首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The kinetics of product formation by cytochrome P450 2B4 were compared in the presence of cytochrome b(5) (cyt b(5)) and NADPH-cyt P450 reductase (CPR) under conditions in which cytochrome P450 (cyt P450) underwent a single catalytic cycle with two substrates, benzphetamine and cyclohexane. At a cyt P450:cyt b(5) molar ratio of 1:1 under single turnover conditions, cyt P450 2B4 catalyzes the oxidation of the substrates, benzphetamine and cyclohexane, with rate constants of 18 +/- 2 and 29 +/- 4.5 s(-1), respectively. Approximately 500 pmol of norbenzphetamine and 58 pmol of cyclohexanol were formed per nmol of cyt P450. In marked contrast, at a cyt P450:CPR molar ratio of 1:1, cyt P450 2B4 catalyzes the oxidation of benzphetamine congruent with100-fold (k = 0.15 +/- 0.05 s(-1)) and cyclohexane congruent with10-fold (k = 2.5 +/- 0.35 s(-1)) more slowly. Four hundred picomoles of norbenzphetamine and 21 pmol of cyclohexanol were formed per nmol of cyt P450. In the presence of equimolar concentrations of cyt P450, cyt b(5), and CPR, product formation is biphasic and occurs with fast and slow rate constants characteristic of catalysis by cyt b(5) and CPR. Increasing the concentration of cyt b(5) enhanced the amount of product formed by cyt b(5) while decreasing the amount of product generated by CPR. Under steady-state conditions at all cyt b(5):cyt P450 molar ratios examined, cyt b(5) inhibits the rate of NADPH consumption. Nevertheless, at low cyt b(5):cyt P450 molar ratios 相似文献   

2.
Rabbit cytochrome P450 isozyme 2 requires cytochrome b5 to metabolize the volatile anesthetic methoxyflurane but not the substrate benzphetamine [E. Canova-Davis and L. Waskell (1984) J. Biol. Chem. 259, 2541-2546]. To determine whether the requirement for cytochrome b5 for methoxyflurane oxidation is mediated by an allosteric effect on cytochrome P450 LM2 or cytochrome P450 reductase, we have investigated whether this anesthetic can induce a role for cytochrome b5 in benzphetamine metabolism. Using rabbit liver microsomes and antibodies raised in guinea pigs against rabbit cytochrome b5, we found that methoxyflurane did not create a cytochrome b5 requirement for benzphetamine metabolism. Methoxyflurane also failed to induce a role for cytochrome b5 in benzphetamine metabolism in the purified, reconstituted mixed function oxidase system. Studies of the reaction kinetics established that in the absence of cytochrome b5, methoxyflurane and benzphetamine are competitive inhibitors, and that in the presence of cytochrome b5, benzphetamine and methoxyflurane are two alternate substrates in competition for a single site on the same enzyme. These results all indicate that the methoxyflurane-induced cytochrome b5 dependence of the mixed function oxidase cytochrome P450 LM2 system is a direct result of the interaction between methoxyflurane and the substrate binding site of cytochrome P450 LM2 and suggest the focus of future studies of this question.  相似文献   

3.
Cytochrome b5 has been shown to stimulate, inhibit or have no effect on catalysis by P450 cytochromes. Its action is known to depend on the isozyme of cytochrome P450, the substrate, and experimental conditions. Cytochrome P450 2B4 (CYP 2B4) has been used in our laboratory as a model isozyme to study the role of cytochrome b5 in cytochrome P450 catalysis using two substrates, methoxyflurane and benzphetamine. One substrate is the volatile anesthetic, methoxyflurane, whose metabolism is consistently markedly stimulated by cytochrome b5. The other is benzphetamine, whose metabolism is minimally modified by cytochrome b5. Determination of the stoichiometry of the metabolism of both substrates showed that the amount of product formed is the net result of the simultaneous stimulatory and inhibitory actions of cytochrome b5 on catalysis. Site-directed mutagenesis studies revealed that both cytochrome b5 and cytochrome P450 reductase interact with cytochrome P450 on its proximal surface on overlapping but non-identical binding sites. Comparison of the rate of reduction of oxyferrous CYP 2B4 and the rate of substrate oxidation by cyt b5 and reductase with stopped-flow spectrophotometric and rapid chemical quench experiments has demonstrated that although cytochrome b5 and reductase reduce oxyferrous CYP 2B4 at the same rate, substrate oxidation proceeds more slowly in the presence of the reductase.  相似文献   

