首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
T cell activation induced by mouse anti-CD3 mAb has shown to be dependent on the Ig isotype of these antibodies. A study of isotype dependency of human antibodies, however, seems more relevant to human effector systems, especially in view of the availability of humanized antibodies for clinical applications. We constructed a panel of mouse and mouse/human chimeric anti-CD3 mAb, which differ only in their CH region and hence have identical binding sites and affinity. By using these antibodies, we now studied their ability to induce T cell proliferation in human PBMC and analyzed the classes of IgG FcR involved in these responses. The human (h)IgG1, hIgG3, and hIgG4, as well as mouse (m)IgG2a and mIgG3 anti-CD3 mAb induced an Fc gamma RI (CD64)-dependent T cell proliferation in all donors. Activation with hIgG2 and mIgG1 anti-CD3 mAb was observed to be mediated via the low affinity Fc gamma RII (CD32). It was found that leukocytes in a normal donor population display a functional polymorphism with respect to hIgG2 anti-CD3 responsiveness. This polymorphism was found to be inversely related to the previously defined Fc gamma RII-polymorphism to mIgG1 anti-CD3 mAb. Monocytes expressing the Fc gamma RII mIgG1 low responder (LR) allele support hIgG2 anti-CD3 induced T cell proliferation efficiently, whereas cells homozygous for the Fc gamma RII mIgG1 high responder (HR) allele do not. This observation could be confirmed in T cell activation studies using hFc gamma RIIa-transfected mouse fibroblasts, expressing either the mIgG1 anti-CD3 HR or LR Fc gamma RII-encoding cDNA.  相似文献   

2.
Aglycosylated human IgG1 and IgG3 monoclonal anti-D (Rh) and human IgG1 and IgG3 chimaeric anti-5-iodo-4-hydroxy-3-nitrophenacetyl (anti-NIP) monoclonal antibodies produced in the presence of tunicamycin have been compared with the native glycosylated proteins with respect to recognition by human Fc gamma RI and/or Fc gamma RII receptors on U937, Daudi or K562 cells. Human red cells sensitized with glycosylated IgG3 form rosettes via Fc gamma RI with 60% of U937 cells. Inhibition of rosette formation required greater than 35-fold concentrated more aglycosylated than glycosylated human monoclonal anti-D (Rh) antibody. Unlabelled polyclonal human IgG and glycosylated monoclonal IgG1 and anti-D (Rh) antibody inhibited the binding of 125I-labelled monomeric human IgG binding by U937 Fc gamma RI at concentrations greater than 50-fold lower than the aglycosylated monoclonal IgG1 anti-D (Rh) (K50 approximately 3 x 10(-9) M and approximately 6 x 10(-7) M respectively). Similar results were obtained using glycosylated and aglycosylated monoclonal human IgG1 or IgG3 chimaeric anti-NIP antibody-sensitized red cells rosetting with Fc gamma RI-/Fc gamma RII+ Daudi and K562 cells. Rosette formation could be inhibited by the glycosylated form (at greater than 10(-6) M) but not by the aglycosylated form. Haemagglutination analysis using a panel of murine monoclonal antibodies specific for epitopes located on C gamma 2, C gamma 3 or C gamma 2/C gamma 3 interface regions did not demonstrate differences in Fc conformation between the glycosylated or aglycosylated human monoclonal antibodies. These data suggest that the Fc gamma RI and Fc gamma RII sites on human IgG are highly conformation-dependent and that the carbohydrate moiety serves to stabilize the Fc structure rather than interacting directly with Fc receptors.  相似文献   

