首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Clostridium thermocellum, strain JW20 (ATCC 31449) when growing in cellulose produces a cellulolytic enzyme system, that at the early stage of the fermentation is largely bound to the substrate. As cellulose is consumed the bound enzyme is released as free enzyme to the culture fluid. The bound enzyme fraction extracted with distilled water from the cellulose contains two major components, a large complex (Mr100×106) and a small complex Mr4.5×106) which were separated by gel filtration and sucrose solved by affinity chromatography into a complex that binds to the column and into a non-bindable mixture of proteins. All four fractions have endo--glucanase activity but only the two bound complexes and the free bindable complex hydrolyze crystalline cellulose with cellobiose as the main product. These three complexes are qualitatively similar in that they each contain about 20 different polypeptides (Mr values from 45,000 to 200,000) of which about ten are major components. However, the relative amounts of some of the peptides in the complexes differ. At least four polypeptides of the complexes have endo--glucanase activity.Abbreviations CM cellulose, carboxymethyl cellulose - CMCase carboxymethyl cellulase cosidered endo--1,4-glucanase - SDS sodium dodecyl sulfate - YAS yellow affinity substance - YAS-cellulose yellow affinity substance-cellulose complex  相似文献   

2.
The structure of a crystalline cellulose I–ethylenediamine complex has been determined by x-ray diffraction methods as part of an investigation of cellulose–solvent interaction. The complex studied is that formed when native ramie fibers are swollen in ethylenediamine and then vacuum-dried. The unit cell is monoclinic with dimensions a = 12.87 Å, b = 9.52 Å, c = 10.35 Å, and γ = 118.8°, and it contains disaccharide segments of two chains, with one ethylenediamine per glucose residue. The refined model contains parallel cellulose chains that are linked by hydrogen-bonded ethylenediamine molecules. The chains along the b-axis are packed in register, leading to stacks of chains analogous to those in chitin. All the hydroxyl groups are satisfactorily hydrogen-bonded and each ethylenediamine forms four donor and two acceptor hydrogen bonds. From this work it can be seen that the interaction of cellulose I with ethylenediamine involves scission of the intermolecular hydrogen bonds followed by disruption of the stacks of quarter-staggered chains.  相似文献   

3.
Summary The cellulase complex of Trichoderma koningii has been separated into four apparently pure components namely cellobiase, a C1-like component and two new components, one a CM-cellulase, the other named component C2. All four are necessary for efficient solubilisation of native cellulose. 2. The two new components together constitute the composite CM-cellulase-short-fibre forming activity described by Halliwell and Riaz (1970). 3. Alone only components C2 and C1 have any action on the substrate, the former being somewhat more effective than the C1 component which shows weak solubilising power. 4. Component C2 degrades cellulose weakly to short-fibres but synergises extensively with the CM-cellulase in promoting this process. In contrast the CM-cellula se fails to react significantly with component C1. 6. The interaction of all four components in contributing to the degradation of native cellulose is discussed.  相似文献   

4.
The structure of a crystalline cellulose II-hydrazine complex has been determined by x-ray diffraction methods as part of an investigation of cellulose-solvent interaction. The complex studied was that formed when Fortisan fibers were swollen in hydrazine and then vacuumdried. The unit cell is monoclinic with dimensions a = 9.37 Å, b = 19.88 Å, c = 10.39 Å, and γ = 120.0° and contains disaccharide segments of four chains, with one hydrazine per glucose residue. In view of the limited x-ray intensity data, the structure has been determined based on an approximate unit cell containing two chain segments, with a = 4.69 Å, using the linked-atom least-squares refinement procedures. The refined model contains antiparallel cellulose chains that are linked by both intermolecular hydrogen bonds and hydrogen-bonded hydrazine molecules. The parallel chains in the 020 planes are packed in register, leading to stacks of chains analogous to those in chitin. All the hydroxyl groups are satisfactorily hydrogen-bonded, and each hydrazine forms four donor and two acceptor hydrogen bonds, including an N? H…N bond between hydrazines. From this work it can be seen that the interaction of cellulose II with hydrazine involves scission of the intermolecular hydrogen bonds followed by disruption of the stacks of quarter-staggered chains. The latter effect is probably necessary for hydrazine to act as a cellulose solvent.  相似文献   

