首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Optimal conditions for studying the ultrastructure of chromatin fibers of histone-containing spermatozoa in thin sections have been determined. Better results for preservation in sperm of the sea cucumber Holothuria tubulosa, have been found than in different frog species studied. The fine structure of chromatin fibers after different treatments was studied by computer methods. A clear superbead structure was found under all conditions which preserve the chromatin fibres. These have a diameter of 30 nm, with superbeads about 33 nm long. In the best preserved cases an additional periodicity of 11 nm along the fibres was found. There is no clear relationship of this periodicity with an eventual solenoidal structure of the chromatin fibers.  相似文献   

2.
Light and transmission electron microscopy of the spermatozoa and spermatogenesis of 16 species (in three genera, Patella, Helcion, Cellana) of patellid limpet have shown that head lengths of the sperm range from 3 to 13 μm, and each species has a sperm with a unique morphology, indicating that the spermatozoa can be used as a taxonomic character. Although spermatozoon structure is species specific, five types can be recognized, based on the size, shape, and structure of the nucleus and acrosome. The occurrence of five morphological types of sperm, one of which (Cellana capensis) is particularly different from other patellids, suggests that the taxonomy of the family Patellidae be re-examined. The morphological changes that occur during spermatogenesis are very similar in all species, although two patterns of chromatin condensation are found. Those species with sperm that have short squat nuclei (length:breadth < 3.5:1) have a granular pattern of condensation. Species with sperm that have more elongate nuclei (length:breadth > 5:1) have an initial granular phase followed by the formation of chromatin fibrils. These fibrils become organized along the long axis of the elongating nucleus. The absence of a manchette suggests that nuclear elongation is brought about from within the nucleus.  相似文献   

3.
K. Kurtz  J. Ausi  M. Chiva 《Tissue & cell》2009,41(5):334-344
An interesting characteristic of decapod crustacean sperm nuclei is that they do not contain highly packaged chromatin. In the present study we re-examine the presence of DNA-interacting proteins in sperm nuclei of the brachyuran Maja brachydactyla. Although previous reports have indicated that, unlike the majority of sperm cells, DNA of decapod sperm is not organized by basic proteins, in this work we show that: (1) histones are present in sperm of M. brachydactyla; (2) histones are associated with sperm DNA; (3) histone H3 appears in lower proportions than the other core histones, while histone H2B appears in higher proportions; and (4) histone H3 in sperm nuclei is acetylated. This work complements a previous study of sperm histones of Cancer pagurus and supports the suggestion that decapod crustacean sperm chromatin deserves further attention.  相似文献   

4.
We describe here a computational morphology-based approach to the investigation of possible causes of chromatin alterations in sperm. A comprehensive set of state-of-the-art and geometric measures are computationally extracted from toluidine blue stained images and analyzed to infer the possible processes leading to normal and abnormal chromatin formation while seeking a possible taxonomy of chromatin alterations and their influence on sperm head morphology. Using this methodology, we have identified higher chromatin fragility at some specific points of the sperm head. Despite the lack of correlation between morphologies of sperm head and chromatin structure, four main morphological types of chromatin alterations in bull spermatozoa have been identified and their possible causes discussed.  相似文献   

5.
The structure of rabbit, fowl, and Xenopus laevis sperm chromatin was explored by study of the reaction of their decondensed nuclei with DNase 1 and micrococcal nuclease. Those of rabbit and fowl were readily digested by DNase 1, and the polyacrylamide gel electrophoresis profiles of DNAs extracted from the digests were similar, each being polydisperse with a single discrete band of DNA smaller than 72 base pairs. There were differences, however, between the sperm chromatins in the course of their digestion by micrococcal nuclease. A limit digest at about 45% acid solubility was obtained with Xenopus sperm chromatin, while 90% of fowl sperm DNA was rendered acidsoluble by the enzyme. The gel profiles of the limit digests were polydisperse, but only those of rabbit and fowl sperm chromatins possessed a discrete band of DNA smaller than 72 base pairs. Bleomycin did not react with DNA of rabbit, fowl, or Xenopus spermatozoa. Since bleomycin reacts with somatic cell chromatin, and the course of DNase 1 or micrococcal nuclease digestion of sperm chromatin was different from that found for somatic cell chromatin, it would appear that sperm chromatin does not have the repeating nucleosometype structure of somatic cell chromatin. The nuclease digestion studies further suggest that the organization of rabbit and fowl sperm chromatins is similar, and is different from that of Xenopus sperm chromatin. The dependence of the structure of sperm chromatin on the composition of its basic proteins, and a possible structure for a protamine-type sperm chromatin, are discussed.  相似文献   