3.
We recently identified defective monocyte accessory function as the cause of T cell unresponsiveness to the mitogenic activity of OKT3 antibody in cultures of peripheral blood mononuclear cells (PBMC) from five healthy subjects, members of one family. We now report that the underlying abnormality in nonresponders is at the level of monocyte Fc gamma receptors for murine IgG2a. T cell unresponsiveness was not restricted to the signal provided by OKT3 but occurred also for two other anti-T3 antibodies of the IgG2a subclass, in contrast to a normal proliferative response to IgG1 anti-T3 antibodies in one of the OKT3 nonresponders. By using cytofluorography, we found that monocytes from responders but not from nonresponders bound OKT3-FITC to their membrane. The binding could be blocked by mouse IgG2a and by human IgG, but not by mouse IgG1 nor by serum albumin. The data suggest that, through specific Fc gamma receptors for murine IgG2a, monocytes bind the Fc portion of OKT3 during T cell activation. The function of this Fc gamma receptor binding was further studied by culturing PBMC from nonresponders on plates coated with affinity-purified goat anti-mouse IgG antibodies as a substitute for monocyte Fc gamma receptors. The addition of OKT3 to nonresponder PBMC, cultured on such plates, resulted in T cell activation, as evidenced by thymidine incorporation, IL 2 production, and expression of IL 2 receptors. Soluble anti-mouse IgG was not able to substitute for monocyte Fc gamma receptors. The results demonstrate the existence of polymorphism in monocyte Fc gamma receptors for murine IgG2a. They also substantiate that an essential helper function of monocytes in T cell activation by anti-T3 is to provide a matrix for multimeric binding of the Fc portion of the anti-T3 antibodies in order to cross-link T3 molecules.  相似文献   

4.
Murine Fc gamma RII and Fc gamma RIII have highly homologous extracellular domains, but unrelated transmembrane and intracytoplasmic (IC) domains. Murine Fc gamma RIIb1 and b2 are two isoforms of single-chain receptors which differ only by 47 aa in their IC domain. Murine Fc gamma RIII are composed of an IgG-binding alpha-chain, the intracellular portion of which is unrelated to that of Fc gamma RII, and of a homodimeric gamma-chain which also associates with Fc epsilon RI. Murine mast cells express Fc gamma RII, Fc gamma RIII, and Fc epsilon RI. They can be induced to degranulate by murine IgG immune complexes or by F(ab')2 fragments of the rat anti-murine Fc gamma RII/III mAb 2.4G2, complexed to mouse anti-rat (MAR) F(ab')2. In order to determine which murine Fc gamma R can activate mast cells, cDNA encoding murine Fc gamma RIIb1, Fc gamma RIIb2 or Fc gamma RIII alpha were stably transfected into RBL-2H3 cells. Murine Fc gamma RIII but not Fc gamma RIIb1 or Fc gamma RIIb2 induced serotonin release when aggregated by (2.4G2-MAR) F(ab')2 complexes. The respective roles of the IC domains of murine Fc gamma RIII subunits in signal transduction were investigated by stably transfecting cDNA encoding IC-deleted or chimeric murine Fc gamma R into RBL-2H3 cells. The substitution of the IC domain of murine Fc gamma RII for that of murine Fc gamma RIII gamma, but not that of murine Fc gamma RIII alpha, conferred the ability to trigger serotonin release. The deletion of IC sequences of the alpha subunit did not alter the ability of murine Fc gamma RIII to trigger serotonin release. It follows that 1) murine Fc gamma RIII, but not Fc gamma RII, can induce RBL cells to release serotonin, 2) the aggregation of the IC domain of the murine Fc gamma RIII gamma subunit is sufficient, but 3) the IC domain of the murine Fc gamma RIII alpha subunit is neither sufficient nor necessary for triggering serotonin release.  相似文献   

5.
We have utilized gene transfer experiments to investigate the role of a human monocyte receptor for IgG (Fc gamma RII) in mouse IgG1 anti-CD3 (Leu 4)-induced lymphoproliferation in vitro. Mouse Ltk- cells expressing human Fc gamma RII or a mutant of Fc gamma RII lacking the entire cytoplasmic domain of the receptor mediate anti-CD3-induced lymphoproliferation in cultures of adherent cell-depleted human PBMC. Expression of an Fc gamma RII mutant lacking transmembrane and cytoplasmic domains (soluble Fc gamma RII) in COS7 cells yielded a secreted receptor which retained affinity for IgG, even in the absence of the mutant receptor's N-linked oligosaccharides. Soluble Fc gamma RII inhibits rosette formation by human IgG-sensitized RBC and the Fc gamma RII-bearing cell line K562, but does not sitmulate anti-CD3-induced lymphoproliferation under the conditions tested.  相似文献   

