首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A scavenger function for a Drosophila peptidoglycan recognition protein   总被引:9,自引:0,他引:9  
Recent studies of peptidoglycan recognition protein (PGRP) have shown that 2 of the 13 Drosophila PGRP genes encode proteins that function as receptors mediating immune responses to bacteria. We show here that another member, PGRP-SC1B, has a totally different function because it has enzymatic activity and thereby can degrade peptidoglycan. A mass spectrometric analysis of the cleavage products demonstrates that the enzyme hydrolyzes the lactylamide bond between the glycan strand and the cross-linking peptides. This result assigns the protein as an N-acetylmuramoyl-l-alanine amidase (EC ), and the corresponding gene is thus the first of this class to be described from a eukaryotic organism. Mutant forms of PGRP-SC1B lacking a potential zinc ligand are enzymatically inactive but retain their peptidoglycan affinity. The immunostimulatory properties of PGRP-SC1B-degraded peptidoglycan are much reduced. This is in striking contrast to lysozyme-digested peptidoglycan, which retains most of its elicitor activity. This points toward a scavenger function for PGRP-SC1B. Furthermore, a sequence homology comparison with phage T7 lysozyme, also an N-acetylmuramoyl-l-alanine amidase, shows that as many as six of the Drosophila PGRPs could belong to this class of proteins.  相似文献   

2.
Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria. Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed.  相似文献   

3.
Eukaryotic peptidoglycan recognition proteins (PGRPs) are related to bacterial amidases. In Drosophila, PGRPs bind peptidoglycan and function as central sensors and regulators of the innate immune response. PGRP-LC/PGRP-LE constitute the receptor complex in the immune deficiency (IMD) pathway, which is an innate immune cascade triggered upon Gram-negative bacterial infection. Here, we present the functional analysis of the nonamidase, membrane-associated PGRP-LF. We show that PGRP-LF acts as a specific negative regulator of the IMD pathway. Reduction of PGRP-LF levels, in the absence of infection, is sufficient to trigger IMD pathway activation. Furthermore, normal development is impaired in the absence of functional PGRP-LF, a phenotype mediated by the JNK pathway. Thus, PGRP-LF prevents constitutive activation of both the JNK and the IMD pathways. We propose a model in which PGRP-LF keeps the Drosophila IMD pathway silent by sequestering circulating peptidoglycan.  相似文献   

4.
昆虫肽聚糖识别蛋白研究进展   总被引:4,自引:0,他引:4  
陈康康  吕志强 《昆虫学报》2014,57(8):969-978
在脊椎动物和非脊椎动物中,识别非己是天生免疫反应中的第一步。肽聚糖是细菌细胞壁的必需成分,属于进化上保守的微生物表面病原相关分子模式(pathogen-associated molecular pattern, PAMP),可以被模式识别蛋白(pattern recognition proteins, PRRs)如肽聚糖识别蛋白(peptidoglycan recognition proteins, PGRPs)识别。 在昆虫的天生免疫系统中,有些PGRPs能够利用细菌独有的肽聚糖识别入侵细菌,并将细菌入侵信号传递给下游的抗菌肽(antimicrobial peptide, AMP)合成途径,启动抗菌肽基因的转录及合成;PGRPs对肽聚糖的识别也会启动酚氧化酶原途径的激活,引起黑化反应。有些具有酰胺酶活性的PGRPs可以促进吞噬作用;有些可以抑制抗菌肽合成以减弱过度免疫反应带来的损伤。还有一些PGRPs作为效应因子直接作用于细菌将细菌杀死。本文主要从昆虫PGRPs作为识别受体(recognition receptor)、调节子(regulator)和效应因子(effector) 3个方面进行了综述,并分析了目前PGRPs研究中仍不清楚的问题和未来研究的方向。  相似文献   

5.
The family of peptidoglycan recognition proteins (PGRPs) is conserved from insects to mammals. Recently, Drosophila PGRP-SC1B was demonstrated to be an N-acetylmuramoyl-L-alanine amidase (NAMLAA), an enzyme that cleaves the lactylamide bond between muramic acid and the peptide chain in peptidoglycan (PGN). We now show an M x mPGRP-L mRNA to be expressed in the liver. The recombinant M x mPGRP-L protein has NAMLAA activity and degrades PGN from both Escherichia coli and Staphylococcus aureus; however, the Gram-positive PGN was a better substrate after lysozyme treatment. The activity of M x mPGRP-L was further analysed using Bordetella pertussis tracheal toxin as a substrate. Cleavage products were separated on HPLC and identified using mass spectrometry. From these results we conclude that M x mPGRP-L has activity and other properties identifying it as the NAMLAA protein present in mammalian sera.  相似文献   