4.
The effects of protein-protein interactions and substrate binding on the structure of the active site of rabbit liver microsomal cytochrome P-450 LM2 have been analyzed by resonance Raman spectroscopy of the monomeric and oligomeric protein in solution. Also H2O2-dependent catalytic activities of the two states have been compared. The two vinyl substituents of the heme exhibit different orientations, as indicated by the frequencies and intensities of their stretching vibrations. One group lies in the plane of the heme and remains unchanged in the two states of cytochrome P-450 LM2, the other is tilted out of the plane. The tilting angle in oligomers was smaller than in monomers. These vinyl stretching modes together with some porphyrin modes, were found to be sensitive indicators of the quaternary structure and of substrate binding. In both the oligomer and the monomer, substrate binding causes changes of the relative intensities of some porphyrin modes and the vinyl stretching vibrations which may reflect modifications of the electronic transitions due to hydrophobic interactions between the bound substrate and the heme. In contrast to the monomeric cytochrome P-450 LM2, benzphetamine binding to the oligomers of this isozyme additionally produces a shift of the spin-state equilibrium. This indicates that in the oligomer the substrate-binding pocket is converted by protein-protein interaction to a structure that forces substrates to interfere with the sixth ligands, inducing an increase of the five-coordinated high-spin configuration. In the monomer the substrate-binding pocket can accommodate benzphetamine without affecting the spin state. Binding of imidazole to the monomeric and oligomeric cytochrome P-450 LM2 produces essentially the same resonance Raman spectra. Apparently the replacement of the native sixth ligand by imidazole disturbs the structure of the active site in such a way that it becomes insensitive to protein-protein interactions. H2O2-dependent N-demethylation of benzphetamine and aniline p-hydroxylation by cytochrome P-450 LM2 did not depend on its state of aggregation.  相似文献   

5.
The use of 5-deazaFAD T491V cytochrome P450 reductase has made it possible to directly measure the rate of electron transfer to microsomal oxyferrous cytochrome (cyt) P450 2B4. In this reductase the FMN moiety can be reduced to the hydroquinone, FMNH(2), while the 5-deazaFAD moiety remains oxidized [Zhang, H., et al. (2003) Biochemistry 42, 6804-6813]. The rate of electron transfer from 5-deazaFAD cyt P450 reductase to oxyferrous cyt P450 was determined by rapidly mixing the ferrous cyt P450-2-electron-reduced 5-deazaFAD T491V reductase complex with oxygen in the presence of substrate. The 5-deazaFAD T491V reductase which can only donate a single electron reduces the oxyferrous cyt P450 and oxidizes to the air-stable semiquinone, with rate constants of 8.4 and 0.37 s(-1) at 15 degrees C. Surprisingly, oxyferrous cyt P450 turns over more slowly with a rate constant of 0.09 s(-1), which is the rate of catalysis under steady-state conditions at 15 degrees C (k(cat) = 0.08 s(-1)). In contrast, the rate constant for electron transfer from ferrous cyt b(5) to oxyferrous cyt P450 is 10 s(-1) with oxyferrous cyt P450 and cyt b(5) simultaneously undergoing spectral changes. Quantitative analyses by LC-MS/MS revealed that the product, norbenzphetamine, was formed with a coupling efficiency of 52% with cyt b(5) and 32% with 5-deazaFAD T491V reductase. Collectively, these results suggest that during catalysis a relatively stable reduced oxyferrous intermediate of cyt P450 is formed in the presence of cyt P450 reductase but not cyt b(5) and that the rate-limiting step in catalysis follows introduction of the second electron.  相似文献   

