首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The high-pressure stopped-flow technique is applied to study the CO binding in cytochrome P450cam (P450cam) bound with homologous substrates (1R-camphor, camphane, norcamphor and norbornane) and in the substrate-free protein. The activation volume DeltaV # of the CO on-rate is positive for P450cam bound with substrates that do not contain methyl groups. The kon rate constant for these substrate complexes is in the order of 3 x 10(6) M(-1) x s(-1). In contrast, P450cam complexed with substrates carrying methyl groups show a negative activation volume and a low kon rate constant of approximately 3 x 10(4) M(-1) x s(-1). By relating kon and DeltaV # with values for the compressibility and the influx rate of water for the heme pocket of the substrate complexes it is concluded that the positive activation volume is indicative for a loosely bound substrate that guarantees a high solvent accessibility for the heme pocket and a very compressible active site. In addition, subconformers have been found for the substrate-free and camphane-bound protein which show different CO binding kinetics.  相似文献   

2.
Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to d-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and d-camphor are C(10) monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 A resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe(2)S(2) redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.  相似文献   

3.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

4.
Prasad S  Mazumdar S  Mitra S 《FEBS letters》2000,477(3):157-160
The binding of camphor to cytochrome P450(cam) has been investigated by steady-state and time-resolved tryptophan fluorescence spectroscopy to obtain information on the substrate access channel. The fluorescence quenching experiments show that some of the tryptophan residues undergo changes in their local environment on camphor binding. The time-resolved fluorescence decay profile gives four lifetime components in the range from 99 ps to 4.5 ns. The shortest lifetime component assigned to W42 lies close to the proposed camphor access channel. The results show that the fluorescence of W42 is greatly affected on binding of camphor, and supports dynamic fluctuations involved in the passage of camphor through the access channel as proposed earlier on the basis of crystallographic, molecular dynamics simulation and site-directed mutagenesis studies.  相似文献   

5.
Mak PJ  Im SC  Zhang H  Waskell LA  Kincaid JR 《Biochemistry》2008,47(12):3950-3963
Resonance Raman studies of P450 2B4 are reported for the substrate-free form and when bound to the substrates, benzphetamine (BZ) or butylated hydroxytoluene (BHT), the latter representing a substrate capable of inducing an especially effective conversion to the high-spin state. In addition to studies of the ferric resting state, spectra are acquired for the ferrous CO ligated form. Importantly, for the first time, the RR technique is effectively applied to interrogate the changes in active site structure induced by binding of cytochrome P450 reductase (CPR) and Mn(III) cytochrome b 5 (Mn cyt b 5); the manganese derivative of cyt b 5 was employed to avoid spectroscopic interferences. The results, consistent with early work on mammalian P450s, demonstrate that substrate structure has minimal effects on heme structure or the FeCO fragment of the ferrous CO derivatives. Similarly, the data indicate that the protein is flexible and that substrate binding does not exert significant strain on the heme peripheral groups, in contrast to P450 cam, where substantial effects on heme peripheral groups are seen. However, significant differences are observed in the RR spectra of P450 2B4 when bound with the different redox partners, indicating that the heme structure is clearly sensitive to perturbations near the proximal heme binding site. The most substantial changes are displacements of the peripheral vinyl groups toward planarity with the heme macrocycle by cyt b 5 but away from planarity by CPR. These changes can have an impact on heme reduction potential. Most interestingly, these RR results support an earlier observation that the combination of benzphetamine and cyt b 5 binding produce a synergy leading to unique active site structural changes when both are bound.  相似文献   