6.
Gut epithelial cells contact both commensal and pathogenic bacteria, and proper responses to these bacteria require a balance of positive and negative regulatory signals. In the Drosophila intestine, peptidoglycan-recognition proteins (PGRPs), including PGRP-LE, play central roles in bacterial recognition and activation of immune responses, including induction of the IMD-NF-κB pathway. We show that bacteria recognition is regionalized in the Drosophila gut with various functional regions requiring different PGRPs. Specifically, peptidoglycan recognition by PGRP-LE in the gut induces NF-κB-dependent responses to infectious bacteria but also immune tolerance to microbiota through upregulation of pirk and PGRP-LB, which negatively regulate IMD pathway activation. Loss of PGRP-LE-mediated detection of bacteria in the gut results in systemic immune activation, which can be rescued by overexpressing PGRP-LB in the gut. Together these data indicate that PGRP-LE functions as a master gut bacterial sensor that induces balanced responses to infectious bacteria and tolerance to microbiota.  相似文献   

7.
Peptidoglycan recognition proteins (PGRPs) are a family of innate immune molecules that recognize bacterial peptidoglycan. PGRPs are highly conserved in invertebrates and vertebrates including fish. However, the biological function of teleost PGRP remains largely uninvestigated. In this study, we identified a PGRP homologue, SoPGLYRP-2, from red drum (Sciaenops ocellatus) and analyzed its activity and potential function. The deduced amino acid sequence of SoPGLYRP-2 is composed of 482 residues and shares 46-94% overall identities with known fish PGRPs. SoPGLYRP-2 contains at the C-terminus a single zinc amidase domain with conserved residues that form the catalytic site. Quantitative RT-PCR analysis detected SoPGLYRP-2 expression in multiple tissues, with the highest expression occurring in liver and the lowest expression occurring in brain. Experimental bacterial infection upregulated SoPGLYRP-2 expression in kidney, spleen, and liver in time-dependent manners. To examine the biological activity of SoPGLYRP-2, purified recombinant proteins representing the intact SoPGLYRP-2 (rSoPGLYRP-2) and the amidase domain (rSoPGLYRP-AD) were prepared from Escherichia coli. Subsequent analysis showed that rSoPGLYRP-2 and rSoPGLYRP-AD (i) exhibited comparable Zn2+-dependent peptidoglycan-lytic activity and were able to recognize and bind to live bacterial cells, (ii) possessed bactericidal effect against Gram-positive bacteria and slight bacteriostatic effect against Gram-negative bacteria, (iii) were able to block bacterial infection into host cells. These results indicate that SoPGLYRP-2 is a zinc-dependent amidase and a bactericide that targets preferentially at Gram-positive bacteria, and that SoPGLYRP-2 is likely to play a role in host innate immune defense during bacterial infection.  相似文献   

8.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules coded by up to 13 genes in insects and 4 genes in mammals. In insects PGRPs activate antimicrobial pathways in the hemolymph and cells, or are peptidoglycan (PGN)-lytic amidases. In mammals one PGRP is an antibacterial neutrophil protein. We report that human PGRP-L is a Zn2+-dependent N-acetylmuramoyl-l-alanine amidase (EC 3.5.1.28), an enzyme that hydrolyzes the amide bond between MurNAc and l-Ala of bacterial PGN. The minimum PGN fragment hydrolyzed by PGRP-L is MurNAc-tripeptide. PGRP-L has no direct bacteriolytic activity. The other members of the human PGRP family, PGRP-Ialpha, PGRP-Ibeta, and PGRP-S, do not have the amidase activity. The C-terminal region of PGRP-L, homologous to bacteriophage and bacterial amidases, is required and sufficient for the amidase activity of PGRP-L, although its activity (in the N-terminal delta1-343 deletion mutant) is reduced. The Zn2+ binding amino acids (conserved in PGRP-L and T7 amidase) and Cys-419 (not conserved in T7 amidase) are required for the amidase activity of PGRP-L, whereas three other amino acids, needed for the activity of T7 amidase, are not required for the activity of PGRP-L. These amino acids, although required, are not sufficient for the amidase activity, because changing them to the "active" configuration does not convert PGRP-S into an active amidase. In conclusion, human PGRP-L is an N-acetylmuramoyl-l-alanine amidase and this function is conserved in prokaryotes, insects, and mammals.  相似文献   

