首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lipocalin β‐lactoglobulin (β‐LG) exists in different natural genetic variants—of which β‐LG A and B are predominant in bovine milk. At physiological conditions the protein dimerizes—building homodimers of β‐LG A and β‐LG B and heterodimers of β‐LG AB. Although β‐LG is one of the most intensely characterized lipocalins, the interaction behavior of ligands with hetero‐ and homodimers of β‐LG is largely unknown. The present findings revealed significant differences for hetero‐ and homodimers regarding ligand binding capacity as tested with a model ligand (i.e. surface binding (?)‐epigallocatechin gallate (EGCG)). These findings were confirmed using FT‐IR, where the addition of EGCG influenced the β‐sheet backbone of homodimer A and B with significantly higher intensity compared to heterodimer AB. Further, shape analysis by SAXS revealed oligomerization of both types of dimers upon addition of EGCG; however, homodimer A and B produced significantly larger aggregates compared to the heterodimer AB. In summary, the present study revealed that EGCG showed significantly different interaction reactivity (binding sites, aggregation size and conformational changes) to the hetero and homodimers of β‐LG in the order β‐LG A > B > AB. The results suggest that conformational differences between homodimers and heterodimers strongly influence the EGCG binding ability. This may also occur with other polyphenols and ligands of β‐LG and gives not only important information for β‐LG binding studies, but may also apply for polymorphisms of other self‐aggregating lipocalins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The capacity to form β‐sheet structure and to self‐organize into amyloid aggregates is a property shared by many proteins. Severe neurodegenerative pathologies such as Alzheimer's disease are thought to involve the interaction of amyloidogenic protein oligomers with neuronal membranes. To understand the experimentally observed catalysis of amyloid formation by lipid membranes and other water‐hydrophobic interfaces, we examine the physico‐chemical basis of peptide adsorption and aggregation in a model membrane using atomistic molecular simulations. Blocked octapeptides with simple, repetitive sequences, (Gly‐Ala)4, and (Gly‐Val)4, are used as models of β‐sheet‐forming polypeptide chains found in the core of amyloid fibrils. In the presence of an n‐octane phase mimicking the core of lipid membranes, the peptides spontaneously partition at the octane‐water interface. The adsorption of nonpolar sidechains displaces the peptides' conformational equilibrium from a heterogeneous ensemble characterized by a high degree of structural disorder toward a more ordered ensemble favoring β‐hairpins and elongated β‐strands. At the interface, peptides spontaneously aggregate and rapidly evolve β‐sheet structure on a 10 to 100 ns time scale, while aqueous aggregates remain amorphous. Catalysis of β‐sheet formation results from the combination of the hydrophobic effect and of reduced conformational entropy of the polypeptide chain. While the former drives interfacial partition and displaces the conformational equilibrium of monomeric peptides, the planar interface further facilitates β‐sheet organization by increasing peptide concentration and reducing the dimensionality of self‐assembly from three to two. These findings suggest a general mechanism for the formation of β‐sheets on the surface of globular proteins and for amyloid self‐organization at hydrophobic interfaces. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Environmental exposure to lead (Pb) is reported to associate with the development of Alzheimer's disease, where the formation of β‐amyloid peptides (APs) of (1‐40), (1‐42), and (25‐35) is considered as the major risk factor. In this context, we aimed at investigating the effect of epigallocatechin gallate (EGCG), a major flavonoid polyphenol available in green tea, in mitigating the individual and combined toxicity generated by Pb and β‐APs in terms of oxidative stress and apoptosis in human neuronal cells. SH‐SY5Y cells were exposed to Pb and β‐APs of (1‐40) and (25‐35) individually and in different combinations in the presence and absence of EGCG. The results indicated that EGCG mitigated both Pb‐ and β‐AP‐induced oxidative stress in scavenging reactive oxygen species and apoptosis by improving the expression levels of Bax and bcl2 and inhibiting annexin V and caspase‐3. Thus, our study shows that EGCG protects SH‐SY5Y cells against the cytotoxicity induced by Pb and β‐APs by decreasing oxidative stress and inhibiting apoptosis.  相似文献   