6.
Substrate binding to cytochrome P450cam is generally considered to be a two-step process. The first step corresponds to the entrance of the substrate, camphor, into the heme pocket. The second step corresponds to a spin transition (low spin-->high spin) of the iron in the protein-substrate complex. This spin transition is related to the mobility of the substrate inside the active site [Biochim Biophys Acta 1338 (1997) 77]. Potassium cations (K(+)) have a specific effect on the spin equilibrium. This is generally attributed to the K(+) ion-induced conformational change of tyrosine 96, the hydroxyl group of which is hydrogen bonded to the keto group of camphor and results in optimum substrate orientation and reduced mobility of this substrate in the active site. In the present paper, we show that K(+) not only affects the substrate-Tyr 96 couple, but acts more globally since K(+) effects are also observed in the Tyr96Phe mutant as well as in complexes with camphor-analogues. Large compounds, that fit well in the heme pocket and bind with higher affinity than camphor, display high spin contents that are less dependent on the presence of K(+). In contrast, K(+) has a significant effect on the high spin content of substrate-cytochrome P450cam complexes with looser interactions. We conclude that large compounds with higher affinities than camphor have more van der Waals contacts with the active site residues. Their mobilities are then reduced and less dependent on the presence of K(+). In this study, we also explored, for comparison, the K(+) effect on the spin transition state of another member of the P450 superfamily, cytochrome P450lin. This effect is not as strong as those observed for cytochrome P450cam. Even though the spin equilibrium does not change dramatically in the presence of K(+) or Na(+), the value of the dissociation constant (K(d)) for linalool binding is significantly affected by ionic strength. Analysis of the thermodynamic parameters for the linalool binding strongly suggests that, similarly to our previous finding for cytochrome P450cam, electrostatic gates participate in the control of substrate access.  相似文献   

7.
Addition of alcohols to cytochrome P450cam (CYP101) was shown to release the substrate camphor from the heme pocket of the enzyme. The release of the substrate was found to be caused both due to increased solubility of the substrate in solution in presence of alcohol and due to change in the tertiary structure of the active site of the enzyme. The far-UV CD and near-UV CD spectra reveal that addition of alcohols to cytochrome P450cam cause a small change in the secondary structural elements but a significant change in the tertiary structural organization of this enzyme. The CD spectra at the heme region at various concentrations of alcohols indicate a substantial change in the tertiary structural organization around the heme moiety too. The equilibrium constant associated with the binding of camphor to Cyt P450cam is strongly dependent on the concentration of alcohols and the corresponding free energy associated with the binding is found to scale linearly with the concentration of alcohols. Kinetic experiments on binding of camphor to Cyt P450cam show that both k(on) and k(off) rate constants are strongly affected by addition of alcohols suggesting that alcohol expel camphor out of the heme cavity of Cyt P450cam by affecting tertiary structure of Cyt P450cam as well as by modifying the solubility properties of camphor in aqueous medium.  相似文献   

8.
Members of the ubiquitous cytochrome P450 family catalyze a vast range of biologically significant reactions in mammals, plants, fungi, and bacteria. Some P450s display a remarkable promiscuity in substrate recognition, while others are very specific with respect to substrate binding or regio and stereo-selective catalysis. Recent results have suggested that conformational flexibility in the substrate access channel of many P450s may play an important role in controlling these effects. Here, we report the X-ray crystal structures at 1.8A and 1.5A of cytochrome P450cam complexed with two synthetic molecular wires, D-4-Ad and D-8-Ad, consisting of a dansyl fluorophore linked to an adamantyl substrate analog via an alpha,omega-diaminoalkane chain of varying length. Both wires bind with the adamantyl moiety in similar positions at the camphor-binding site. However, each wire induces a distinct conformational response in the protein that differs from the camphor-bound structure. The changes involve significant movements of the F, G, and I helices, allowing the substrate access channel to adapt to the variable length of the probe. Wire-induced opening of the substrate channel also alters the I helix bulge and Thr252 at the active site with binding of water that has been proposed to assist in peroxy bond cleavage. The structures suggest that the coupling of substrate-induced conformational changes to active-site residues may be different in P450cam and recently described mammalian P450 structures. The wire-induced changes may be representative of the conformational intermediates that must exist transiently during substrate entry and product egress, providing a view of how substrates enter the deeply buried active site. They also support observed examples of conformational plasticity that are believed be responsible for the promiscuity of drug metabolizing P450s. Observation of such large changes in P450cam suggests that substrate channel plasticity is a general property inherent to all P450 structures.  相似文献   

9.
Properties of the single tryptophan residue in rat liver microsomal phenobarbital-inducible cytochrome P-450e (P450IIB2) were studied by the nanosecond time-resolved fluorometry. The tryptophan fluorescence decay time was found to be 3.6 ns and it was not affected by the addition of substrate (perhydrophenanthrene). This result strongly indicates that the tryptophan residue is not a part of the substrate-binding site.  相似文献   