6.
We have performed resonance Raman studies on ferrous NO- and CO-adducts of cytochrome P450(cam) and investigated the effects of diprotein complex formation with reduced putidaredoxin. We have found that the Fe-NO stretching mode of NO-P450(cam) can be resolved into two peaks at 551 and 561 cm(-1), and the binding of putidaredoxin increases the intensity of the high frequency component. Because the Fe-NO mode has been shown to be more sensitive to the nature of the heme proximal ligand than to the distal pocket environment, such a perturbation upon putidaredoxin binding is suggestive of changes in conformation or electronic structure that affect the proximal iron-cysteine bond. In accordance with this idea, the isotope shifts for the Fe-XO stretching and Fe-X-O bending modes (X = N or C) are insensitive to the presence or absence of putidaredoxin, indicating that the geometry of the Fe-X-O unit is not significantly altered by the complex formation. On the other hand, complex formation does induce a perturbation of the low frequency heme vibrational modes, suggesting that alterations of the heme electronic structure and/or geometry take place when putidaredoxin binds. We also find that cytochrome b(5) minimally affects the heme active site of the enzyme, although both putidaredoxin and cytochrome b(5) bind to the same or similar site on P450(cam). These observations suggest that there is a key specific interaction between P450(cam) and putidaredoxin, and that this interaction increases the population of a protein conformation that exhibits structural and/or electronic distortions of the heme group associated with the proximal side of the heme pocket and the S --> Fe electron donation. These electronic and structural changes are potentially correlated with H-bonding to the proximal cysteine.  相似文献   

7.
Cytochrome P-450, purified from liver microsomes of phenobarbital-treated rabbits, was incorporated into dimyristoylphosphatidylcholine liposomes. The binding of benzphetamine to the liposome-bound cytochrome P-450 was examined by measuring the benzphetamine-induced spectral change at various temperatures. The van't Hoff plot of the apparent spectral dissociation constant showed a distinct break at the temperature of phase transition of the synthetic lipid. On the other hand, no such break was observed for benzphetamine binding to microsomal bound cytochrome P-450. These results suggest that the substrate binding site of cytochrome P-450 is embedded in the apolar interior of phospholipid bilayer membranes.  相似文献   

8.
The kinetics of NADPH-dependent reduction of cytochrome P450 LM2 in the soluble monomeric reconstituted system in the absence of any substrate is shown to be monophasic. We show that ferrous cytochrome c acts as a competitive inhibitor of the reduction. In the presence of 1 mM benzphetamine an additional extremely fast phase was observed. Under these conditions ferrous cytochrome c was found to be a competitive inhibitor of the slow phase of the reduction process, which accounted for 80% of the total reduction amplitude. Inhibition experiments yield a dissociation constant for the LM2-reductase complex of 3.0 +/- 1.5 microM. This constant was the same both in the presence and in the absence of benzphetamine. Based on these data we conclude that cytochromes P450 and c bind to the same center on the NADPH-cytochrome P450 reductase molecule. Comparative analysis of the amino acid sequences reveals a detectable similarity between cytochrome c and cytochrome P450 LM2 at positions 68-87 and 121-145, respectively. In addition, a substantial similarity was shown for sequence fragments 204-224 of NADPH-cytochrome P450 reductase and 40-60 of cytochrome b5. Based on these findings a hypothesis for the location of the centers of intermolecular interactions on the molecules of cytochrome P450 LM2 and NADPH-cytochrome P450 reductase is proposed.  相似文献   

9.
Rabbit liver cytochrome P450 (P450) 1A2 was found to catalyze the 5,6-epoxidation of alpha-naphthoflavone (alphaNF), 1-hydroxylation of pyrene, and the subsequent 6-, 8-, and other hydroxylations of 1-hydroxy (OH) pyrene. Plots of steady-state rates of product formation versus substrate concentration were hyperbolic for alphaNF epoxidation but highly cooperative (Hill n coefficients of 2-4) for pyrene and 1-OH pyrene hydroxylation. When any of the three substrates (alphaNF, pyrene, 1-OH pyrene) were mixed with ferric P450 1A2 using stopped-flow methods, the changes in the heme Soret spectra were relatively slow and multiphasic. Changes in the fluorescence of all of the substrates were much faster, consistent with rapid initial binding to P450 1A2 in a manner that does not change the heme spectrum. For binding of pyrene to ferrous P450 1A2, the course of the spectra revealed sequential changes in opposite directions, consistent with P450 1A2 being involved in a series of transitions to explain the kinetic multiphasicity as opposed to multiple, slowly interconverting populations of enzyme undergoing the same event at different rates. Models of rabbit P450 1A2 based on a published crystal structure of a human P450 1A2-alphaNF complex show active site space for only one alphaNF or for two pyrenes. The spectral changes observed for binding and hydroxylation of pyrene and 1-OH pyrene could be fit to a kinetic model in which hydroxylation occurs only when two substrates are bound. Elements of this mechanism may be relevant to other cases of P450 cooperativity.  相似文献   