4.
Oligomeric species of various proteins are linked to the pathogenesis of different neurodegenerative disorders. Consequently, there is intense focus on the discovery of novel inhibitors, e.g. small molecules and antibodies, to inhibit the formation and block the toxicity of oligomers. In Parkinson disease, the protein α-synuclein (αSN) forms cytotoxic oligomers. The flavonoid epigallocatechin gallate (EGCG) has previously been shown to redirect the aggregation of αSN monomers and remodel αSN amyloid fibrils into disordered oligomers. Here, we dissect EGCG''s mechanism of action. EGCG inhibits the ability of preformed oligomers to permeabilize vesicles and induce cytotoxicity in a rat brain cell line. However, EGCG does not affect oligomer size distribution or secondary structure. Rather, EGCG immobilizes the C-terminal region and moderately reduces the degree of binding of oligomers to membranes. We interpret our data to mean that the oligomer acts by destabilizing the membrane rather than by direct pore formation. This suggests that reduction (but not complete abolition) of the membrane affinity of the oligomer is sufficient to prevent cytotoxicity.  相似文献   

5.
The radical chemistry of the plant polyphenolics epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were investigated using electron paramagnetic resonance spectroscopy. Radical species formed spontaneously in aqueous solutions at low pH without external oxidant and were spin stabilized with Zn(II). The spectra were assigned to the gallyl radical and the anion gallyl radical, with only 10% of the signal assigned to a radical from the galloyl ester. Spectral simulations were used to establish a pK(a) of 4.8 for the EGCG radical and a pK(a) of 4.4 for the EGC radical. The electrochemical redox potentials of EGCG and EGC varied from 1000 mV at pH 3 to 400 mV at pH 8. The polyphenolics did not produce hydroxyl radicals unless reduced metal ions such as iron(II) were added to the system. Zinc(II)-stabilized EGCG radicals were more effective protein-precipitating agents than unoxidized EGCG and produced irreversibly complexed protein. EGCG and other naturally occurring polyphenolics are effective radical scavengers but their radical products have the potential to damage biological molecules such as proteins.  相似文献   

6.
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer''s and Parkinson''s diseases. Amyloid fibrils form above the solubility of amyloidogenic proteins or peptides upon breaking supersaturation, followed by a nucleation and elongation mechanism, which is similar to the crystallization of solutes. Many additives, including salts, detergents, and natural compounds, promote or inhibit amyloid formation. However, the underlying mechanisms of the opposing effects are unclear. We examined the effects of two polyphenols, that is, epigallocatechin gallate (EGCG) and kaempferol‐7─O─glycoside (KG), with high and low solubilities, respectively, on the amyloid formation of α‐synuclein (αSN). EGCG and KG inhibited and promoted amyloid formation of αSN, respectively, when monitored by thioflavin T (ThT) fluorescence or transmission electron microscopy (TEM). Nuclear magnetic resonance (NMR) analysis revealed that, although interactions of αSN with soluble EGCG increased the solubility of αSN, thus inhibiting amyloid formation, interactions of αSN with insoluble KG reduced the solubility of αSN, thereby promoting amyloid formation. Our study suggests that opposing effects of polyphenols on amyloid formation of proteins and peptides can be interpreted based on the solubility of polyphenols.  相似文献   

7.
In the present study, we examined the effect of epigallocatechin gallate (EGCG) on the growth and differentiation of human preadipocyte cells, AML-I. EGCG exhibited cytotoxic activity on AML-I cells, accompanied by the appearance of characteristics of apoptosis by Annexin V-FITC staining method. Among apoptosis-related proteins examined, loss of NF-kappaB and p-Akt, and accumulation of Bad were displayed in EGCG-treated cells by Western blot analysis. Among 6 structure-related catechins including catechin (C), epicatechin (EC), catechin gallate (CG), epigallocatechin (EGC), epicatechin gallate (ECG) and EGCG, the catechins containing galloyl moiety exhibited apoptotic capacity. Interestingly, exposure of AML-I to EGCG increased the amounts of cytoplasmic lipid droplets as well as the expression of fatty acid synthase and peroxisome proliferator activated receptor-gamma proteins. Our results suggest that EGCG induces growth arrest and apoptosis, but does not affect adipocyte conversion of preadipocytes.  相似文献   

8.
In a group of neurodegenerative diseases, collectively termed transmissible spongiform encephalopathies, the prion protein aggregates into β‐sheet rich amyloid‐like deposits. Because amyloid structure has been connected to different prion strains and cellular toxicity, it is important to obtain insight into the structural properties of prion fibrils. Using a combination of solution NMR spectroscopy, thioflavin‐T fluorescence and electron microscopy we here show that within amyloid fibrils of a peptide containing residues 108–143 of the human prion protein [humPrP (108–143)]—the evolutionary most conserved part of the prion protein ‐ residue H111 and S135 are in close spatial proximity and their interaction is critical for fibrillization. We further show that residues H111 and H140 share the same microenvironment in the unfolded, monomeric state of the peptide, but not in the fibrillar form. While protonation of H140 has little influence on fibrillization of humPrP (108–143), a positive charge at position 111 blocks the conformational change, which is necessary for amyloid formation of humPrP (108–143). Our study thus highlights the importance of protonation of histidine residues for protein aggregation and suggests point mutations to probe the structure of infectious prion particles.  相似文献   