10.
While cytochrome P-450cam catalyzes the hydroxylation of camphor to 5-exo-hydroxycamphor with 100% stereospecificity, norcamphor is hydroxylated by this enzyme yielding 45% 5-exo-, 47% 6-exo-, and 8% 3-exo-hydroxynorcamphor (Atkins, W.M., Sligar, S.G., J. Am. Chem. Soc. 109:3754-3760, 1987). The present study describes a 201-psec molecular dynamics (MD) stimulation of norcamphorbound cytochrome P-450cam to elucidate the relationship between substrate conformational mobility and formation of alternative products. First, these data suggest that the product specificity is, at least partially, due to the mobility of the substrate within the active site. Second, the high mobility of norcamphor in the active site leads to an average increase in separation between the heme iron and the substrate of about 1.0 A; this increase in separation may be the cause of the uncoupling of electron transfer when norcamphor is the substrate. Third, the active site water located in the norcamphorbound crystal structure possesses mobility that correlates well with the spin-state equilibrium of this enzyme-substrate complex.  相似文献   

11.
We report solid-state deuterium magic angle spinning NMR spectra of perdeuterated adamantane bound to the active site of microcrystalline cytochrome P450cam (CP450cam) in its resting state. CP450cam contains a high-spin ferric (Fe3+) heme in the resting state; the isotropic shift was displaced from the diamagnetic value and varied with temperature consistent with Curie-law dependence. A nondeuterated competitive tighter binding ligand, camphor, was used to displace the adamantane-bound species. This addition resulted in the disappearance of the hyperfine-shifted signal associated with a perdeuterated adamantane bound to CP450cam, while signals presumably associated with adamantane bound to other cavities persisted. We simulated the deuterium spinning side-band intensities for the enzyme-bound species using dipolar hyperfine coupling as the only anisotropic interaction; the deuterium quadrupolar interaction was apparently averaged due to a fast high-symmetry motion. These data provide direct support for previous proposals that substrates are conformationally mobile on the time scale of enzymatic turnover. The simulations suggested that the adamantane binds with an average metal-deuterium distance of 6.2 (+/-0.2) A, corresponding to a dipolar coupling constant of 6.5 (+/-0.5) kHz.  相似文献   

12.
The role of the active site hydrogen bond of cytochrome P-450cam has been studied utilizing a combination of site-directed mutagenesis and substrate analogues with altered hydrogen bonding capabilities. Cytochrome P-450cam normally catalyzes the regiospecific hydroxylation of the monoterpene camphor. The x-ray crystal structure of this soluble bacterial cytochrome P-450 (Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J. (1985) J. Biol. Chem. 260, 16122-16128) indicates a specific hydrogen bond between tyrosine 96 and the carbonyl moiety of the camphor substrate. The site-directed mutant in which tyrosine 96 has been changed to a phenylalanine and the substrate analogues thiocamphor and camphane have been used to probe this interaction in several aspects of catalysis. At room temperature, both the mutant enzyme with camphor and the wild type enzyme with thiocamphor bound result in 59 and 65% high-spin ferric enzyme as compared to the 95% high spin population obtained with native enzyme and camphor as substrate. The equilibrium dissociation constant is moderately increased, from 1.6 microM for the wild type protein to 3.0 and 3.3 microM for wild type-thiocamphor and mutant-camphor complexes, respectively. Camphane bound to cytochrome P-450cam exhibits a larger decrease in high spin fraction (45%) and a correspondingly larger KD (46 microM), suggesting that the carbonyl moiety of camphor plays an important steric role in addition to its interaction as a hydrogen bond acceptor. The absolute regioselectivity of the mutant enzyme, and of the wild type enzyme with thiocamphor, is lost resulting in production of several hydroxylated products in addition to the 5-exo-hydroxy isomer. Based on rates of NADH oxidation, comparison of the substrate specificity for these systems (kcat/KD) indicates a 5- and 7-fold decrease in specificity for the mutant enzyme and thiocamphor-wild type complex, respectively. The replacement of the cytochrome P-450cam active site tyrosine with phenylalanine does not affect the branching ratio of monooxygenase versus oxidase chemistry or peroxygenase activity (Atkins, W.M., and Sligar, S.G. (1987) J. Am. Chem. Soc. 109, 3754-3760).  相似文献   

