首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemoglobin (Hb) purified from the water flea, Daphnia magna, reared under hypoxia was analyzed by two-dimensional gel electrophoresis. The Hb was shown to be composed of six major subunit chain species (designated as DHbA to DHbF). The NH2-terminal amino acid sequences of DHbA, DHbB, DHbC, and DHbF are different from one another, indicating that at least four Hb genes are present in D. magna. The NH2-terminal amino acid sequences of DHbD and DHbE are the same as those of DHbA and DHbB, respectively. The six Hb chains were also found in the animal reared under normoxia in small amounts and with altered composition; the extent of decrease under normoxia was higher in the amounts of DHbC, DHbD, and DHbF than those of others. These results indicate that the Hb genes are differentially regulated by the ambient oxygen concentration. Four Hb genes constituting a cluster in the order, dhb4, dhb3, dhb1, and dhb2, were found on the chromosome of D. magna. The complete nucleotide sequences of the dhb1, dhb2, and dhb3 genes and their cDNAs showed that the genes have a seven-exon, six-intron structure. The structure consists of an intron separating an exon encoding a secretory signal sequence, two large repeated regions of a three-exon, two-intron structure that encode each a domain containing a heme-binding site, and an intron bridging the two repeated regions. The deduced amino acid sequences of the gene products showed higher than 79% identity to one another and showed unique features conserved in D. magna Hb chains. The analysis also suggested that DHbB (or DHbE), DHbF, and DHbC are encoded by the dhb1, dhb2, and dhb3 genes, respectively.  相似文献   

2.
Hypoxia-induced haemoglobin (Hb) expression is a central regulatory mechanism in Daphnia in response to environmental hypoxia or warm temperatures. Changes in Hb concentration as well as Hb subunit composition, which modulate Hb oxygen affinity, guarantee the oxygen supply of tissues under these environmental conditions. Based on the sequenced D. pulex genome, Hb genes were related to the properties of haemolymph Hb, which included its concentration and oxygen affinity (both measured by spectrophotometry) as well as the Hb subunit composition (determined by 2-D gel electrophoresis and ESI-MS analysis). Permanent cultures of D. pulex acclimated to different oxygen conditions (normoxia and hypoxia) and temperatures (10°C, 20°C, and 24°C), showed characteristic changes in Hb concentration, subunit composition and oxygen affinity. Several subunits (Hb4, Hb7, Hb8, and Hb10) were obviously responsible for changes in oxygen affinity including those, which carry a number of hypoxia-responsive elements (HREs) upstream of the respective gene (hb4 and hb10). Analysing the effects of different oxygen- or temperature-acclimations on Hb subunit expression in D. pulex and D. magna on a common basis (Hb concentration or oxygen affinity) revealed a general pattern of oxygen and temperature effects on Hb, which implies that Hb quantity and quality are mostly influenced by the degree of tissue hypoxia. Differences between both species in the onset of hypoxia-induced differential Hb expression and Hb oxygen affinity, which are probably related to different HRE patterns and functionally important differences in the amino acid sequence of only a few subunits, cause a reduced ability of D. pulex to adjust Hb function to temperature changes in comparison to D. magna.  相似文献   

3.
The process of oxygen-dependent hemoglobin induction in Daphnia magna was studied over an 11-day period of hypoxia (ambient oxygen partial pressure: 3 kPa). Along with the increase of hemoglobin concentration in the hemolymph, hemoglobin became the dominant protein fraction in gel filtration experiments using extracts of whole animals. The size of the native aggregates was constant. However, subunit composition depended on the duration of hypoxia: the pattern of predominantly expressed subunits under hypoxia deviated from that of normoxic individuals. The varying degree of hypoxic induction for different hemoglobin subunits was confirmed by autoradiography. Along with changes in hemoglobin subunit composition, oxygen affinity of the respiratory protein increased. The dynamics of the hemoglobin induction process was analysed. Newly synthesized hemoglobin can be detected within 18 h after the onset of hypoxia. A marked increase in hemoglobin concentration is evident from the third day of hypoxia, and a steady state of hemoglobin concentration is reached within 11 days. The changes of hemoglobin subunit expression in response to hypoxia form the structural basis for the observed adjustments of hemoglobin function leading to enhanced oxygen transport at low ambient oxygen concentrations.  相似文献   

4.