9.
A hallmark in prion diseases is the conformational transition of the cellular prion protein (PrP(C)) into a pathogenic conformation, designated scrapie prion protein (PrP(Sc)), which is the essential constituent of infectious prions. Here, we show that epigallocatechin gallate (EGCG) and gallocatechin gallate, the main polyphenols in green tea, induce the transition of mature PrP(C) into a detergent-insoluble conformation distinct from PrP(Sc). The PrP conformer induced by EGCG was rapidly internalized from the plasma membrane and degraded in lysosomal compartments. Isothermal titration calorimetry studies revealed that EGCG directly interacts with PrP leading to the destabilizing of the native conformation and the formation of random coil structures. This activity was dependent on the gallate side chain and the three hydroxyl groups of the trihydroxyphenyl side chain. In scrapie-infected cells EGCG treatment was beneficial; formation of PrP(Sc) ceased. However, in uninfected cells EGCG interfered with the stress-protective activity of PrP(C). As a consequence, EGCG-treated cells showed enhanced vulnerability to stress conditions. Our study emphasizes the important role of PrP(C) to protect cells from stress and indicate efficient intracellular pathways to degrade non-native conformations of PrP(C).  相似文献   

10.
Polyglutamine (polyQ) diseases are classified as conformational neurodegenerative diseases, like Alzheimer and Parkinson diseases, and they are caused by proteins with an abnormally expanded polyQ stretch. However, conformational changes of the expanded polyQ protein and the toxic conformers formed during aggregation have remained poorly understood despite their important role in pathogenesis. Here we show that a beta-sheet conformational transition of the expanded polyQ protein monomer precedes its assembly into beta-sheet-rich amyloid-like fibrils. Microinjection of the various polyQ protein conformers into cultured cells revealed that the soluble beta-sheet monomer causes cytotoxicity. The polyQ-binding peptide QBP1 prevents the toxic beta-sheet conformational transition of the expanded polyQ protein monomer. We conclude that the toxic conformational transition, and not simply the aggregation process itself, is a therapeutic target for polyQ diseases and possibly for conformational diseases in general.  相似文献   

11.
《Biophysical journal》2020,118(6):1270-1278
Membrane interactions of amyloidogenic proteins constitute central determinants both in protein aggregation as well as in amyloid cytotoxicity. Most reported studies of amyloid peptide-membrane interactions have employed model membrane systems combined with application of spectroscopy methods or microscopy analysis of individual binding events. Here, we applied for the first time, to our knowledge, imaging flow cytometry for investigating interactions of representative amyloidogenic peptides, namely, the 106–126 fragment of prion protein (PrP(106–126)) and the human islet amyloid polypeptide (hIAPP), with giant lipid vesicles. Imaging flow cytometry was also applied to examine the inhibition of PrP(106–126)-membrane interactions by epigallocatechin gallate, a known modulator of amyloid peptide aggregation. We show that imaging flow cytometry provided comprehensive population-based statistical information upon morphology changes of the vesicles induced by PrP(106–126) and hIAPP. Specifically, the experiments reveal that both PrP(106–126) and hIAPP induced dramatic transformations of the vesicles, specifically disruption of the spherical shapes, reduction of vesicle circularity, lobe formation, and modulation of vesicle compactness. Interesting differences, however, were apparent between the impact of the two peptides upon the model membranes. The morphology analysis also showed that epigallocatechin gallate ameliorated vesicle disruption by PrP(106–126). Overall, this study demonstrates that imaging flow cytometry provides powerful means for disclosing population-based morphological membrane transformations induced by amyloidogenic peptides and their inhibition by aggregation modulators.  相似文献   