13.
Apoprotein formation and heme reconstitution of cytochrome P-450cam   总被引:1,自引:0,他引:1  
Apoprotein suitable for heme reconstitution has been prepared by an acid/butanone extraction of cytochrome P-450cam at pH 2.5. Absorption spectra of apo-P-450cam indicate less than 2% residual holoenzyme. Four tryptophan residues per molecule were estimated from the aromatic absorbance region of denatured apoprotein. Heme-reconstituted holoprotein was purified in 30% yield to a specific activity equivalent to the native enzyme. Absorption and EPR spectra of 57Fe- and 54Fe-heme-enriched P-450cam reveal complete restoration of the native active site.  相似文献   

14.
Changes in heme coordination state and protein conformation of cytochrome P450(cam) (P450(cam)), a b-type heme protein, were investigated by employing pH jump experiments coupled with time-resolved optical absorption, fluorescence, circular dichroism, and resonance Raman techniques. We found a partially unfolded form (acid form) of ferric P450(cam) at pH 2.5, in which a Cys(-)-heme coordination bond in the native conformation was ruptured. When the pH was raised to pH 7.5, the acid form refolded to the native conformation through a distinctive intermediate. Formations of similar acid and intermediate forms were also observed for ferrous P450(cam). Both the ferric and ferrous forms of the intermediate were found to have an unidentified axial ligand of the heme at the 6th coordination sphere, which is vacant in the high spin ferric and ferrous forms at the native conformation. For the ferrous form, it was also indicated that the 5th axial ligand is different from the native cysteinate. The folding intermediates identified in this study demonstrate occurrences of non-native coordination state of heme during the refolding processes of the large b-type heme protein, being akin to the well known folding intermediates of cytochromes c, in which c-type heme is covalently attached to a smaller protein.  相似文献   

15.
Abstract

Cytochrome P450cam is capable of reductively dehalogenating several chlorinated alkanes at low, but measurable, rates. In previous investigations of structure-function relationships in this enzyme using molecular dynamics simulations, we noticed that 1,1,1-trichloroethane (TCA) exhibits a very high degree of mobility in the active site due to its smaller molecular volume relative to the native substrate, camphor(1,2). Several amino acid sidechains lining the active site also exhibit significant dynamic fluctuations, possibly as a result of poor steric complementarity to TCA. Guided by these results, we modeled double (F87W, T185F) and triple (F87W, T185F, V295I) mutants of P450cam, which provide additional bulk in the active site and increase the frequency of heme-substrate collision. Molecular dynamics simulations (300 ps on each protein) indicate that these mutants do not significantly perturb the three-dimensional fold of the enzyme, or local structure in the region of the active site. Both mutants bind the substrate more stably near the heme than the wild-type. Interestingly, however, the bulkier triple mutant seems to actually inhibit heme-substrate interactions relative to the double mutant. Over the final 200 ps of simulation, TCA is within 1 Å of nonbonded contact with the heme 25% more often in the double mutant versus the wild-type. The triple mutant, on the other hand, binds TCA within 1 Å of the heme only 15% as often as the wild-type. These results indicate that the double mutant may reductively dehalogenate TCA, a property not observed for the native protein. Implications for other experimentally measurable parameters are discussed.  相似文献   

16.
The monooxygenese activity of cytochrome P450 is successfully introduced into myoglobin by rational design of its active site. Introduction of an aromatic ring, tryptophan, near the heme by site-directed mutagenesis resulted in the hydroxylation of tryptophan at the C6 position by using an almost stoichiometric amount of H(2)O(2). We also altered the substrate specificity of H(2)O(2)-dependent P450 by employing a simple substrate trick. Although P450(BSβ) exclusively catalyzes peroxygenation of long-alkyl-chain fatty acids, oxidation of non-natural substrates such as styrene, ethylbenzene, and 1-methoxynaphthalen are catalyzed by P450(BSβ) in the presence of decoy molecules having a carboxyl group. Advantageously, the substrate specificity of P450(BSβ) can be altered by simply adding the decoy molecule without replacing any amino acid residues. Moreover, the stereoselectivity can be controlled by changing the structure of the decoy molecule. The crystal structure analysis of the decoy molecule bound-form of P450(BSβ) shows that P450(BSβ) accepts the decoy molecule, whose carboxylate is located at the same position to that of long-alkyl-chain fatty acid.  相似文献   