6.
We describe here a computational morphology-based approach to the investigation of possible causes of chromatin alterations in sperm. A comprehensive set of state-of-the-art and geometric measures are computationally extracted from toluidine blue stained images and analyzed to infer the possible processes leading to normal and abnormal chromatin formation while seeking a possible taxonomy of chromatin alterations and their influence on sperm head morphology. Using this methodology, we have identified higher chromatin fragility at some specific points of the sperm head. Despite the lack of correlation between morphologies of sperm head and chromatin structure, four main morphological types of chromatin alterations in bull spermatozoa have been identified and their possible causes discussed.  相似文献   

7.
During the process of chromatin cndensation in the spermiogenesis of the neogastropod mollusc Murex brandaris, the nuclear protein complement undergoes a complex series of changes. These changes lead to the appearance of three small protamines in the ripe sperm nuclei. We have characterized this system electrophoretically and at the compositions with antibodies elicited against a specific spermatozoan protamine. Our results indicate that the complex pattern of chromatin condensation during spermiogenesis in this species (M. brandaris) may be modulated by a series of post-translational (and intranuclear) modifications of DNA-interacting proteins, such as precursors to the sperm protamines. The amino acid composition of each sperm protamine is remarkably simple (lys + arg + gly ≥96 mol%). This system of spermiogenic/spermatozoal proteins in the neogastropod M. brandaris clearly differs from that in patellogastropods and archaeogastropods, and it may be helpful in understanding evolutionary changes in the chromatin condensation pattern during the spermiogenesis of gastropod molluscs. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Summary The characteristics of spermatogenesis in a type of pulmonary parasite, Paragonimus miyazakii have been observed using the electron microscope. Groups of several spermatocytes revealed mutual cytoplasmic connection. That degree of this fusion increased as spermatogenesis progressed, and finally developed into a so-called cytophore. Then, this cytophore remained joined with a spermatid by a short stalk until the spermatid changed into a sperm. The nucleus of the spermatid became elongated with a string-like arrangement of the chromatin, which, in turn, showed increased electron density. At the pole of the spermatid, linearly arranged microtubules developed just below the plasma membrane. Close to an elongated portion at the pole, two separate flagella start growing and later fuse with the sperm itself. In the sperm tail a couple of tail filament complexes, longitudinally oriented slender mitochondria, and a tubular structure were present.  相似文献   

9.
Non-histone chromatin proteins (NHP) from sperm and gastrula of the sea urchin Strongylocentrotus droebachiensis have been studied. The results obtained show that the total amount of the NHP in the sperm chromatin is one-sixth of that in the gastrula chromatin. Certain notable differences in the electrophoretic banding patterns of the NHP have also been observed. SDS polyacrylamide gel electrophoresis of NHP revealed one major specific component of molecular weight 17000 in the sperm chromatin and three major specific fractions with molecular weights 14000; 15000 and 35000 in gastrula chromatin. Furthermore, the gastrula chromatin NHP contains about ten minor specific fractions in the molecular weight range 25 000 to 65 000. The relevance of these results to the control of gene activity is discussed.  相似文献   

10.
The sperm genome is tightly packed into a minimal volume of sperm nuclei. Sperm chromatin is highly condensed by protamines (PRMs) after histone–protamine replacement, and the majority of the sperm genome forms a nucleo-protamine structure, namely, the PRM–DNA complex. The outline of sperm chromatin structure was proposed 30 years ago, and the details have been explored by approaches from several independent research fields including male reproduction and infertility, DNA biopolymer, and most recently, genome-wide sequence-based approaches. In this review, the history of research on sperm chromatin structure is briefly described, and the progress of recent related studies is summarized to obtain a more integrated view for the sperm chromatin, an extremely compacted “black box.”  相似文献   