Background  

Freshwater planktonic crustaceans of the genus Daphnia show a remarkable plasticity to cope with environmental changes in oxygen concentration and temperature. One of the key proteins of adaptive gene control in Daphnia pulex under hypoxia is hemoglobin (Hb), which increases in hemolymph concentration by an order of magnitude and shows an enhanced oxygen affinity due to changes in subunit composition. To explore the full spectrum of adaptive protein expression in response to low-oxygen conditions, two-dimensional gel electrophoresis and mass spectrometry were used to analyze the proteome composition of animals acclimated to normoxia (oxygen partial pressure [Po2]: 20 kPa) and hypoxia (Po2: 3 kPa), respectively.  相似文献   

5.
The haemoglobin (Hb) of Daphnia magna acclimated to different oxygen conditions was sampled, and in its natively assembled state it was separated by chromatofocusing. The Hb isoforms were analysed for their subunit composition under denaturating conditions by two-dimensional gel electrophoresis. The Hb system is suggested to consist of three predominant Hb aggregates, which are characterised by a specific subunit composition and synthesised in response to different ambient oxygen conditions. In normoxia, a dominant Hb aggregate (DmHbI) with a pI of 4.4-4.6 was composed of subunits B, C, E, F and G. In severe hypoxia, a different dominant Hb isoform (DmHbIII) with a pI of 5.7-5.9 was composed of subunits A, B, C, D, E and F. Further analyses in moderate hypoxia provided evidence for a third Hb isoform (DmHbII) composed of subunits B, C, D, E and F. Sequence alignment and homology modelling of the tertiary structure of the D. magna Hb domains 1 and 2 revealed functionally relevant substitutions of amino acid residues at positions B10, E7 and E11, which determine the functional properties of D. magna haemoglobin in terms of haem contact, oxygen binding and affinity. Both domains are predicted to possess the common haemoglobin fold, but helices C and D are not properly formed, and helix G is interrupted by a short coil.  相似文献   

6.
When placed in a temperature gradient, most ectotherms have a strict thermal preference that is lowered on exposure to hypoxia. Branchiopods, small aquatic crustaceans, are known to synthesise haemoglobin (Hb) when exposed to hypoxia; hypoxia can occur diurnally and seasonally in ponds. The effect of Hb on behavioural thermoregulation in the branchiopod Daphnia carinata following exposure to both normoxia and hypoxia was examined. Control animals raised in normoxia (Po2=150 mmHg, [Hb]=0.026+/-0.007 mg g dry wt-1) and Hb-rich animals raised in hypoxia (Po2=70 mmHg, [Hb]=0.080+/-0.017 mg g dry wt-1) were placed (N=30) in a tube (length=500 mm, diameter=8 mm) filled with pond water. In the absence of a thermal gradient, control and Hb-rich animals in normoxic water were uniformly distributed along the tube. The presence of a thermal gradient (13 degrees -28 degrees C) elicited clustering at a preferred temperature, T approximately 23 degrees C for both groups. Exposure to hypoxic water in a thermal gradient resulted in a behavioural shift: T approximately 16 degrees C for controls and T approximately 19 degrees C for Hb-rich animals. Measurements of oxygen consumption (V&d2;o2) at fixed temperatures revealed that Hb is associated with a metabolic acclimation to hypoxia.  相似文献   

7.
8.
9.
Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O(2)) transport and O(2) utilization. Although decreasing hemoglobin (Hb) O(2) affinity would favor the release of O(2) to the tissues, increasing Hb O(2) affinity would augment arterial O(2) saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O(2) affinity will augment O(2) transport during severe hypoxia (10 and 5% inspired O(2)) compared with normal Hb O(2) affinity. RBC Hb O(2) affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O(2) affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O(2) (Po(2)). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po(2) at which the Hb is 50% saturated with O(2) by 12.6 mmHg. During 10 and 5% O(2) hypoxia, 5HMF increased arterial blood O(2) saturation by 35 and 48% from the vehicle group, respectively. During 5% O(2) hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po(2) was three times higher in the 5HMF group compared with the control group at 5% O(2) hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O(2) affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization.  相似文献   