5.
A comparison of cellulose synthesized in vitro from primary walls of etiolated mung bean (Vigna radiata) seedlings and secondary walls of cotton fibers (Gossypium hirsutum) was made by applying conditions found to be essential for in vitro cellulose I assembly from cotton (Kudlicka et al., 1995, Plant Physiology, vol. 107, pp. 111–123). Mung bean fractions including the plasma membrane (PM), the first solubilized fraction (SE1), and the second solubilized fraction (SE2), incorporated more radioactive UDP-Glc into the total product than the same fractions from secondary walls. A significant difference was found with the mild digitonin solubilized fraction (SE1), which produced eight times more total product than the SE1 fraction of cotton. However, the SE1 fraction from cotton produced a larger quantity of cellulose (32.1%) than from mung bean (6.9%). Treatment of the in vitro product by acetic/nitric acid reagent (AN) for varying periods of time demonstrated that cellulose synthesized in vitro from mung bean was more easily degraded than cellulose from cotton fibers. This would suggest that cellulose I produced in vitro from the cotton SE1 fraction may have a higher crystallinity and DP than cellulose I produced in vitro from mung bean. The fibrils of cellulose produced by the SE, fraction of mung bean were loosely associated and not arranged into a compact bundle as in case of cellulose I synthesized by the cotton SE1 fraction. The electron diffraction patterns (ED) of both products show reflections characteristic for cellulose I. Products from the SE2 fraction of mung bean and cotton reveal similarities with the cellulose II allomorph synthesized, as well as abundant β-1,3-glucan.  相似文献   

6.
Hydrogen and carbon isotope ratios of saponifiable lipids and cellulose nitrate from CAM, C3, and C4 plants that grew near one another were determined. The deuterium/protium (D/H) ratios of cellulose nitrate from CAM plants were much higher than those of cellulose nitrate from C3 and C4 plants, as has been observed previously. In contrast, the D/H ratios of saponifiable lipids from CAM plants did not differ from those of the same fraction from C3 and C4 plants. These observations indicate that deuterium enrichment in cellulose of CAM plants is not caused by any metabolic or physiological process which would lead to deuterium enrichment in all biochemical fractions.  相似文献   

7.
Abstract

Effect of light on the uptake, utilization and transport of sugars. — The effect of light on the uptake of saccharides, their incorporation into insoluble fractions and their transport by green tissues has been studied under conditions of complete inhibition of the photosynthetic assimilation of CO2. Such conditions were obtained by means of either an inhibitor of O2 evolution (CMU), or by running the experiment in CO2-free atmosphere. When Wolffia arryza plants are incubated with glucose-C14, light stimulates the incorporation of C14 into all fractions examined, and especially into the polysaccharides, like cellulose,' which are synthesized outside the chloroplasts.

Experiments with Elodea canadensis have shown that light stimulates the transport of glucose-C14 from the leaves to the stems, independently of the presence or absence of CO2 assimilation.

These experiments support the hypothesis that ATP synthesyzed in the light by chloroplasts can be utilized by green cells as an energy source for biosyntheses outside the plastids, as well as for other types of biological work, such as active uptake and transport.  相似文献   

8.
Hydrolysis and transformation of Fibrenier cellulose (USA) with enzymes from Aspergillus niger IBT-90 was studied. The process was performed at 50°C and pH 4.8 for 24 h using an enzyme complex either as a properly diluted culture filtrate or as a mixture of isolated and purified enzymes from A.niger IBT-90. In the latter experiments, enzyme-substrate ratios expressed as units of activity per 1 g of cellulose were as follows: endoglucanase E1 and E2, 40; β-glucosidase, 40 and cellobio-hydrolase, 2. Cellulose concentration was 5%. It was proved that the crude celluloytic complex from A. niger IBT-90 exhibits higher efficiency in the decomposition of cellulose in comparison to the mixture of enzymes isolated from this complex, as was revealed in assays of reducing sugars and determinations of light transmission throughout cellulose fibres using a computer analysis of the microscopic image. Comparison of both the endoglucanases E1 and E2 showed that the first enzyme is more active against cellulose. It liberated more reducing sugars and caused more significant decomposition of fibres. The predominant effect of the endoglucanase E2 was a smoothing of the fibre surface. The cellobiohydrolase split a cellulose fibre into many short fibres.  相似文献   