10.
The interactions between purified rat hepatic microsomal cytochrome P-450 and the type I ligands benzphetamine and cytochrome b5 have been studied in the presence of phospholipid using difference spectrophotometry. Cytochrome b5 was shown to interact with cytochrome P-450 to form a tight 1:1 complex (Kd = 275 nM), in which the proportion of high spin cytochrome P-450 was increased from 7 to 30%. The presence of saturating cytochrome b5 was shown to cause a decrease in the apparent Kd for benzphetamine binding from 111 microM to 40 microM. Likewise, the presence of benzphetamine was shown to cause a decrease in the apparent dissociation constant for cytochrome b5 binding to cytochrome P-450 (Kd = 90 nM). The above interactions were resolved into the basic equilibria inter-relating the various ligation states of the hemoprotein in an energetically closed eight-state free energy coupling model and the relative magnitudes of the microequilibria were analyzed to determine the degree of coupling of the interactions between cytochrome P-450 and both benzphetamine and cytochrome b5. Consequently, the spin state changes in cytochrome P-450 induced by benzphetamine and cytochrome b5 binding were shown to arise because these ligands interact 7 and 4 times more tightly with high spin cytochrome P-450, respectively. Furthermore, the data revealed that these ligands interact at independent sites on cytochrome P-450. Thus the effects of cytochrome b5 upon benzphetamine binding and vice versa were rationalized simply in terms of an increase in the proportion of a high spin (high affinity) conformation of cytochrome P-450 brought about by pre-equilibration with the effector ligand, with the intrinsic binding affinities of the two ligands for the low or high spin states remaining relatively unaltered. The thermodynamic parameters associated with the interactions between cytochrome P-450 and cytochrome b5, determined from the temperature dependence of these interactions, revealed that these protein interactions are entropy driven and probably occur by a hydrophobic mechanism.  相似文献   

11.
Gene inactivation studies point to the involvement of OxyC in catalyzing the last oxidative phenol coupling reaction during glycopeptide antibiotic biosynthesis. Presently, the substrate and exact timing of the OxyC reaction are unknown. The substrate might be the bicyclic heptapeptide or a thioester derivative bound to a protein carrier domain. OxyC from the vancomycin producer Amycolatopsis orientalis was produced in Escherichia coli and crystallized, and its structure was determined to 1.9 A resolution. OxyC gave UV-visible spectra characteristic of a P450-like hemoprotein in the low spin ferric state. After reduction to the ferrous state by dithionite the CO-ligated form gave a 450-nm peak in a UV-difference spectrum. The addition of vancomycin aglycone to OxyC produced type I changes to the UV spectrum. OxyC exhibits the typical P450-fold, with the Cys ligand loop containing the signature sequence FGHGX-HXCLG and Cys-356 being the proximal axial thiolate ligand of the heme iron. The observation of a water molecule bound to the heme iron is consistent with the UV-visible spectra of OxyC indicating a low spin heme. A polyethylene glycol molecule occupying the active site might mimic the bicyclic heptapeptide substrate. Analysis of the structure of Oxy-proteins and other P450s indicates regions that might be involved in binding of the redox partner and possibly the protein carrier domain.  相似文献   