6.
Cross-linking of Fc gamma R on human monocytes with human IgG has been shown to induce secretion of the inflammatory and immunoregulatory cytokine TNF. In the present study we examined the role of both constitutively expressed monocyte Fc gamma R, the 72-kDa high affinity Fc gamma R (Fc gamma RI), and the 40-kDa low affinity receptor (Fc gamma RII), in the induction of TNF secretion. On the basis of preferential binding of the Fc moiety of murine mAb of different isotype, Fc gamma RI and Fc gamma RII were selectively cross-linked by using either solid-phase murine (m)IgG2a, or solid-phase mIgG1, respectively. On freshly isolated, untreated monocytes only cross-linking of Fc gamma RI with solid-phase mIgG2a induced TNF secretion. The interaction between Fc gamma RII and mIgG1 could be enhanced by treatment of monocytes with proteases or with the desialylating enzyme neuraminidase. After treatment of monocytes with these enzymes, TNF secretion was effectively induced by solid-phase mIgG1, apparently through cross-linking of Fc gamma RII. However, mIgG1-induced TNF secretion differed between protease-treated monocytes from high responder individuals and monocytes from low responder individuals, TNF secretion being considerably less in the latter population. Protease-treated monocytes and mononuclear cells from individuals with an inherited defect in cell membrane expression of Fc gamma RI were induced to secrete TNF by solid-phase human IgG, confirming the capacity of Fc gamma RII to induce TNF secretion. It was not possible to induce TNF secretion by cross-linking Fc gamma RI or Fc gamma RII with anti-Fc gamma R mAb and soluble or solid-phase anti-mIgG, indicating that high affinity Fc-Fc gamma R interactions are necessary to induce release of this cytokine.  相似文献   

7.
We have constructed a set of chimeric Ig by exchanging corresponding H chain C domains between human (hu) IgG1 and murine (m) IgE. We used this set of Ig to dissect the interaction of individual Ig domains with human Fc gamma receptors. Only one of the chimeras, epsilon/C gamma 2,3 (an mIgE with C epsilon 3 and C epsilon 4 replaced by C gamma 2 and C gamma 3 from huIgG1), binds tightly to the human Fc gamma RI on U937 cells. We found that epsilon/C gamma 2,3 has only twofold lower affinity for Fc gamma RI as compared to huIgG1. The gamma/C epsilon 4 (huIgG1 with C epsilon 4 replacing C gamma 3) binds weakly to Fc gamma RI. The other chimeric Ig, epsilon/C gamma 3, epsilon/C gamma 2, and gamma/C epsilon 3, as well as mIgE do not bind detectably to Fc gamma RI. From these data we conclude that the C gamma 2 domain is crucial for binding and contains the majority of the binding site for Fc gamma RI on IgG1. The C gamma 3 domain makes a smaller contribution to the binding, and the C gamma 1 domain and the hinge region have very little effect on the Fc gamma RI-IgG1 interaction. The chimeric epsilon/C gamma 2,3 and huIgG1 both mediate the formation of rosettes between K562 cells and antigen-sensitized E with similar concentration dependences. These results suggest similar ability to bind to Fc gamma RII. The other chimeric Ig do not cause rosettes in this assay system. Hence, both C gamma 2 and C gamma 3 seem to be required for binding to Fc gamma RII, but the C gamma 1-hinge region has no detectable effect.  相似文献   

