首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effects of VirTis shearing on chromatin subunit structure were investigated by enzymatic digestion, thermal denaturation, and electron microscopy. While initial rates of micrococcal nuclease and DNase I digestion were greater postshearing, limit digest values were similar to those for unsheared chromatin. Fractionated chromatin digestion kinetics varied with sedimentation. Digestion of all chromatins produced monomer and dimer DNA fragment lengths, but only unsheared chromatins exhibited higher order nucleosome oligomer lengths. Mononucleosomes and core particles were resolved in digests of sheared and gradient fractions analyzed by electrophoresis. All chromatins exposed to DNase I showed discrete 10-base pair nicking patterns. The presence of nucleosomes was confirmed by electron microscopy. Electron microscopy and histone content of gradient fractions showed that nucleosome density along the chromatin axis increased in rapidly sedimenting fractions. Thermal denaturation detected no appreciable generation of protein-free DNA fragments as a result of shearing. The results indicate that VirTis blending conserves subunit structure with loss of less than 12–15% of nucleosome structure.  相似文献   

2.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

3.
Chromatin from two human colon adenocarcinoma cell lines (HT-29 and LoVo) showed similar digestion kinetics when sensitivities to DNase I and micrococcal nuclease were examined. Chromatin conformations were probed by examining the binding of ethidium bromide. A Scatchard plot revealed that both chromatins bound the same amount of ethidium bromide per mole of DNA, but the DNA from LoVo cells was more accessible to the intercalator. The results indicate that differences in chromatin conformation are not necessarily accompanied by different nuclease sensitivities.  相似文献   

4.
Adenoassociated virus has a unique chromatin structure   总被引:3,自引:0,他引:3  
The organization of intranuclear adenoassociated virus DNA (AAV) was examined following micrococcal nuclease digestion of nuclei prepared from cells coinfected with AAV type 2 (AAV-2) and adenovirus type 2 (Ad2). Blot-hybridization analysis of the DNA with AAV-2, Ad2, and cellular DNA probes revealed that AAV-2 chromatin has a unique structure, which upon nuclease digestion gives rise to a smear of oligomeric DNA fragments from 600-2200 base pairs in length with only a very faint band about 160 base pairs and no discrete multimers. This structure was similar to, but distinguishable from, Ad2 chromatin and completely unrelated to eukaryotic chromatin.  相似文献   

5.
DNase I has been widely used for the footprinting of DNA-protein interactions including analyses of nucleosome core particle (NCP) structure. Our understanding of the relationship between the footprint and the structure of the nucleosome complex comes mainly from digestion studies of NCPs, since they have a well-defined quasi-symmetrical structure and have been widely investigated. However, several recent results suggest that the established consensus of opinion regarding the mode of digestion of NCPs by DNase I may be based on erroneous interpretation of results concerning the relationship between the NCP ends and the dyad axis. Here, we have used reconstituted NCPs with defined ends, bulk NCPs prepared with micrococcal nuclease and molecular modelling to reassess the mode of DNase I digestion. Our results indicate that DNase I cuts the two strands of the nucleosomal DNA independently with an average stagger of 4 nt with the 3'-ends protruding. The previously accepted value of 2 nt stagger is explained by the finding that micrococcal nuclease produces NCPs not with flush ends, but with approximately 1 nt 5'-recessed ends. Furthermore we explain why the DNA stagger is an even and not an odd number of nucleotides. These results are important for studies using DNase I to probe nucleosome structure in complex with other proteins or any DNA-protein complex containing B-form DNA. We also determine the origin of the 10n +/- 5 nt periodicity found in the internucleosomal ladder of DNase I digests of chromatin from various species. The explanation of the 10n +/- 5 nt ladder may have implications for the structure of the 30 nm fibre.  相似文献   

6.
N. Ronald Morris 《Cell》1976,8(3):357-363
The structure of chromatin from Aspergillus nidulans was studied using micrococcal nuclease and DNAase I. Limited digestion with micrococcal nuclease revealed a nucleosomal repeat of 154 base pairs for Aspergillus and 198 base pairs for rat liver. With more extensive digestion, both types of chromatin gave a similar quasi-limit product with a prominent fragment at 140 base pairs. The similarity of the two limit digests suggests that the structure of the 140 base pair nucleosome core is conserved. This implies that the difference in nucleosome repeat lengths between Aspergillus and rat liver is caused by a difference in the length of the DNA between two nucleosome cores. Digestion of Aspergillus chromatin with DNAase I produced a pattern of single-stranded fragments at intervals of 10 bases which was similar to that produced from rat liver chromatin.  相似文献   