9.
Studies of the biomass production during a continuous cultivation of yeasts on a nutrient medium, prepared from a hydrolysate from the production of microcrystalline cellulose, have been carried out. A new strain of yeasts has been used. Its cultivation has been achieved without addition of biostimulators to the nutrient medium in spite of their absence in the initial hydrolysate. Practically a complete assimilation of sugars has been achieved at high dilution rates (D = 0.25 to 0.50 h+1). The yield of biomass achieved is above 50% compared to the initial sugars and it contains 48.89% true protein. The results obtained offer the possibility of a complex utilization of the products of cellulose hydrolysis in the production of microcrystalline cellulose with a realization of a waste free technology.  相似文献   

10.
The hydroxylation of CMP-NeuAc has been demonstrated to be carried out by several factors including the soluble form of cytochromeb 5. In the present study, mouse liver cytosol was subjected to ammonium sulfate fractionation and cellulose phosphate column chromatography for the separation of two other essential fractions participating in the hydroxylation. One of the fractions, which bound to a cellulose phosphate column, was able to reduce the soluble cytochromeb 5, using NADH as an electron donor. The other fraction, which flowed through the column, was assumed to contain the terminal enzyme which accepts electrons from cytochromeb 5, activates oxygen, and catalyses the hydroxylation of CMP-NeuAc. Assay conditions for the quantitative determination of the terminal enzyme were established, and the activity of the enzyme in several tissues of mouse and rat was measured. The level of the terminal enzyme activity is associated with the expression ofN-glycolylneuraminic acid in these tissues, indicating that the expression of the terminal enzyme possibly regulates the overall velocity of CMP-NeuAc hydroxylation.Abbreviations CMP cytidine 5-monophosphate - NeuAc N-acetylneuraminic acid - NeuGc N-glycolylneuraminic acid - NADH reduced nicotinamide adenine dinucleotide - NADPH reduced nicotinamide adenine dinucleotide phosphate - DTT dithiothreitol  相似文献   

11.
Cost‐effective production of fuels and chemicals from lignocellulosic biomass often involves enzymatic saccharification, which has been the subject of intense research and development. Recently, a mechanistic model for the enzymatic saccharification of cellulose has been developed that accounts for distribution of cellulose chain lengths, the accessibility of insoluble cellulose to enzymes, and the distinct modes of action of the component cellulases [Griggs et al. (2012) Biotechnol. Bioeng., 109(3):665–675; Griggs et al. (2012) Biotechnol. Bioeng., 109(3):676–685]. However, determining appropriate values for the adsorption, inhibition, and rate parameters required further experimental investigation. In this work, we performed several sets of experiments to aid in parameter estimation and to quantitatively validate the model. Cellulosic materials differing in degrees of polymerization and crystallinity (α‐cellulose‐Iβ and highly crystalline cellulose‐Iβ) were digested by component enzymes (EGI/CBHI/ ) and by mixtures of these enzymes. Based on information from the literature and the results from these experiments, a single set of model parameters was determined, and the model simulation results using this set of parameters were compared with the experimental data of total glucan conversion, chain‐length distribution, and crystallinity. Model simulations show significant agreement with the experimentally derived glucan conversion and chain‐length distribution curves and provide interesting insights into multiple complex and interacting physico‐chemical phenomena involved in enzymatic hydrolysis, including enzyme synergism, substrate accessibility, cellulose chain length distribution and crystallinity, and inhibition of cellulases by soluble sugars. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1237–1248, 2015  相似文献   