10.
To determine the contribution of circulatory convection to tissue oxygen supply in animals of Daphnia magna, heart rate ( f(H)), in-vivo Hb oxygen-saturation ( S(Hb)) and NADH fluorescence intensity ( I(NADH)) as a measure of the tissue oxygenation state were simultaneously measured using digital motion analysis, microabsorption spectroscopy and fluorescence microscopy. In addition, the relationship between stroke volume and body size was established. Groups of differently sized animals (small: 1.4-1.6 mm, medium: 2.7-2.9 mm, large: 3.3 mm) with either low (Hb-poor) or high Hb concentration (Hb-rich) in the hemolymph were exposed to a gradual decrease in ambient oxygen partial pressure ( P(O2amb)) between normoxia and anoxia. In all groups, f(H) increased in response to progressive hypoxia. The hypoxic maximum in f(H) was highest in medium-sized Hb-poor animals, whereas perfusion rate increased continuously with increasing body size in Hb-poor and Hb-rich animals. The P(O2amb) at which Hb in the heart region was half-saturated (in-vivo P(50)) was higher in medium-sized (Hb-poor: 3.2 kPa, Hb-rich: 2.0 kPa) than in small (Hb-poor: 2.1 kPa, Hb-rich: 1.5 kPa) and large animals (Hb-poor: 1.9 kPa). The in-vivo P(50) was always lower in Hb-rich than in Hb-poor animals. The I(NADH) indicated an impairment of tissue oxygenation starting at higher critical P(O2amb) with increasing body size and with lower Hb concentration. Model calculations suggest that at the respective critical P(O2amb), circulatory convection delivers less than half of the oxygen demand in Hb-poor animals. In contrast, in Hb-rich animals, the contribution of circulatory convection to tissue oxygen supply at respective critical P(O2amb) was much greater due to the higher concentration of Hb.  相似文献   

11.
血红蛋白(hemoglobin, Hb)作为血液循环系统中氧气运输的主要载体,在动物高原低氧适应中发挥关键作用。本文结合基因组、转录物组、分子进化、同源建模和分子动力学计算等分析,探索了高原土著鸟类地山雀血氧亲和力升高的分子机制。结果表明,与大山雀相比(RPKM为0),地山雀胚胎特异表达ρ基因在成体肝中被较高表达(RPKM为32.22),这可能最终使其血液中额外增加2种高氧亲和力的ρ型Hb,(αDρ)2和(αAρ)2;地山雀βA25G-A和βA55L-I两个突变,增加了B和D螺旋的范德华力,导致整个βA亚基变得更紧凑,引起αβ二聚体间氢键数量的明显减少,使T态到R态的转变过程易发;βA 43A-S和βA 44S-N两个突变改变了血红素口袋开口处的构象和极性,使得溶液更容易进出血红素口袋,有利于气体交换;βA90E-K突变受到强烈的正选择,该突变使βA型血红蛋白碱性增强,从而抵消波尔效应引起的血红蛋白氧亲和力降低。此外,地山雀αA44P-S和βA43A-S两个突变,可能使αA和βA型血红蛋白亲水性增加,有利于血红蛋白在红细胞内累积到较高的浓度。综上,胚胎型Hb基因的诱导表达、遗传基础改变引起的αA和βA型血红蛋白固有氧亲力及物理化学性质的变化,可能是地山雀血氧亲和力升高的主要因素。  相似文献   

12.
Summary The blood oxygen binding properties of rainbow trout responded to environmental hypoxia (the oxygen saturation of water 30% at 11°C) in three ways. The quickest response was a moderate acidosis, leading to slightly lowered blood oxygen loading due to the Bohr effect. The second response, an increase of blood oxygen carrying capacity, was completed with 6 h from the onset of hypoxia. The speed of the response suggests that the formation of new haemoglobin played no practical role, the increase being caused either by a decrease of plasma volume or the liberation of erythrocytes from a storage organ. The slowest response, a 25% increase of the blood oxygen affinity within a week of hypoxia, was probably caused by the concurrent decrease of the erythrocyte ATP concentration from 4.45 to 2.51 mol/ml erythrocytes.  相似文献   

13.
The influence of environmental parameters (water temperature and dissolved oxygen content) on the haemoglobin content of a naturally occurring population of Daphnia carinata was studied in a population resident in an intermittently flowing, shallow body of water. It was found that the Hb content of the animals was influenced by a combination of both the water temperature and dissolved oxygen profiles of the water body. In Summer, stratification, as indicated by sampling at three depths, constrained thermoregulatory behaviour; Hb-poor animals from the upper levels of the water column chose a lower temperature in hypoxia than their Hb-rich counterparts from greater depth. In Winter, the water column was mixed and remained moderately hypoxic at all times. Due to the low temperature of the water, Hb-contents in winter were much lower than those found in Summer. Overall, it was found that thermoregulatory behaviour in D. carinata is dependent upon Hb-content, which is strongly influenced by the animals' environment.  相似文献   