11.
The perinuclear theca (PT) is a cytoskeletal structure that surrounds the mammal sperm nucleus which must be disrupted once the sperm has penetrated the oocyte to permit normal chromatin decondensation and formation of male pronucleus. F-actin is a thermo sensitive protein found in the equatorial segment which is involved in the stability of PT. It has been reported that cryopreservation induces alterations in nuclear decondensation of spermatozoa, which have been interpreted as an over condensation. The aims of the present study were identified the presence of changes in sperm sPT integrity of frozen–thawed boar spermatozoa and its effect in sperm nuclei decondensation; and whether changes in the actin cytoskeleton are involved using an in vitro model to test probably differences in a chemical decondensation (DTT/heparin) between fresh (FS) and frozen–thawed (TS) spermatozoa. Results showed an increase on sPT damage in TS (P < 0.001), and significant changes in sperm chromatin nuclear decondensation (P < 0.05). In same way differences on the swelling degree was found assessed by measures in equatorial region of head sperm (P < 0.05). Evaluation with rodamine-labeled actin (0.2 μM) showed two different patterns with differences in percentages before and after cryopreservation (P < 0.001). F-actin stabilization constrained the equatorial segment of FS while this was not observed in TS. The data showed that the presence of early changes in sPT integrity and changes in the F-actin localization on TS may suggest the participation in F-actin in decondensation process and probably that the disruption of actin-PT interaction during freezing–thawing process could have far-reaching consequences for the subsequent fertility of spermatozoa.  相似文献   

12.
13.
The Japanese mantis shrimp Oratosquilla oratoria (Stomatopoda; Crustacea) is one of the most economically important aquatic species of Pacific shrimp and it is distributed from Japan to the coast of China, the Philippines, the Malay Peninsula, and the Hawaiian Islands. Early studies described certain characteristics of spermatogenesis and the sperm ultrastructure in Stomatopoda, but the composition of sperm basic nuclear proteins (SBNPs) remains completely unknown. We studied the sperm ultrastructure of O. oratoria using transmission electron microscopy and the histone composition using immunofluorescence and immunoelectron microscopy. We found that the spherical nucleus is adjacent to the electron translucent external coat, which occurs in early spermatids. The acrosomal structure begins to form at the junction of the nucleus and the external coat. At the mid-spermatid stage, part of the chromatin appears to be more electron-dense than the external coat side. The aflagellate sperm of O. oratoria, are rounded or slightly ovoid in shape and have a consistent granular nucleus, an acrosome structure of pushpin shape and a spherical vesicular body in which faintly granular material is scattered. The acrosome consists of an acrosomal vesicle, perforatorium, and subacrosomal material. The sperm contains histones H2A, H2B, H3, H4, H3.3, H2AX, and H2AZ as well as some histone modifications, that is, H3K9me3, H3K4me2, H3S10ph, H4Kac, and H2A + H4S1ph. Histones are localized not only in the nucleus of the sperm but also in other structures outside the nucleus. The results may provide new perspectives for systematic studies of crustaceans and their sperm chromatin components. These findings extend the study of the sperm structure of Stomatopoda and provide basic data to elucidate the epigenetic mechanism of fertilization.  相似文献   

14.
15.
Protamine-like proteins constitute a group of sperm nuclear basic proteins that have been shown to be related to somatic linker histones (histone H1 family). Like protamines, they usually replace the chromatin somatic histone complement during spermiogenesis; hence their name. Several of these proteins have been characterized to date in invertebrate organisms, but information about their occurrence and characterization in vertebrates is still lacking. In this sense, the genus Mullus is unique, as it is the only known vertebrate that has its sperm chromatin organized by virtually only protamine-like proteins. We show that the sperm chromatin of this organism is organized by two type I protamine-like proteins (PL-I), and we characterize the major protamine-like component of the fish Mullus surmuletus (striped red mullet). The native chromatin structure resulting from the association of these proteins with DNA was studied by micrococcal nuclease digestion as well as electron microscopy and X-ray diffraction. It is shown that the PL-I proteins organize chromatin in parallel DNA bundles of different thickness in a quite distinct arrangement that is reminiscent of the chromatin organization of those organisms that contain protamines (but not histones) in their sperm.  相似文献   