9.
Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules conserved from insects to mammals. Insects have up to 19 PGRPs, which activate Toll or Imd signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyse peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which were hypothesized to function as signal-transducing pattern recognition receptors. However, all mammalian PGRPs are secreted, usually as disulphide-linked homo- and heterodimers. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyses bacterial peptidoglycan and reduces its proinflammatory activity. PGLYRP-2 is secreted from liver into blood, and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal or bacteriostatic proteins. PGLYRP-1 is expressed primarily in the granules of polymorphonuclear leucocytes (PMNs) , and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach and intestine, and protect the host against infections. They kill bacteria by interacting with their cell wall peptidoglycan, rather than permeabilizing their membranes. These PGRPs therefore are a new class of bactericidal and bacteriostatic proteins that have different structure, mechanism of action, and expression pattern from currently known vertebrate antimicrobial peptides. Direct bactericidal activity of these PGRPs either evolved in vertebrates or mammals, or it is yet to be discovered in insects.  相似文献   

10.
The peptidoglycan recognition protein (PGRP) family is conserved from insects to mammals and is involved in immune regulation and bacterial clearance. They form at least three functional classes; receptors required for immune gene expression; amidases that degrade peptidoglycan and scavenge the tissues from immune-stimulating peptidoglycan; and as proteins with antibacterial activity. We here report that PGRP-SB1 is an N-acetylmuramoyl l-alanine amidase, which (in contrast to the previously described PGRP-amidases) shows antibacterial activity. PGRP-SB1 is highly active against peptidoglycans that have a diaminopimelic acid (DAP) residue in the cross-linking peptide, but lack activity to most lysine-containing peptidoglycans. The antibacterial activity is pronounced against Bacillus megaterium with an LD(50) of 1.5microg ml(-1). The bactericidal effect of PGRP-SB1 is dependent on its enzymatic activity, as the zinc co-factor is essential. The bactericidal mode of action is thus different from non-enzymatic vertebrate PGRPs that have been reported to be antibacterial.  相似文献   

11.
Three cDNA clones encoding peptidoglycan recognition proteins (PGRP-B, -C and -D) were isolated from larval fat body of immunized Samia cynthia ricini. The deduced amino acid sequences show high homology to each other and also to Drosophila PGRP-LB, but rather lower homology to all of the known lepidopteran PGRPs including Samia PGRP-A, a receptor-type PGRP. The three PGRPs conserve the five amino acid residues which form the catalytic site of N-acetylmuramoyl L-alanine amidase as in Drosophila LB. The PGRP-C and -D genes were silent in naive larvae, but strongly induced in fat body by an injection of peptidoglycan. PGRP-B gene, in contrast, constitutively expressed at high levels in naive midgut, and the gene was weakly induced in fat body after injection of peptidoglycan.  相似文献   

12.
The peptidoglycan recognition proteins (PGRPs)   总被引:1,自引:0,他引:1  
Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules present in insects, mollusks, echinoderms, and vertebrates, but not in nematodes or plants. PGRPs have at least one carboxy-terminal PGRP domain (approximately 165 amino acids long), which is homologous to bacteriophage and bacterial type 2 amidases. Insects have up to 19 PGRPs, classified into short (S) and long (L) forms. The short forms are present in the hemolymph, cuticle, and fat-body cells, and sometimes in epidermal cells in the gut and hemocytes, whereas the long forms are mainly expressed in hemocytes. The expression of insect PGRPs is often upregulated by exposure to bacteria. Insect PGRPs activate the Toll or immune deficiency (Imd) signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyze peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which are secreted; it is not clear whether any are directly orthologous to the insect PGRPs. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyzes bacterial peptidoglycan and reduces its proinflammatory activity; PGLYRP-2 is secreted from the liver into the blood and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal proteins that are secreted as disulfide-linked homo- and hetero-dimers. PGLYRP-1 is expressed primarily in polymorphonuclear leukocyte granules and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach, and intestine. These three proteins kill bacteria by interacting with cell wall peptidoglycan, rather than permeabilizing bacterial membranes as other antibacterial peptides do. Direct bactericidal activity of these PGRPs either evolved in the vertebrate (or mammalian) lineage or is yet to be discovered in insects.  相似文献   