12.
The properties of the amyloid‐β peptide that lead to aggregation associated with Alzheimer's disease are not fully understood. This study aims at identifying conformational differences among four variants of full‐length Aβ42 that are known to display very different aggregation properties. By extensive all‐atom Monte Carlo simulations, we find that a variety of β‐sheet structures with distinct turns are readily accessible for full‐length Aβ42. In the simulations, wild type (WT) Aβ42 preferentially populates two major classes of conformations, either extended with high β‐sheet content or more compact with lower β‐sheet content. The three mutations studied alter the balance between these classes. Strong mutational effects are observed in a region centered at residues 23–26, where WT Aβ42 tends to form a turn. The aggregation‐accelerating E22G mutation associated with early onset of Alzheimer's disease makes this turn region conformationally more diverse, whereas the aggregation‐decelerating F20E mutation has the reverse effect, and the E22G/I31E mutation reduces the turn population. Comparing results for the four Aβ42 variants, we identify specific conformational properties of residues 23–26 that might play a key role in aggregation. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Protein aggregation is associated with neurodegeneration and various other pathologies. How specific cellular environments modulate the aggregation of disease proteins is not well understood. Here, we investigated how the endoplasmic reticulum (ER) quality control system handles β‐sheet proteins that were designed de novo to form amyloid‐like fibrils. While these proteins undergo toxic aggregation in the cytosol, we find that targeting them to the ER (ER‐β) strongly reduces their toxicity. ER‐β is retained within the ER in a soluble, polymeric state, despite reaching very high concentrations exceeding those of ER‐resident molecular chaperones. ER‐β is not removed by ER‐associated degradation (ERAD) but interferes with ERAD of other proteins. These findings demonstrate a remarkable capacity of the ER to prevent the formation of insoluble β‐aggregates and the secretion of potentially toxic protein species. Our results also suggest a generic mechanism by which proteins with exposed β‐sheet structure in the ER interfere with proteostasis.  相似文献   

14.
Protein aggregation into insoluble fibrillar structures known as amyloid characterizes several neurodegenerative diseases, including Alzheimer's, Huntington's and Creutzfeldt‐Jakob. Transthyretin (TTR), a homotetrameric plasma protein, is known to be the causative agent of amyloid pathologies such as FAP (familial amyloid polyneuropathy), FAC (familial amyloid cardiomiopathy) and SSA (senile systemic amyloidosis). It is generally accepted that TTR tetramer dissociation and monomer partial unfolding precedes amyloid fibril formation. To explore the TTR unfolding landscape and to identify potential intermediate conformations with high tendency for amyloid formation, we have performed molecular dynamics unfolding simulations of WT‐TTR and L55P‐TTR, a highly amyloidogenic TTR variant. Our simulations in explicit water allow the identification of events that clearly discriminate the unfolding behavior of WT and L55P‐TTR. Analysis of the simulation trajectories show that (i) the L55P monomers unfold earlier and to a larger extent than the WT; (ii) the single α‐helix in the TTR monomer completely unfolds in most of the L55P simulations while remain folded in WT simulations; (iii) L55P forms, early in the simulations, aggregation‐prone conformations characterized by full displacement of strands C and D from the main β‐sandwich core of the monomer; (iv) L55P shows, late in the simulations, severe loss of the H‐bond network and consequent destabilization of the CBEF β‐sheet of the β‐sandwich; (v) WT forms aggregation‐compatible conformations only late in the simulations and upon extensive unfolding of the monomer. These results clearly show that, in comparison with WT, L55P‐TTR does present a much higher probability of forming transient conformations compatible with aggregation and amyloid formation.  相似文献   

15.
α‐Crystallin is a member of small heat shock proteins and is believed to play an exceptional role in the stability of eye lens proteins. The disruption or denaturation of the protein arrangement or solubility of the crystallin proteins can lead to vision problems including cataract. In the present study, we have examined the effect of chemical denaturants urea and guanidine hydrochloride (GdnHCl) on α‐crystallin aggregation, with special emphasis on protein conformational changes, unfolding, and amyloid fibril formation. GdnHCl (4 M) induced a 16 nm red shift in the intrinsic fluorescence of α‐crystallin, compared with 4 nm shift by 8 M urea suggesting a major change in α‐crystallin structure. Circular dichroism analysis showed marked increase in the ellipticity of α‐crystallin at 216 nm, suggesting gain in β‐sheet structure in the presence of GdnHCl (0.5–1 M) followed by unfolding at higher concentration (2–6 M). However, only minor changes in the secondary structure of α‐crystallin were observed in the presence of urea. Moreover, 8‐anilinonaphthalene‐1‐sulfonic acid fluorescence measurement in the presence of GdnHCl and urea showed changes in the hydrophobicity of α‐crystallin. Amyloid studies using thioflavin T fluorescence and congo red absorbance showed that GdnHCl induced amyloid formation in α‐crystallin, whereas urea induced aggregation in this protein. Electron microscopy studies further confirmed amyloid formation of α‐crystallin in the presence of GdnHCl, whereas only aggregate‐like structures were observed in α‐crystallin treated with urea. Our results suggest that α‐crystallin is susceptible to unfolding in the presence of chaotropic agents like urea and GdnHCl. The destabilized protein has increased likelihood to fibrillate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
表没食子儿茶素-3-O-(3-O-甲基)没食子酸酯(EGCG3"Me)是茶叶中最常检测到的甲基化表没食子儿茶素没食子酸酯(EGCG"Me),具有较表没食子儿茶素没食子酸酯(EGCG)更好的保健功效。本文对EGCG3"Me的理化性质、制备方法、保健功效、茶树EGCG3"Me含量影响因素、EGCG3"Me体内合成路径等国内外研究现状进行了综述,展望EGCG3"Me的体内代谢途径及其深加工产品研发将成为研究热点。  相似文献   