14.
The Hb-O2 affinity and the erythropoietic response as a function of time were studied in mice treated with sodium cyanate for up to 2 months. Cyanate increased the Hb-O2 affinity in normoxic mice more than in chronically hypoxic mice. The hemoglobin concentration rose as a function of time both in normoxic and hypoxic conditions but reached higher levels in hypoxia. After 42 days of study (21 days of hypoxia) hemoglobin reached maximum levels and thereafter showed a plateau in both cyanate and control animals. It is concluded that a chronic left-shifted oxygen dissociation curve does not avoid the development of hypoxic polycythemia in mice. Moreover, prolonged cyanate administration potentiates the crythropoietic response to chronic hypoxia. Since polycythemia is an index of tissue hypoxia, the results show that the high hemoglobin affinity did not prevent tissue hypoxia in low PO2 conditions. Results showing beneficial effects of high hemoglobin oxygen affinity induced by cyanate based on acute hypoxic expositions should be cautiously interpreted with regard to their adaptive value in animals chronically exposed to natural or simulated hypoxia.Abbreviations Hb hemoglobin - NaOCN sodium cyanate - ODC oxygen dissociation curve - P 50 PO2 at which hemoglobin is half saturated with O2  相似文献   

15.
In order to decrease significantly the oxygen affinity of human hemoglobin, we have associated the mutation betaF41Y with another point mutation also known to decrease the oxygen affinity of Hb. We have synthesized a recombinant Hb (rHb) with two mutations in the beta chains: rHb betaF41Y,K66T. In the absence of 2, 3-diphosphoglycerate, additive effects of the mutations are evident, since the doubly mutated Hb exhibits a larger decrease in oxygen affinity than for the individual single mutations. In the presence of 2,3-diphosphoglycerate, the second mutation did not significantly increase the P(50) value relative to the single mutations. However, the kinetics of CO binding still indicate combined effects on the allosteric equilibrium, as evidenced by more of the slow bimolecular phase characteristic of binding to the deoxy conformation. Dimer-tetramer equilibrium studies indicate an increase in stability of the mutants relative to rHb A; the double mutant rHb betaF41Y, K66T at pH 7.5 showed a K(4,2) value of 0.26 microM. Despite the lower oxygen affinity, the single mutant betaF41Y and double mutant betaF41Y,K66T show only a moderate increase of 20% in the autoxidation rate. These mutations are thus of interest in developing a Hb-based blood substitute.  相似文献   

16.
Replacement of valine by tryptophan or tyrosine at position alpha96 of the alpha chain (alpha96Val), located in the alpha(1)beta(2) subunit interface of hemoglobin leads to low oxygen affinity hemoglobin, and has been suggested to be due to the extra stability introduced by an aromatic amino acid at the alpha96 position. The characteristic of aromatic amino acid substitution at the alpha96 of hemoglobin has been further investigated by producing double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp). r Hb (alpha42Tyr --> Phe) is known to exhibit almost no cooperativity in binding oxygen, and possesses high oxygen affinity due to the disruption of the hydrogen bond between alpha42Tyr and beta99Asp in thealpha(1)beta(2) subunit interface of deoxy Hb A. The second mutation, alpha96Val -->Trp, may compensate the functional defects of r Hb (alpha42Tyr --> Phe), if the stability due to the introduction of trypophan at the alpha 96 position is strong enough to overcome the defect of r Hb (alpha42Tyr --> Phe). Double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) exhibited almost no cooperativity in binding oxygen and possessed high oxygen affinity, similarly to that of r Hb (alpha42Tyr --> Phe). (1)H NMR spectroscopic data of r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) also showed a very unstable deoxy-quaternary structure. The present investigation has demonstrated that the presence of the crucible hydrogen bond between alpha 42Tyr and beta 99Asp is essential for the novel oxygen binding properties of deoxy Hb (alpha96Val --> Trp) .  相似文献   