12.
Summary A crude cell envelope suspension has been prepared from Proteus mirabilis after osmotic shock of penicillin-induced spheroplasts. Employing discontinuous sucrose gradients this cell envelope suspension can be fractionated into four fractions. Besides a pellet of remaining spheroplasts and an intermediate fraction with mixed composition a highly purified cytoplasmic membrane fraction and an outer membrane fraction have been obtained. The cytoplasmic membrane fraction is not contaminated with mucopeptide or outer membrane material. It has a buoyant density of 1.13 g/ml and a protein content of 38%. The specific activities of formate dehydrogenase and nitrate reductase and the content of cytochrome b1 have increased sixfold in comparison with the crude cell envelope suspension. The outer membrane fraction contains only few contaminations with cytoplasmic membrane components and with mucopeptide.The gradient fractions have been characterized by electron microscopy and by polyacrylamide gel electrophoresis.  相似文献   

13.
K. H. Gardner  J. Blackwell 《Biopolymers》1974,13(10):1975-2001
Native cellulose has been shown to consist of a crystalline array of parallel chains, based on the X-ray diffraction data for specimens from the sea alga Valonia ventricosa. The unit cell is monoclinic with dimensions a = 16.34 Å, b = 15.72 Å, c = 10.38 Å (fiber axis), and β = 97.0°. The space group is P21 and the cell contains disaccharide segments of eight chains. Models containing chains with the same sense (parallel) or alternating sense (antiparallel) were refined against the intensity data using rigidbody least squares procedures. The results show a preference for a parallel chain structure with specific chain polarity with respect to the c axis. The refinement places the ? CH2OH side chains approximately 20′ from the so-called tg conformation, with a result that an 02′? H…06 intramolecular bond is formed. The structure also contains an 03? H…05′ intramolecular bond and an 06? H…03 intermolecular bond along the a axis. All these bonds lie in the 020 planes, and the structure is an array of hydrogen-bonded sheets. A major consequence of this work is that regular chain folding can be ruled out and cellulose is seen as extended chain polymer single crystals.  相似文献   

14.
Holocellulose isolated from the aerial parts of alfalfa (Medicago sativa) contains a polysaccharide complex of cellulose and hemicelluloses, the major structural components of cell walls. Holocellulose is highly hydrophilic and has a dense biopolymer packing. The carboxylic groups of hemicelluloses and cellulose determines the ability of holocellulose to adsorb polyvalent metal cations.  相似文献   

15.
During growth in liquid culture medium, that contained single soluble or insoluble cellulosic carbon source, Aspergillus sydowi (Bain. & Start.) Thom & Church released cellulolytic enzymes into the medium. The enzymes were separated by gel filtration followed by ion exchange chromatography into three components, all of high molecular weight. One of the components (Ac) has the character of a C1 cellulase enzyme. In the assay for hydrolysis of insoluble cellulose, the combined fractions, especially whenever the fraction under test contained the component Ac, released more glucose than when each component was employed alone.  相似文献   

16.
Summary Uniformly14C labelled glucose, cellulose and wheat straw and specifically14C labelled lignin component in corn stalks were aerobically incubated for 12 weeks in a chernozem soil alongwith15N labelled ammonium sulphate. Glucose was most readily decomposed, followed in order by cellulose, wheat straw and corn stalk lignins labelled at methoxyl-, side chain 2-and ring-C. More than 50% of14C applied as glucose, cellulose and wheat straw evolved as CO2 during the first week. Lignin however, decomposed relatively slowly. A higher proportion of14C was transformed into microbial biomass whereas lignins contributed a little to this fraction.After 12 weeks of incubation nearly 60% of the lignin14C was found in humic compounds of which more than 70% was resistant to hydrolysis with 6N HCl. Maximum incorporation of15N in humic compounds was observed in cellulose amended soil. However, in this case more than 80% of the15N was in hydrolysable forms.Immobilization-remineralization of applied15N was most rapid in glucose treated soil and a complete immobilization followed by remineralization was observed after 3 days. The process was much slow in soil treated with cellulose, wheat straw or corn stalks. More than 70% of the newly immobilized N was in hydrolysable forms mainly reepresenting the microbial component.Serial hydrolysis of soil at different incubation intervals showed a greater proportion of 6N HCl hydrolysable14C and15N in fractions representing microbial material.14C from lignin carbons was relatively more uniformly distributed in different fractions as compared to glucose, cellulose and wheat straw where a major portion of14C was in easily hydrolysable fractions.  相似文献   