13.
The Drosophila immune system discriminates between different classes of infectious microbes and responds with pathogen-specific defense reactions via the selective activation of the Toll and the immune deficiency (Imd) signaling pathways. The Toll pathway mediates most defenses against Gram-positive bacteria and fungi, whereas the Imd pathway is required to resist Gram-negative bacterial infection. Microbial recognition is achieved through peptidoglycan recognition proteins (PGRPs); Gram-positive bacteria activate the Toll pathway through a circulating PGRP (PGRP-SA), and Gram-negative bacteria activate the Imd pathway via PGRP-LC, a putative transmembrane receptor, and PGRP-LE. Gram-negative binding proteins (GNBPs) were originally identified in Bombyx mori for their capacity to bind various microbial compounds. Three GNBPs and two related proteins are encoded in the Drosophila genome, but their function is not known. Using inducible expression of GNBP1 double-stranded RNA, we now demonstrate that GNBP1 is required for Toll activation in response to Gram-positive bacterial infection; GNBP1 double-stranded RNA expression renders flies susceptible to Gram-positive bacterial infection and reduces the induction of the antifungal peptide encoding gene Drosomycin after infection by Gram-positive bacteria but not after fungal infection. This phenotype induced by GNBP1 inactivation is identical to a loss-of-function mutation in PGRP-SA, and our genetic studies suggest that GNBP1 acts upstream of the Toll ligand Sp?tzle. Altogether, our results demonstrate that the detection of Gram-positive bacteria in Drosophila requires two putative pattern recognition receptors, PGRP-SA and GNBP1.  相似文献   

14.
Peptidoglycan recognition proteins (PGRPs) are innate immune molecules that are structurally conserved through evolution in both invertebrate and vertebrate animals. Here we report the identification and characterization of two long forms of PGRP (SsPGRP-L1 and SsPGRP-L2) from the rockfish, Sebastes schlegeli. The deduced amino acid sequences of SsPGRP-L1 and SsPGRP-L2, 466 and 482 residues respectively, contain the conserved PGRP domain and the four Zn2+-binding amino acid residues required for amidase activity. In addition to peptidoglycan-lytic amidase activity, recombinant SsPGRPs have broad-spectrum antimicrobial activity like zebrafish PGRPs. RT-PCR analysis of total RNA shows that the expression patterns of SsPGRP-L1 and SsPGRP-L2 genes are different, though they are widely expressed in the tissues that come in contact with bacteria. Overall, these data suggest that rockfish PGRPs are involved in the innate host defense of S. schlegeli against bacterial infections.  相似文献   

15.
The immune deficiency (Imd) signaling pathway is activated by Gram‐negative bacteria for producing antimicrobial peptides (AMPs). In Drosophila melanogaster, the activation of this pathway is initiated by the recognition of Gram‐negative bacteria by peptidoglycan (PGN) recognition proteins (PGRPs), PGRP‐LC and PGRP‐LE. In this study, we found that the Imd pathway is involved in enhancing the promoter activity of AMP gene in response to Gram‐negative bacteria or diaminopimelic (DAP) type PGNs derived from Gram‐negative bacteria in an immune responsive silkworm cell line, Bm‐NIAS‐aff3. Using gene knockdown experiments, we further demonstrated that silkworm PGRP L6 (BmPGRP‐L6) is involved in the activation of E. coli or E. coli‐PGN mediated AMP promoter activation. Domain analysis revealed that BmPGRP‐L6 contained a conserved PGRP domain, transmembrane domain, and RIP homotypic interaction motif like motif but lacked signal peptide sequences. BmPGRP‐L6 overexpression enhances AMP promoter activity through the Imd pathway. BmPGRP‐L6 binds to DAP‐type PGNs, although it also binds to lysine‐type PGNs that activate another immune signal pathway, the Toll pathway in Drosophila. These results indicate that BmPGRP‐L6 is a key PGRP for activating the Imd pathway in immune responsive silkworm cells.  相似文献   

16.
Peptidoglycan recognition proteins of the innate immune system   总被引:1,自引:0,他引:1  
Peptidoglycan (PGN) is the major component of bacterial cell walls and one of the main microbial products recognized by the innate immune system. PGN recognition is mediated by several families of pattern recognition molecules, including Toll-like receptors, nucleotide-binding oligomerization domain-containing proteins, and peptidoglycan recognition proteins (PGRPs). However, only the interaction of PGN with PGRPs, which are highly conserved from insects to mammals, has so far been characterized at the molecular level. Here, we describe recent structural studies of PGRPs that reveal the basis for PGN recognition and provide insights into the signal transduction and antibacterial activities of these innate immune proteins.  相似文献   