16.
Sea urchin and sea star oocyte extracts contain proteolytic activities that are active against sperm basic nuclear proteins (SNBP). This SNBP degradation has been related to the decondensation of sperm chromatin as a possible model to male pronuclei formation. We have studied the presence of this proteolytic activity in Holothuria tubulosa (sea cucumber) and its possible relationship with sperm nuclei decondensation. The mature oocyte extracts from H. tubulosa contain a proteolytic activity to SNBP located in the macromolecular fraction of the egg‐jelly layer. SNBP degradation occurred both on sperm nuclei and on purified SNBP, histones being more easily degraded than protein Øo (sperm‐specific protein). SNBP degradation was found to be dependent on concentration, incubation time, presence of Ca2+, pH, and this activity could be a serine‐proteinase. Thermal denaturalization of the oocyte extracts (80°C, 10–15 min) inactivates its proteolytic activity on SNBP but does not affect sperm nuclei decondensation. These results would suggest that sperm nuclei decondensation occurs by a mechanism different from SNBP degradation. Thus, the sperm nuclei decondensation occurs by a thermostable factor(s) and the removal of linker SNBP (H1 and protein Øo) will be a first condition in the process of sperm chromatin remodeling.  相似文献   

17.
Evidence from several cell types indicates that chromatin can induce microtubule assembly in its vicinity. To determine whether this activity is present in sperm chromatin, whose biochemical composition differs from somatic chromatin, mouse oocytes that were undergoing meiotic maturation were inseminated. Maturing oocytes are not activated by sperm penetration but remain arrested at metaphase. The sperm chromatin within the oocyte cytoplasm initially became dispersed and later, under the influence of oocyte cytoplasmic factors, recondensed into a small mass of individual chromosomes. When inseminated oocytes were processed for immunofluorescence using an anti--tubulin antibody, microtubules were never associated with dispersed sperm chromatin, although the chromosomes of the oocyte were arranged on a spindle. In contrast, microtubules were associated with the majority of sperm nuclei that had become recondensed, and were frequently arranged into a spindle-like structure. When oocytes had been penetrated by more than three sperm, most sperm nuclei remained at the dispersed chromatin stage and these were never associated with microtubules. Exposure of polyspermic oocytes to taxol, which promotes microtubule assembly, failed to induce microtubule assembly around dispersed sperm chromatin. Exposure of monospermic oocytes to nocodazole, which inhibits tubulin polymerization, prevented resolution of the recondensed sperm chromatin into individual chromosomes. These results suggest that sperm chromatin lacks an activity that can induce local microtubule assembly, and that it acquires this activity once modified by oocyte cytoplasmic factors.  相似文献   

