalization of tyrosine phosphoproteins with F-actin in a circumferential pattern at the cell periphery, changes that were abolished by genistein. The phosphorylation of focal adhesion and adherens junction proteins on tyrosine residues was confirmed in immunoprecipitates of focal adhesion kinase and cadherin-associated proteins in which dramatic dose-dependent tyrosine phosphorylation was observed after DPV stimulation. We speculate that DPV enhances endothelial cell monolayer integrity via focal adhesion plaque phosphorylation and produces subsequent monolayer destabilization of adherens junctions initiated by adherens junction protein tyrosine phosphorylation catalyzed by p60(src) or Src-related tyrosine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号