17.
Abstract

A number of ribonucleoprotein fractions have been isolated from Escherichia coli K 12, one of which is more strongly bound to the cell membrane than the rest and can be detached only by deoxycholate treatment. Several properties have been analyzed. The following are common to all fractions: Sedimentation characteristics of sub-units; Sedimentation constant, nucleotide composition and capacity to hybridize with DNA of RNA; electrophoretic behaviour of proteins. Other properties differ in the various fractions: cell membrane fractions have higher RNA/protein ratio, are more sensitive to RNAase and dissociate more easily into two subunits. By examining the rate of incorporation of [2-14C]-uracil into the various fractions, it has been found that cell membrane-bound ribonucleoprotein fractions contain a higher proportion of newly formed rRNA and part of this early-labeled rRNA is contained in particles sedimenting as ribosome precursors. Moreover, by isolating ribonucleoprotein fractions from cells grown in the presence of chloramphenicol, cell membrane-bound riconucleoprotein fraction is richer in CM particles. All these results lead to the conclusion that this fraction contains a higher proportion of ribosome precursors. The meaning of these results is discussed.  相似文献   

18.
Bovine pancreatic trypsin was crystallized, in-complex with Lima bean trypsin inhibitor (LBTI) (Phaseolus lunatus L.), in the form of a ternary complex. LBTI is a Bowman–Birk-type bifunctional serine protease inhibitor, which has two independent inhibitory loops. Both of the loops can inhibit trypsin, however, only the hydrophobic loop is specific for inhibiting chymotrypsin. The structure of trypsin incomplex with the LBTI has been solved and refined at 2.25 Å resolution, in the space group P41, with Rwork/Rfree values of 18.1/23.3. The two binding sites of LBTI differ in only two amino acids. Lysine and leucine are the key residues of the two different binding loops positioned at the P1, and involved in binding the S1 binding site of trypsin. The asymmetric unit cell contains two molecules of trypsin and one molecule of LBTI. The key interactions include hydrogen bonds between LBTI and active site residues of trypsin. The 3D structure of the enzyme–inhibitor complex provided details insight into the trypsin inhibition by LBTI. To the best of our knowledge, this is the first report on the structure of trypsin incomplex with LBTI.  相似文献   

19.
Starting from cotton linters cellulose modified in physical structure type of lattice, degree of order, state of swelling by different pretreatments, and from culture filtrates of Gliocladium spec., the initial stage of enzymatic hydrolysis of cellulose has been investigated. Especially with substrates of high degradability a considerable effect of stirring on rate of formation of soluble products was found. For linerization of yield-vs-time-curves (% residue resp. 7percnt; solubles as a criterion for yield), a 2-parameatric first order rate law was found to be suitable within a limited time interval, values of k1 were higher and for the accessible part of the substrate were lower in the initial stage of hydrolysis than in the later one. The MICHAELIS -MENTEN -constant kM has been determined for substrates of different physical structure after different times of reaction. Data found for kM indicated a stronger dependence of kM on reaction time than on physical structure of the substrate under conditions applied.  相似文献   

20.
Summary A comparison was made of the basic proteins extracted from the chromatin and nuclei of Achlya bisexualis, Blastocladiella emersonii, and Pisum sativum. Extraction of purified chromatin and nuclei of the Chytridiomycete, B. emersonii followed by gel electrophoresis produced no detectable protein bands. Extractions of purified nuclei and chromatin by either mineral acid or CaCl2 from the Oömycete A. bisexualis resulted in several protein bands following separation by disc gel electrophoresis. Monitoring the nucleic acids during the nuclear isolation procedure as well as comparing electropherograms of basic nuclear proteins with basic ribosomal proteins suggests no significant contamination of the nuclear preparations with ribosomes. Carboxymethyl cellulose chromatography of the A. bisexualis nuclear basic proteins resolved three distinct fractions. Gel electrophoresis of the CM cellulose fractions indicated heterogeneity of each fraction. Amino acid analysis of the CM fractions showed that they were all lysine-rich and meet the basisity requirements of histones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号