12.
Limited proteolysis of rat liver microsomes was used to probe the topography and structure of cytochrome P450 bound to the endoplasmic reticulum. Three cytochromes P450 from two families were examined. Monoclonal antibodies to cytochrome P450 forms 1A1, 2B1, and 2E1 were used to immunopurify these proteolyzed cytochromes P450 from microsomes from rats treated with 3-methylcholanthrene, phenobarbital, and acetone, respectively. Electrophoretic and immunoblot analysis of tryptic fragments revealed a highly sensitive cleavage site in all three cytochromes P450. N-Terminal sequencing was performed on the fragments after transfer onto poly(vinylidene difluoride) membranes and showed that this preferential cleavage site is at amino acid position 298 of P450 1A1, position 277 of P450 2B1, and position 278 of P450 2E1. Multiple sequence alignment revealed that these positions are at the amino terminal of a highly conserved region of these cytochromes P450. The important functional role implied by primary sequence conservation along with the proteolytic sensitivity at its amino terminal suggests that this region is a protein domain. Comparison with the known structure of the bacterial cytochrome P450cam predicts that this proteolytically sensitive site is within an interhelical turn region connected to the distal helix that partially encompasses the heme-containing active site. Substrate binding to the cleaved cytochromes P450 was examined in order to determine whether the newly added conformational freedom near the cleavage site functionally altered these cytochromes P450. Cleavage of P450 2B1 abolished benzphetamine binding, which indicates that the cleavage site contains an important structural determinant for binding this substrate. However, cleavage did not affect benzo[a]pyrene binding to P450 1A1.  相似文献   

13.
P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3. Omega-imidazolyl fatty acids have previously been found to be weak inhibitors of the enzyme and show some unusual cooperativity with the substrate lauric acid. We set out to improve the properties of these inhibitors by attaching the omega-imidazolyl fatty acid to the nitrogen of an amino acid group, a tactic that we used previously to increase the potency of substrates. The resulting inhibitors were significantly more potent than their parent compounds lacking the amino acid group. A crystal structure of one of the new inhibitors bound to the heme domain of P450BM-3 reveals that the mode of interaction of the amino acid group with the enzyme is different from that previously observed for acyl amino acid substrates. Further, required movements of residues in the active site to accommodate the imidazole group provide an explanation for the low affinity of imidazole itself. Finally, the previously observed cooperativity with lauric acid is explained by a surprisingly open substrate-access channel lined with hydrophobic residues that could potentially accommodate lauric acid in addition to the inhibitor itself.  相似文献   

14.
Human cytochrome P450 (P450) 2A6 catalyzes 7-hydroxylation of coumarin, and the reaction rate is enhanced by cytochrome b5 (b5). 7-Alkoxycoumarins were O-dealkylated and also hydroxylated at the 3-position. Binding of coumarin and 7-hydroxycoumarin to ferric and ferrous P450 2A6 are fast reactions (k(on) approximately 10(6) m(-1) s(-1)), and the k(off) rates range from 5.7 to 36 s(-1) (at 23 degrees C). Reduction of ferric P450 2A6 is rapid (7.5 s(-1)) but only in the presence of coumarin. The reaction of the ferrous P450 2A6 substrate complex with O2 is rapid (k > or = 10(6) m(-1) s(-1)), and the putative Fe2+.O2 complex decayed at a rate of approximately 0.3 s(-1) at 23 degrees C. Some 7-hydroxycoumarin was formed during the oxidation of the ferrous enzyme under these conditions, and the yield was enhanced by b5. Kinetic analyses showed that approximately 1/3 of the reduced b5 was rapidly oxidized in the presence of the Fe2+.O2 complex, implying some electron transfer. High intrinsic and competitive and non-competitive intermolecular kinetic deuterium isotope effects (values 6-10) were measured for O-dealkylation of 7-alkoxycoumarins, indicating the effect of C-H bond strength on rates of product formation. These results support a scheme with many rapid reaction steps, including electron transfers, substrate binding and release at multiple stages, and rapid product release even though the substrate is tightly bound in a small active site. The inherent difficulty of chemistry of substrate oxidation and the lack of proclivity toward a linear pathway leading to product formation explain the inefficiency of the enzyme relative to highly efficient bacterial P450s.  相似文献   