17.
A critical event in Alzheimer's disease is the transition of Abeta peptides from their soluble forms into disease-associated beta-sheet-rich conformers. Structural analysis of a complete D-amino acid replacement set of Abeta(1-42) enabled us to localize in the full-length 42-mer peptide the region responsible for the conformational switch into a beta-sheet structure. Although NMR spectroscopy of trifluoroethanol-stabilized monomeric Abeta(1-42) delineated two separated helical domains, only the destabilization of helix I, comprising residues 11-24, caused a transition to a beta-sheet structure. This conformational alpha-to-beta switch was directly accompanied by an aggregation process leading to the formation of amyloid fibrils.  相似文献   

18.
Tea (Camellia sinensis, Theaceae) has been shown to have obesity preventive effects in laboratory studies. We hypothesized that dietary epigallocatechin‐3‐gallate (EGCG) could reverse metabolic syndrome in high fat‐fed obese C57bl/6J mice, and that these effects were related to inhibition of pancreatic lipase (PL). Following treatment with 0.32% EGCG for 6 weeks, a 44% decrease in body weight (BW) gain in high fat‐fed, obese mice (P < 0.01) was observed compared to controls. EGCG treatment increased fecal lipid content by 29.4% (P < 0.05) compared to high fat‐fed control, whereas in vitro, EGCG dose‐dependently inhibited PL (IC50 = 7.5 µmol/l) in a noncompetitive manner with respect to substrate concentration. (?)?Epicatechin‐3‐gallate exhibited similar inhibitory activity, whereas the nonester‐containing (?)?epigallocatechin did not. In conclusion, EGCG supplementation reduced final BW and BW gain in obese mice, and some of these effects may be due to inhibition of PL by EGCG.  相似文献   

19.
Aggregation of the full‐length amyloid‐β (Aβ) and β2‐microglobulin (β2m) proteins is associated with Alzheimer's disease and dialysis‐related amyloidosis, respectively. This assembly process is not restricted to full‐length proteins, however, many short peptides also assemble into amyloid fibrils in vitro. Remarkably, the kinetics of amyloid‐fibril formation of all these molecules is generally described by a nucleation‐polymerization process characterized by a lag phase associated with the formation of a nucleus, after which fibril elongation occurs rapidly. In this study, we report using long molecular dynamics simulations with the OPEP coarse‐grained force field, the thermodynamics and dynamics of the octamerization for two amyloid 7‐residue peptides: the β2m83‐89 NHVTLSQ and Aβ16‐22 KLVFFAE fragments. Based on multiple trajectories run at 310 K, totaling 2.2 μs (β2m83‐89) and 4.8 μs (Aβ16‐22) and starting from random configurations and orientations of the chains, we find that the two peptides not only share common but also very different aggregation properties. Notably, an increase in the hydrophobic character of the peptide, as observed in Aβ16‐22 with respect to β2m83‐89 impacts the thermodynamics by reducing the population of bilayer β‐sheet assemblies. Higher hydrophobicity is also found to slow down the dynamics of β‐sheet formation by enhancing the averaged lifetime of all configuration types (CT) and by reducing the complexity of the CT transition probability matrix. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
The aggregation of α-synuclein is clearly related to the pathogenesis of Parkinson’s disease. Therefore, detailed understanding of the mechanism of fibril formation is highly valuable for the development of clinical treatment and also of the diagnostic tools. Here, we have investigated the interaction of α-synuclein with ionic liquids by using several biochemical techniques including Thioflavin T assays and transmission electron microscopy (TEM). Our data shows a rapid formation of α-synuclein amyloid fibrils was stimulated by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BIMbF3Im], and these fibrils could be disaggregated by polyphenols such as epigallocatechin gallate (EGCG) and baicalein. Furthermore, the effect of [BIMbF3Im] on the α-synuclein tandem repeat (α-TR) in the aggregation process was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号