7.
Summary The action of micrococcal nuclease, DNase I and DNase II on mouse TLT hepatoma chromatin revealing the periodicity of its structure as visualized by denaturing and nondenaturing gel electrophoresis, was consistent with the action of these enzymes on other chromatins. Micrococcal nuclease showed a complex subnucleosome fragment pattern based on multiples of 10 base pairs with a prominant couplet at 140/160 base pairs and the absence of the 80 base pair fragment. This couplet of the core and minimal nucleosome fragments was conspicuously present in the mononucleosomes found in the 11S fractions of a glycerol gradient centrifugation. DNase I and II produced a fairly even distribution of a 10 base pair increasing series of fragments to about 180 base pairs, a pattern also repeated in the DNA of nucleosome glycerol-gradient fractions. In limited digestions by these nucleases multinucleosomic DNA fragments are pronounced. These fragment lengths are multiples of an estimated average repeat length of nucleosome DNA of 180 base pairs. The action of the endogenous Mg/Ca-stimulated endonuclease produced only limited cuts in the hepatoma chromatin resulting primarily in multi-nucleosommc DNA fragment lengths and only upon lengthy digestion limited subnucleosomic, 10-base-pair multiple fragments are produced. The putative euchromatin-enriched fractions (50–75S) of the glycerol gradient centrifugation of autodigested chromatin, similarly, contained primarily the multinucleosomic DNA fragment lengths. These results are consistent with our previous electron microscopic demonstration that autodigested chromatin as well as the putative euchromatin-enriched fractions were composed of multinucleosomic chromatin segments containing a full complement of histones.  相似文献   

8.
银鲫属行雌核发育的遗传系统,其精子入卵后不能形成雄性原核。如同其它种类的精子一样,在精子发生过程中其染色质形成高度浓缩的具有一定结构的DNA和碱性蛋白的复合物。为了研究分析银鲫成熟精子的碱性蛋白、染色质的结构及其与体细胞染色质的异同,我们用聚丙烯酰胺凝胶电泳分析了银鲫精子碱性蛋白的组分,并结合核酸酶解的结果,以电镜铺片和超薄切片法探讨了银鲫染色质的结构。聚丙烯酰胺凝胶电泳分析表明,银鲫精子的碱??性蛋白为含H_1、H_2a、H_2b、H_3及H_4五个主要组分的组蛋白,且与体细胞核组蛋白无明显差异。电镜铺片法观察精子染色质,可见染色质丝的近100A粗细的串珠状结构。小球菌核酸酶水解精子染色质,DNA的琼脂糖电泳呈“阶梯型”电泳条带,证实了银鲫成熟精子保存了核小体基本单元,在低渗处理后的精子超薄切片中,可以见到直径为300A左右的染色质纤维,这个结果提示了精子染色质与体细胞染色体有类似的二级结构。根据以上所得到的结果推测,行雌核发育的银鲫,其精子在入卵后不能原核化,与精子染色质的基本结构及碱性蛋白组分无明显直接关系。  相似文献   

9.
The chromatin of the lepidopteran Ephestia kuehniella was digested by micrococcal nuclease, DNase I and S1-nuclease combined with DNase I pretreatment. The resulting DNA fragments were analyzed by gel electrophoresis and compared with the DNA fragments of rat liver nuclei obtained by the same process. Extensive homology was revealed between insect and mammalian chromatin structure. The combined DNase I- S1-nuclease digestion yields double-stranded DNA fragments of lengths from 30 to 110 base-pairs. These DNA fragments are not obtained from nuclei predigested extensively with micrococcal nuclease. The results are discussed with respect to the internal structure of the chromatin subunit.  相似文献   

10.
Chromatin assembly in isolated mammalian nuclei.   总被引:4,自引:1,他引:3       下载免费PDF全文
Cellular DNA replication was stimulated in confluent monolayers of CV-1 monkey kidney cells following infection with SV40. Nuclei were isolated from CV-1 cells labeled with [3H]thymidine and then incubated in the presence of [alpha-32P]deoxyribonucleoside triphosphates under conditions that support DNA replication. To determine whether or not the cellular DNA synthesized in vitro was assembled into nucleosomes the DNA was digested in situ with either micrococcal nuclease or pancreatic DNase I, and the products were examined by electrophoretic and sedimentation analysis. The distribution of DNA fragment lengths on agarose gels following micrococcal nuclease digestion was more heterogeneous for newly replicated than for the bulk of the DNA. Nonetheless, the state of cellular DNA synthesized in vitro (32P-labeled) was found to be identical with that of the DNA in the bulk of the chromatin (3H-labeled) by the following criteria: (i) The extent of protection against digestion by micrococcal nuclease of DNase I. (ii) The size of the nucleosomes (180 base pairs) and core particles (145 base pairs). (iii) The number and sizes of DNA fragments produced by micrococcal nuclease in a limit digest. (iv) The sedimentation behavior on neutral sucrose gradients of nucleoprotein particles released by micrococcal nuclease. (v) The number and sizes of DNA fragments produced by DNase I digestion. These results demonstrate that cellular DNA replicated in isolated nuclei is organized into typical nucleosomes. Consequently, subcellular systems can be used to study the relationship between DNA replication and the assembly of chromatin under physiological conditions.  相似文献   