17.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

18.
Cytochrome P450s form a ubiquitous protein family with functions including the synthesis and degradation of many physiologically important compounds and the degradation of xenobiotics. Cytochrome P450cam from Pseudomonas putida has provided a paradigm for the structural understanding of cytochrome P450s. However, the mechanism by which camphor, the natural substrate of cytochrome P450cam, accesses the buried active site is a long-standing puzzle. While there is recent crystallographic and simulation evidence for opening of a substrate-access channel in cytochrome P450BM-3, for cytochrome P450cam, no such conformational changes have been observed either in different crystal structures or by standard molecular dynamics simulations. Here, a novel simulation method, random expulsion molecular dynamics, is presented, in which substrate-exit channels from the buried active site are found by imposing an artificial randomly oriented force on the substrate, in addition to the standard molecular dynamics force field. The random expulsion molecular dynamics method was tested in simulations of the substrate-bound structure of cytochrome P450BM-3, and then applied to complexes of cytochrome P450cam with different substrates and with product. Three pathways were identified, one of which corresponds to a channel proposed earlier on the basis of crystallographic and site-directed mutagenesis data. Exit via the water-filled channel, which was previously suggested to be a product exit channel, was not observed. The pathways obtained by the random expulsion molecular dynamics method match well with thermal motion pathways obtained by an analysis of crystallographic B-factors. In contrast to large backbone motions (up to 4 A) observed in cytochrome P450BM-3 for the exit of palmitoleic acid, passage of camphor through cytochrome P450cam only requires small backbone motions (less than 2.4 A) in conjunction with side-chain rotations. Concomitantly, in almost all the exit trajectories, salt-links that have been proposed to act as ionic tethers between secondary structure elements of the protein, are perturbed.  相似文献   

19.
High pressure is an interesting and suitable parameter in the study of the dynamics and stability of proteins. The effects of pressure on proteins delineates its volumic (deltaV degrees ) and energetic (deltaG degrees ) parameters. An enormous amount of effort has been invested by several laboratories in developing basic theory and high pressure techniques that allow the determination of barotropic parameters. Cytochrome P450s, one of the largest super families of heme proteins, are good models for high pressure studies. Two distinct pressure-induced spin transitions of the heme iron in the active site and a P450 to P420 inactivation process have been characterized. The obtained reaction volumes of these two processes for a series of analog-bound cytochrome P450s are compared. We have shown that both the spin volume and the inactivation volume are dependent on the substrate analogs which are known to modulate the polarity and hydration of the heme pocket. Several linear correlations were found between these reaction volumes and the physico-chemical properties of the heme protein such as the polarity-induced exposure of tyrosines, the hydration of the cytochrome CYP101 heme pocket, and the mobility and binding of the substrates indicate that they constitute the main contribution to the complex thermodynamic reaction volume parameters. This interpretation allows us to conclude that cytochrome CYP101, CYP2B4 and CYP102 possess a similar mechanism of substrate binding. Interestingly the barotropic behaviors of monomeric cytochrome P450s are quite different from those of oligomeric and hetorooligomeric cytochrome P450s. The interactions of heterooligomeric subunits influence the stability of individual cytochrome P450s and the asymmetric organization of subunits which can control and modulate the activity and the recognition with NADPH-cytochrome P450 reductase.  相似文献   

20.
Atom-centered partial charges are calculated for the Fe-heme in cytochrome P450cam for use in molecular dynamics simulations of polar substrates bound in the active site of the enzyme. Charges are fit to the electrostatic potential produced by ab initio UHF wavefunctions for an Fe-porphine model. Basis set dependence of these charges is observed using the LANL1DZ, LANL2DZ and augmented 6–31G levels of theory. Upon geometry optimization of the enzyme, these charge sets cause varying degrees of distortion of the porphyrin from its crystallographically observed conformation. Scaling the charges calculated from the augmented 6–31G basis by 75% reduces the heme distortion while preserving reasonable interactions with a polar substrate. A comparison of the calculated charges with other published values is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号