17.
The innate immune system recognizes microorganisms through a series of pattern recognition receptors that are highly conserved in evolution. Insects have a family of 12 peptidoglycan recognition proteins (PGRPs) that recognize peptidoglycan, a ubiquitous component of bacterial cell walls. We report cloning of three novel human PGRPs (PGRP-L, PGRP-Ialpha, and PGRP-Ibeta) that together with the previously cloned PGRP-S, define a new family of human pattern recognition molecules. PGRP-L, PGRP-Ialpha, and PGRP-Ibeta have 576, 341, and 373 amino acids coded by five, seven, and eight exons on chromosomes 19 and 1, and they all have two predicted transmembrane domains. All mammalian and insect PGRPs have at least three highly conserved C-terminal PGRP domains located either in the extracellular or in the cytoplasmic (or in both) portions of the molecules. PGRP-L is expressed in liver, PGRP-Ialpha and PGRP-Ibeta in esophagus (and to a lesser extent in tonsils and thymus), and PGRP-S in bone marrow (and to a lesser extent in neutrophils and fetal liver). All four human PGRPs bind peptidoglycan and Gram-positive bacteria. Thus, these PGRPs may play a role in recognition of bacteria in these organs.  相似文献   

18.
Mammalian peptidoglycan recognition proteins (PGRPs), similar to antimicrobial lectins, bind the bacterial cell wall and kill bacteria through an unknown mechanism. We show that PGRPs enter the Gram-positive cell wall at the site of daughter cell separation during cell division. In Bacillus subtilis, PGRPs activate the CssR-CssS two-component system that detects and disposes of misfolded proteins that are usually exported out of bacterial cells. This activation results in membrane depolarization, cessation of intracellular peptidoglycan, protein, RNA and DNA synthesis, and production of hydroxyl radicals, which are responsible for bacterial death. PGRPs also bind the outer membrane of Escherichia coli and activate the functionally homologous CpxA-CpxR two-component system, which kills the bacteria. We exclude other potential bactericidal mechanisms, including inhibition of extracellular peptidoglycan synthesis, hydrolysis of peptidoglycan and membrane permeabilization. Thus, we reveal a previously unknown mechanism by which innate immunity proteins that bind the cell wall or outer membrane exploit the bacterial stress defense response to kill bacteria.  相似文献   

19.
The Drosophila peptidoglycan recognition protein SA (PGRP-SA) is critically involved in sensing bacterial infection and activating the Toll signaling pathway, which induces the expression of specific antimicrobial peptide genes. We have determined the crystal structure of PGRP-SA to 2.2-A resolution and analyzed its peptidoglycan (PG) recognition and signaling activities. We found an extended surface groove in the structure of PGRP-SA, lined with residues that are highly diverse among different PGRPs. Mutational analysis identified it as a PG docking groove required for Toll signaling and showed that residue Ser158 is essential for both PG binding and Toll activation. Contrary to the general belief that PGRP-SA has lost enzyme function and serves primarily for PG sensing, we found that it possesses an intrinsic L,D-carboxypeptidase activity for diaminopimelic acid-type tetrapeptide PG fragments but not lysine-type PG fragments, and that Ser158 and His42 may participate in the hydrolytic activity. As L,D-configured peptide bonds exist only in prokaryotes, this work reveals a rare enzymatic activity in a eukaryotic protein known for sensing bacteria and provides a possible explanation of how PGRP-SA mediates Toll activation specifically in response to lysine-type PG.  相似文献   

20.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind, and in some cases hydrolyze, peptidoglycans (PGNs) on bacterial cell walls. These molecules, which are highly conserved from insects to mammals, participate in host defense against both Gram-positive and Gram-negative bacteria. We report the crystal structure of the C-terminal PGN-binding domain of human PGRP-Ialpha in two oligomeric states, monomer and dimer, to resolutions of 2.80 and 1.65 A, respectively. In contrast to PGRPs with PGN-lytic amidase activity, no zinc ion is present in the PGN-binding site of human PGRP-Ialpha. The structure reveals that PGRPs exhibit extensive topological variability in a large hydrophobic groove, located opposite the PGN-binding site, which may recognize host effector proteins or microbial ligands other than PGN. We also show that full-length PGRP-Ialpha comprises two tandem PGN-binding domains. These domains differ at most potential PGN-contacting positions, implying different fine specificities. Dimerization of PGRP-Ialpha, which occurs through three-dimensional domain swapping, is mediated by specific binding of sodium ions to a flexible hinge loop, stabilizing the conformation found in the dimer. We further demonstrate sodium-dependent dimerization of PGRP-Ialpha in solution, suggesting a possible mechanism for modulating PGRP activity through the formation of multivalent adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号