11.
12.
Jean O. Thomas  R.J. Thompson 《Cell》1977,10(4):633-640
We have used micrococcal nuclease as a probe of the repeating structure of chromatin in four nuclear populations from three tissues of the rabbit. Neuronal nuclei isolated from the cerebral cortex contain about 160 base pairs of DNA in the chromatin repeat unit, as compared with about 200 base pairs for nonastrocytic glial cell nuclei from the same tissue, neuronal nuclei from the cerebellum and liver nuclei. All four types of nuclei show the same features of nucleosomal organization as other eucaryotic nuclei so far studied: nucleosomes liberated by digestion with micrococcal nuclease give a “core particle” containing 140 base pairs as a metastable intermediate on further digestion and a series of single-strand DNA fragments which are mutiples of 10 bases after digestion with DNAase I. Nuclei from cerebral cortex neurons, which have a short repeat, are distinct from the others in being larger, in having a higher proportion of euchromatin (dispersed chromatin) as judged by microscopy and in being more active in RNA synthesis in vitro.  相似文献   

13.
Chromatin in isolated rat liver nuclei was compared with chromatin in (i) nuclei depleted of H1 by acid extraction; (ii) nuclei treated at pH 3.2 (without removal of H1), and (iii) depleted nuclei following reassociation of H1. Electron microscopy and digestion by DNase I, micrococcal nuclease and endogenous Ca/Mg endonuclease were used for this comparative examination. Electron micrographs of H1-depleted nuclei showed a dispersed and finely granular appearance. The rate of DNA cleavage by micrococcal nuclease or DNase I was increased several-fold after H1 removal. Discretely sized intermediate particles produced by Ca/Mg endonuclease in native nuclei were not observed in digests of depleted nuclei. Digestion by micrococcal nuclease to chromatin particles soluble in 60 mM NaCl buffer appeared not to be affected in depleted nuclei. When nuclei were treated at pH 3.2, neither the appearance of chromatin in electron micrographs nor the mode or rate of nuclease digestion changed appreciably. Following reassociation of H1 to depleted nuclei, electron micrographs demonstrated the reformation of compacted chromatin, but the lower rate of DNA cleavage in native nuclei was not restored. Further, H1 reassociation produced a significant decrease in the solubility of nuclear chromatin cleaved by micrococcal nuclease or Ca/Mg endonuclease. In order to evaluate critically the reconstitution of native chromatin from H1-depleted chromatin we propose the use of digestion by a variety of nucleases in addition to an electron microscopic examination.  相似文献   

14.
Chromatinismadeupofregularlyspacedsubunits,nucleosomes.Ineukaryoticcells,chromatinisassembledimmediatedlyafterDNAreplication,butincellfreesystems,itcanbeassembledindependentofDNAreplicationwhenexogenousDNAwasaddedtoeggoroocyteextractsofXenopuslaevis.The…  相似文献   

15.
Comparison has been made between sea urchin and starfish sperm chromatin. The only protein by which chromatins from these sources differ significantly is histone H2B. Sea urchin sperm H2B is known to contain an elongated N-terminal region enriched in Arg. Analysis of the micrococcal nuclease digests of sea urchin and starfish nuclei in one- and two-dimensional electrophoresis has shown that sperm chromatin of both animals consists of repeated units similar in general features to those of rat thymus or liver. However, DNA repeat length in chromatin of sea urchin sperm (237 bp) is higher than that of starfish sperm (224 bp), while the core DNA length does not differ and is the same as in the chromatin of rat liver or thymus. A suggestion has been made that the N-terminal region of histone H2B is associated with the linker DNA and is responsible for the increased length of sea urchin linker DNA.  相似文献   