8.
Human monocytes express two types of IgG FcR, Fc gamma RI and Fc gamma RII. These can be assayed by using indicator E sensitized by human IgG (EA-human IgG) or mouse IgG1, (EA-mouse IgG1), respectively. On mouse macrophages, Fc gamma RI is sensitive to trypsin, whereas Fc gamma RII is trypsin resistant. We studied the effects of the proteolytic enzymes pronase and trypsin on human monocyte Fc gamma R. Neither enzyme caused a decrease in rosetting mediated by monocyte Fc gamma RI. Human Fc gamma RII is polymorphic, and monocytes interact either strongly or weakly with mouse IgG1. The interaction of low responder monocytes with mouse IgG1 was dramatically increased (to the level exhibited by high responder monocytes) by protease treatment. The effects of proteases on Fc gamma RII were investigated in more detail by using monocytes from which Fc gamma RI was selectively modulated by using immobilized immune complexes. Proteolysis of such modulated monocytes induced an increased interaction with EA-human IgG. Fc gamma RII appears to mediate this interaction. This conclusion is supported by the observation that after proteolysis, the Fc gamma RII-mediated binding of EA-mouse IgG1 becomes susceptible to inhibition by (monomeric) human IgG. To quantify the effect of proteolytic enzymes on Fc gamma RII, we performed binding studies with cell line K562, that expresses only Fc gamma RII. A significant increase in Ka of Fc gamma RII for dimeric human IgG complexes was observed when K562 cells were treated with protease. To elucidate the mechanism of this enhancement of Ka by proteolysis, we performed immunoprecipitation studies. Neither m.w., nor IEF pattern of Fc gamma RII were influenced by proteolysis. Moreover, the expression of Fc gamma RII was not affected by proteolysis as evidenced by immunofluorescence studies and Scatchard analysis, and neither were Fc gamma RI or Fc gamma RIII induced. We conclude that proteolysis increases the affinity of Fc gamma RII for human IgG, and speculate that such a proteolysis-induced change may also occur in vivo, e.g., at inflammatory sites.  相似文献   

9.
Macrophage receptors for the Fc portion of IgG play an important role in host defense, inflammation, and the pathophysiology of autoimmune disorders. We studied one important function of Fc gamma receptors--the ability to bind IgG ligand. Direct binding experiments analyzed by nonlinear regression were consistent with monomeric and trimeric IgG binding to a single class of receptors. Indirect binding experiments were also consistent with this interpretation and revealed that both IgG ligands completely inhibited the binding of the other. In addition, we used an anti-Fc gamma RII monoclonal antibody known to compete for the Fc gamma RII ligand binding site and known to inhibit IgG trimer binding to other cells. At concentrations of antibody which saturated all Fc gamma RII sites, no inhibition of IgG trimer binding to U-937 was observed. This was evident despite the observation that the numbers of Fc gamma RI and Fc gamma RII, determined by equilibrium binding of monomeric IgG and anti-Fc gamma RII antibody, respectively, were similar on U-937. Monoclonal antibodies were used to compare the expression and modulation of Fc gamma receptor proteins with their ability to bind monomeric and trimeric IgG ligands. Dexamethasone and gamma-interferon regulated U-937 Fc gamma RI protein expression and IgG ligand binding to a similar degree. In contrast, the expression of Fc gamma RII was not altered by dexamethasone. Interferon-gamma primarily stimulated Fc gamma RI, as determined both by reactivity with monoclonal antibody (227 +/- 26%) and by monomeric IgG ligand binding (350 +/- 151%). In addition, dexamethasone inhibited by 33% the gamma-interferon effect on Fc gamma RI protein and by 56% the effect on Fc gamma RI binding of monomeric IgG. Preincubation of U-937 with anti-Fc gamma RII antibody did not alter the effect of dexamethasone or gamma-interferon on IgG trimer binding. These data indicate that on U-937 cells Fc gamma RII does not function in the recognition of small molecular weight immune complexes and that Fc gamma RI is the Fc gamma receptor responsible for the binding of both monomeric and trimeric human IgG. Furthermore, Fc gamma RI is the major Fc gamma receptor on U-937 that is modulated by both gamma-interferon and glucocorticoids.  相似文献   

10.
11.
12.
The erythroleukemic cell line K562 bears a 40-kDa Fc receptor (Fc gamma RII) serologically related to and with a similar molecular weight as the Fc gamma R present on a broad range of leukocytes. The human IgG subclass specificity of the Fc gamma R on K562 was investigated using IgG aggregates of defined size, obtained from purified human myeloma proteins. The monoclonal antibody IV.3, which reacts with the Fc gamma RII present on various cell types, totally prevented binding of 125I-IgG2 trimers to K562. Experiments with radiolabeled IgG2 trimers showed that K562 cells bound a mean of 156,764 +/- 9895 molecules per cell with an association constant (Ka) of 1.8 +/- 0.7 X 10(8) M-1. Similar results were obtained with IgG3 oligomers. IgG3 and IgG2 trimers were about two- to threefold more effective in inhibiting binding of 125I-IgG2 trimers to K562 than IgG1 and IgG4 trimers. These results were confirmed by inhibition experiments using IgG monomers. The subclass specificity of the Fc gamma RII on K562 (i.e., IgG2 = IgG3 greater than IgG1 = IgG4) is quite distinct from the one reported for the Fc gamma RI and III of human cells (i.e., IgG1 = IgG3 greater than IgG4 and IgG2).  相似文献   