18.
【背景】羟基萘还原酶(hydroxynaphthalene reductase,HNR)是1,8-间苯二酚(1,8-dihydroxynaphthalene,DHN)黑色素合成途径中起关键作用的酶,研究表明HNR不仅参与真菌黑色素合成,而且对其生长发育及致病性也具有一定的调控作用,但HNR对真菌病原物侵染结构分化的调控研究鲜见报道。【目的】在对梨果黑斑病菌互隔交链孢(Alternaria alternata) HNR的基因进行克隆与生物信息学分析的基础上,通过药理学方法初步探讨HNR对A.alternata生长及侵染结构分化的调控作用,为进一步揭示HNR在A.alternata侵染结构分化形成过程中的分子机制提供理论依据。【方法】对梨果黑斑病菌A.alternata的2个hnr基因进行了克隆;通过gene structure display server、open reading frame (ORF) Finder及conserved domain search等数据库及相关软件,对hnr基因及蛋白进行生物信息学分析,并利用HNR特异性抑制剂三环唑处理分析其对A.alternata生长发育、黑色素合成和侵染结构形成的影响,同时采用实时荧光定量PCR (RT-qPCR)技术分析了hnr基因在A.alternata不同侵染结构分化时期的表达特性。【结果】从梨果黑斑病菌A.alternata克隆得到2个羟基萘还原酶基因hnr的编码区全长,分别命名为Aa4hnrAa3hnr,其中Aa4hnr基因全长为1 266 bp,编码了268个氨基酸,无内含子,有9个ORF;Aa3hnr基因全长为1 356 bp,编码了267个氨基酸,含有2个大小分别为51 bp和49 bp的内含子,有17个ORF;进化分析表明,Aa4hnrAa3hnrOphiobolus disseminansAlternaria arborescens分别具有较高的一致性,同时Aa4hnrAa3hnr编码的蛋白均含有NAD (P)结合域,属于短链脱氢酶/还原酶(short-chain dehydrogenase/reductase,SDR)家族。药理学结果表明,三环唑处理显著降低了A.alternata DHN黑色素的生物合成,抑制了疏水性诱导的A.alternata侵染结构的形成;进一步分析Aa4hnrAa3hnr在疏水表面诱导的A.alternata孢子萌发阶段(2 h)、附着胞形成阶段(6 h)、侵染菌丝形成阶段(8 h)的基因表达量,Aa4hnr的基因表达量在A.alternata侵染结构分化的各个时期均发生下调,Aa3hnr在附着胞形成阶段(6 h)表达量下调,然而在侵染菌丝形成阶段(8 h)显著上调表达。【结论】Aa4hnrAa3hnr对梨果黑斑病菌侵染具有一定的调控作用。  相似文献   

19.
The fine structure of the spermatozoon of Tetranychus urticae is described during passage from the testis to the site of insemination in the ovary. The male sex cells differentiate from a cytoplasmic mass which is characterised by nuclei bearing tubule-like structures. Infoldings appear in peripheral membrane of the germ cells at the beginning of spermiogenesis, chromatin condenses, and the nuclear membrane is reduced. The spermatozoon is surrounded by a double membrane: the inner one is the sperm membrane and the outer one is of somatic origin. The sperm reach the glanular region of the testis where they are transformed into amoeboid cell and are next collected in the seminal vesicle.

After copulation, the sperm can be observed in the lumen of the receptaculum seminis of the female from which they soon enter the epithelial cells. Still surrounded by a double membrane, the sperm, which are now packed in clusters, develop microtubules immediately beneath the inner membrane and enlarge by decondensation of chromatin and by infiltration of cytoplasmic material. Insemination takes place in the vitellogenic region of the ovary just before the eggs close their pores; the sperm have now reached ten times their original size.  相似文献   

20.
Embryonic mortality in mammals is typically thought to result from 'female factor' infertility. There is growing evidence, however, that the status of sperm chromatin (DNA) at the time of fertilisation can also influence embryonic survival. During the final stages of spermatogenesis (spermiogenesis) a number of unique biochemical, morphological and physiological processes take place that are associated with marked changes in the structure of sperm chromatin. In early stages of spermatogenesis, sperm DNA is associated with histone nucleoproteins and structured into classical nucleosome core particles similar to other somatic cells. As spermiogenesis proceeds, the histone nucleoproteins are replaced by transition proteins which are subsequently replaced by protamines. At the completion of spermiogenesis the chromatin of mature sperm has a toroidal structure that is tightly compacted and resistant to denaturation. The compaction is necessary to protect sperm chromatin during transit through the epididymis and female reproductive tract. Disruption to chromatin remodelling during spermiogenesis results in chromatin that is susceptible to denaturation. Inappropriate chromatin structure has been shown in a number of mammalian species to be related to male infertility, and specifically the failure of embryonic development. A range of techniques are available to assess chromatin status in sperm but arguably the most informative is the sperm chromatin structure assay (SCSA). The SCSA is a flow cytometric assay that uses the metachromatic properties of acridine orange to measure the susceptibility of sperm chromatin to acid-induced denaturation. A relationship has been demonstrated, primarily in men, between the SCSA outcome and the probability of continued embryonic development and the establishment of pregnancy after fertilisation. The contribution of sperm chromatin instability to reproductive wastage in both natural mating and assisted reproduction warrants further investigation as it may prove valuable as a means of decreasing the incidence of embryonic mortality. In this regard, it is possible that 'male factor' infertility may emerge as an even more important component in embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号