16.
Amino acid analyses of nuclear basic proteins of an anuran amphibian, Rana catesbeiana, revealed that they are comprised of a full set of core histones and three types of lysine-rich, sperm-specific proteins. On the basis of their amino-acid compositions and partial amino-acid sequences of their trypsin-resistant cores, the sperm-specific proteins could be defined as members of the histone H1 family. Both micrococcal nuclease digestion and electron microscopy indicated that sperm chromatin consists of nucleosomal and fibrillar DNA structures which are irregularly interspersed with each other. When sperm nuclei were incubated with nucleoplasmin, nuclei decondensed to some extent, and the sperm-specific H1s were removed, but not completely. The residual sperm-specific histone H1 variants were also found in reconstituted male pronuclear chromatin, comprising regularly spaced nucleosomes. We conclude that sperm-specific histone H1 variants are essential for chromatin condensation in the sperm nuclei, but that their complete removal is not necessary for the remodeling into somatic chromatin that takes place after fertilization. Mol. Reprod. Dev. 47:181–190, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
A sensitive method for measuring nuclear volumes with a Coulter counter is described. It has been applied to the digestion of chicken erythrocyte nuclei by micrococcal nuclease and DNase I. Early in digestion, micrococcal nuclease induced a 20% increase in the effective spherical volume of the nuclei, followed by a gradual reduction. At the peak of nuclear swelling, about 17% of the chromatin was soluble after lysis and its average chain length was about 18 kilobase pairs (kb). DNase I digestion did not give rise to a corresponding expansion of the nuclei. Several preparation conditions, including the treatment of nuclei with 0.2% Triton X-100, led to a loss of the expansion effect upon subsequent micrococcal nuclease digestion. The results support the domain theory of higher order chromatin structure. In the context of this model, the observed maximum nuclear expansion correlates with an average of one nuclease scission per domain.  相似文献   

18.
19.
The effects of inhibiting histone deacetylation on the maturation of newly replicated chromatin have been examined. HeLa cells were labeled with [3H]thymidine in the presence or absence of sodium butyrate; control experiments demonstrated that butyrate did not significantly inhibit DNA replication for at least 70 min. Like normal nascent chromatin, chromatin labeled for brief periods (0.5-1 min) in the presence of butyrate was more sensitive to digestion with DNase I and micrococcal nuclease than control bulk chromatin. However, chromatin replicated in butyrate did not mature as in normal replication, but instead retained approximately 50% of its heightened sensitivity to DNase I. Incubation of mature chromatin in butyrate for 1 h did not induce DNase I sensitivity: therefore, the presence of sodium butyrate was required during replication to preserve the increased digestibility of nascent chromatin DNA. In contrast, sodium butyrate did not inhibit or retard the maturation of newly replicated chromatin when assayed by micrococcal nuclease digestion, as determined by the following criteria: 1) digestion to acid solubility, 2) rate of conversion to mononucleosomes, 3) repeat length, and 4) presence of non-nucleosomal DNA. Consistent with the properties of chromatin replicated in butyrate, micrococcal nuclease also did not preferentially attack the internucleosomal linkers of chromatin regions acetylated in vivo. The observation of a novel chromatin replication intermediate, which is highly sensitive to DNase I but possesses normal resistance to micrococcal nuclease, suggests that nucleosome assembly and histone deacetylation are not obligatorily coordinated. Thus, while deacetylation is required for chromatin maturation, histone acetylation apparently affects chromatin organization at a level distinct from that of core particle or linker, possibly by altering higher order structure.  相似文献   

20.
The chromatin structure of the ribosomal DNA in Xenopus laevis was studied by micrococcal nuclease digestions of blood, liver and embryonic cell nuclei. We have found that BglI-restricted DNA from micrococcal nuclease-digested blood cell nuclei has an increased electrophoretic mobility compared to the undigested control. Micrococcal nuclease digestion of liver cell nuclei causes a very slight shift in mobility, only in the region of the spacer containing the "Bam Islands". In contrast, the mobility of ribosomal DNA in chromatin of embryonic cells, under identical digestion conditions, remains unaffected by the nuclease activity. Denaturing gels or ligase action on the nuclease-treated DNA abolishes the differences in the electrophoretic mobility. Ionic strength and ethidium bromide influence the relative electrophoretic migration of the two DNA fragment populations, suggesting that secondary structure may play an important role in the observed phenomena. In addition, restriction analysis under native electrophoretic conditions of DNA prepared from blood, liver and embryonic cells shows that blood cell DNA restriction fragments always have a faster mobility than the corresponding fragments of liver and embryo cell DNA. We therefore propose that nicking activity by micrococcal nuclease modifies the electrophoretic mobility of an unusual DNA conformation, present in blood cell, and to a lesser extent, in liver cell ribosomal chromatin. A possible function for these structures is discussed. The differences of the ribosomal chromatin structures in adult and embryonic tissues may reflect the potential of the genes to be expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号