17.
Two cDNAs encoding the two-domain hemoglobin (Hb) chains of a crustacean Cladocera, Moina macrocopa, were cloned and their nucleotide (nt) sequences were determined. The amino acid (aa) sequences of both the gene products deduced from the nt sequences consisted of 348 residues and showed 98% identity with each other. These sequences together with the NH(2)-terminal aa sequences of the Hb chains determined after separation by two-dimensional gel electrophoresis showed that the Hb chains are synthesized as a secretory precursor with a signal peptide of 17 aa residues. The aa sequences of M. macrocopa Hb chains shared the following features with those of Daphnia Hb chains. Firstly, the signal peptide is followed by an NH(2)-terminal extension containing a threonine-rich sequence that might play a role in the multimerization of subunit chains. Secondly, the identity between the aa sequences of the first and second domains is exceptionally low. These facts suggest that duplication of the cladoceran Hb gene occurred before the divergence of families Moinidae and Daphniidae. Analysis of genomic DNA showed that the M. macrocopa Hb genes consist of two large repeated regions, encoding the first and second domains of Hb chains, respectively. The intron-exon organization of the first region of the M. macrocopa Hb genes was similar to that found in the Daphnia Hb genes, having the three-exon, two-intron structure characteristic of animal Hb genes. However, the intron bridging the two regions and the most downstream intron in the second region were missing in the Moina genes, providing a new example of intron loss. The following elements in the 5' flanking region were conserved in the Moina and Daphnia genes: (1) TATAAA, a typical TATA box sequence accompanied by a downstream sequence, GAAXAGCATCAGTT (the fourth residue X was G or A in Daphnia and absent in Moina); (2) CCAAT boxes, located upstream of the TATA box; (3) the binding sites for HIF-1 and GATA-1, also located upstream of the TATA box, that may be responsible for up-regulation of the cladoceran Hb genes under hypoxia.  相似文献   

18.
19.
Previous research has shown that hypoxia-acclimated Atlantic cod (Gadus morhua) have significantly reduced cardiac function but can consume more oxygen for a given cardiac output (Q). However, it is not known (1) which physiological changes permit a greater "oxygen pulse" (oxygen consumed per mL of blood pumped) in hypoxia-acclimated individuals or (2) whether chronic exposure to low-oxygen conditions improves the hypoxia tolerance of cod. Thus, we exposed normoxia- and hypoxia-acclimated (> 6 wk at a water oxygen partial pressure [P(w)O(2)] ~8-9 kPa) cod to a graded normoxia challenge until loss of equilibrium occurred while recording the following cardiorespiratory variables: oxygen consumption (MO(2)), ventilatory rate, cardiac function (Q, heart rate f(H), and stroke volume S(V)), ventral aortic blood pressure (P(VA)), venous oxygen partial pressure (P(v)O(2)) and oxygen content (C(v)O(2)), plasma catecholamines, and blood hemoglobin ([Hb]) and hematocrit (Hct). In addition, we performed in vitro hemoglobin oxygen binding curves to examine whether hypoxia acclimation influences hemoglobin functional properties. Numerous physiological adjustments occurred in vivo during the > 6 wk of hypoxia acclimation: that is, increased f(H), decreased S(V) and Q, elevated [Hb], enhanced tissue oxygen extraction (by 10% at a P(w)O(2) of 20 kPa), and a more robust stress response as evidenced by circulating catecholamine levels that were two to eight times higher when fish were acutely exposed to severe hypoxia. In contrast, chronic hypoxia had no significant effect on the affinity of hemoglobin for oxygen, on in vitro hemoglobin oxygen carrying capacity, or on the cod's hypoxia tolerance (H(crit); the P(w)O(2) at which the fish lost equilibrium, which was 4.3 ± 0.2 and 4.8 ± 0.3 kPa in normoxia- and hypoxia-acclimated fish, respectively). These data suggest that while chronic hypoxia results in numerous physiological adjustments, these changes do not improve the cod's capacity to tolerate low-oxygen conditions.  相似文献   

20.
Yingzhong Y  Yue C  Guoen J  Zhenzhong B  Lan M  Haixia Y  Rili G 《Gene》2007,403(1-2):118-124
Hemoglobin (Hb) plays an important role in oxygen transfer from lung to tissues. Possession of a Hb with high oxygen affinity helps highland animals to adapt to high altitude, has been studied profoundly. Plateau pika (Ochotona curzoniae), a native species living at 3,000-5,000 m above sea level on Qinghai-Tibet Plateau, is a typical hypoxia and low temperature tolerant mammal. To investigate the possible mechanisms of plateau pika Hb in adaptation to high altitude, the complete cDNA and amino acid sequences of plateau pika hemoglobin alpha and beta chains have been described. Compared with human Hb, alterations in important regions can be noted: alpha111 Ala-->Asn, beta35 Tyr-->Phe, beta112 Cys-->Val, beta115 Ala-->Ser, and beta125 Pro-->Gln. Phylogenetic analysis of alpha and beta chains shows that plateau pika is closer to rabbit than to other species. This study provides essential information for elucidating the possible roles of hemoglobin in adaptation to extremely high altitude in plateau pika.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号