15.
Members of the cytochrome P450 (cyt P450) superfamily of enzymes oxidize a wide array of endogenous and xenobiotic substances to prepare them for excretion. Most of the drugs in use today are metabolized in part by a small set of human cyt P450 isozymes. Consequently, cyt P450s have for a long time received a lot of attention in biochemical and pharmacological research. Cytochrome P450 receives electrons from cytochrome P450 reductase and in selected cases from cytochrome b5 (cyt b5). Numerous structural studies of cyt P450s, cyt b5, and their reductases have given considerable insight into fundamental structure-function relationships. However, structural studies so far have had to rely on truncated variants of the enzymes to make conventional X-ray crystallographic and solution-state NMR techniques applicable. In spite of significant efforts it has not yet been possible to crystallize any of these proteins in their full-length membrane bound forms. The truncated parts of the enzymes are assumed to be alpha-helical membrane anchors that are essential for some key properties of cyt P450s. In the present contribution we set out with a basic overview on the current status of functional and structural studies. Our main aim is to demonstrate how advanced modern solid-state NMR spectroscopic techniques will be able to make substantial progress in cyt P450 research. Solid-state NMR spectroscopy has sufficiently matured over the last decade to be fully applicable to any membrane protein system. Recent years have seen a remarkable increase in studies on membrane protein structure using a host of solid-state NMR techniques. Solid-state NMR is the only technique available today for structural studies on full-length cyt P450 and full-length cyt b5. We aim to give a detailed account of modern techniques as applicable to cyt P450 and cyt b5, to show what has already been possible and what seems to be viable in the very near future.  相似文献   

16.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

17.
The structure of the anti-inflammatory drug diclofenac bound in the active site of rabbit microsomal cytochrome P450 2C5/3LVdH was determined by X-ray crystallography to 2.1 A resolution. P450 2C5/3LVdH and the related enzyme 2C5dH catalyze the 4'-hydroxylation of diclofenac with apparent K(m) values of 80 and 57 microM and k(cat) values of 13 and 16 min(-1), respectively. Spectrally determined binding constants are similar to the K(m) values. The structure indicates that the pi-electron system of the dichlorophenyl moiety faces the heme Fe with the 3'- and 4'-carbons located 4.4 and 4.7 A, respectively, from the Fe. The carboxyl moiety of the substrate is hydrogen bonded to a cluster of waters that are also hydrogen bonded to the side chains of N204, K241, S289, and D290 as well as the backbone of the protein. The proximity of the diclofenac carboxylate to the side chain of D290 together with an increased binding affinity at lower pH suggests that diclofenac is protonated when bound to the enzyme. The structure exhibits conformational changes indicative of an adaptive fit to the substrate reflecting both the hydration and size of the substrate. These results indicate how structurally diverse substrates are recognized by drug-metabolizing P450 enzymes.  相似文献   

18.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

19.
Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to d-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and d-camphor are C(10) monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 A resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe(2)S(2) redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.  相似文献   

20.
Prasad S  Mitra S 《Biochemistry》2002,41(49):14499-14508
The role of protein structural flexibility and substrate dynamics in catalysis by cytochrome P450 enzymes is an area of current interest. We have addressed these in cytochrome P450(cam) (P450(cam)) and its Y96A mutant with camphor and its related compounds using fluorescence spectroscopy. Previously [Prasad et al. (2000) FEBS Lett. 477, 157-160], we provided experimental support to dynamic fluctuations in P450(cam), and substrate access into the active site region via the channel next to the flexible F-G helix-loop-helix segment. In the investigation described here, we show that the dynamic fluctuations in the enzyme are substrate dependent as reflected by tryptophan fluorescence quenching experiments. The orientation of tryptophan relative to heme (kappa(2)) for W42 obtained from time-resolved tryptophan fluorescence measurements show variation with type of substrate bound to P450(cam) suggesting regions distant from heme-binding site are affected by physicochemical and steric characteristics/protein-substrate interactions of P450(cam) active site. We monitored substrate dynamics in the active site region of P450(cam) by time-resolved substrate anisotropy measurements. The anisotropy decay of substrates bound to P450(cam) indicate that mobility of substrates is modulated by physicochemical and steric characteristics/protein-substrate interactions of local active site structure, and provides an understanding of factors controlling observed hydroxylated products for substrate bound P450(cam) complexes. The present study shows that P450(cam) local and peripheral structural flexibility and heterogeneity along with substrate mobility play an important role in regulating substrate binding orientation during catalysis and accommodating diverse range of substrates within P450(cam) heme pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号