13.
A procedure for constructing substrate-supported planar membranes using membrane fragments isolated from the macrophage-related cell line J774A.1 is described. Total internal reflection (TIR) fluorescence microscopy is employed to demonstrate that fluorescently labeled Fab fragments of a monoclonal antibody (2.4G2) with specificity for a murine macrophage cell-surface receptor for IgG (moFc gamma RII) bind to the planar model membranes. These measurements show that the planar membranes contain moFc gamma RII and yield a value for the association constant of 2.4G2 Fab fragments with moFc gamma RII equal to (9.6 +/- 0.4) x 10(8) M-1 and indicate that the surface density of reconstituted moFc gamma RII is approximately 50 molecules/microns 2. In addition, TIR fluorescence microscopy is used to investigate the Fc-mediated competition of unlabeled, polyclonal murine IgG with labeled 2.4G2 Fab fragments for moFc gamma RII in the planar membranes. These measurements indicate that the reconstituted moFc gamma RII recognized by 2.4G2 Fab fragments also retains the ability to bind murine IgG Fc regions and yield a value for the association constant of polyclonal murine IgG with moFc gamma RII equal to (1-5) x 10(5) M-1. This work represents one of the first applications of TIR fluorescence microscopy to specific ligand-receptor interactions.  相似文献   

14.
As part of an effort to define the cytotoxic trigger molecules on human myeloid cells, the ability of the different Fc receptors for IgG (Fc gamma R) to mediate killing of tumor cell lines by monocytes and granulocytes was examined. This was accomplished by studying cytolysis of hybridoma cell (HC) targets bearing surface antibody directed toward the different Fc gamma R. The HC line, HC IV.3A, which bears Ig directed to the low affinity Fc gamma R (Fc gamma RII) on monocytes and neutrophils was lysed by human monocytes. The extent of lysis of HC IV.3A was approximately equal to that of anti-Fc gamma RI (the high affinity Fc gamma R on human monocytes) bearing HC lines (HC 32.2A and HC 62A) and was not augmented by treatment of the monocytes with interferon-gamma (IFN-gamma). In contrast, neutrophils lysed HC IV.3A and HC 32.2A only after activation with IFN-gamma. Since Fc gamma RI is not detectable on untreated neutrophils and is induced by IFN-gamma on these cells, lysis of HC 32.2A by IFN-gamma-activated neutrophils correlated with receptor induction. On the other hand, Fc gamma RII was present at equal levels on untreated and IFN-gamma-treated neutrophils, but only IFN-gamma-treated neutrophils mediated cytotoxicity via Fc gamma RII. In this case, enhanced killing appeared to be due to events other than an increase in Fc gamma RII number. Neither untreated nor IFN-gamma-treated neutrophils mediated the lysis of the anti-Fc gamma RIII bearing HC 3G8A. Thus, binding to the tumor target via this Fc receptor does not lead to lysis and may initiate signals distinct from those triggered through Fc gamma RI or Fc gamma RII. Surprisingly, HC bearing high amounts of mouse IgG1 antibody of irrelevant specificity were also lysed by monocytes. This lysis was blocked by soluble IV.3 antibody and thus appeared to be due to binding of the Fc portion of the surface Ig to Fc gamma RII on monocytes. Furthermore, monocytes from donors with a form of Fc gamma RII incapable of binding aggregated mouse IgG1 did not lyse these HC, but displayed normal lysis of HC IV.3, demonstrating that this structurally different Fc gamma RII remained a functional trigger molecule. Overall, these studies have demonstrated the specificity of Fc receptors in triggering monocyte- and granulocyte-mediated antibody-dependent tumor cell killing and have begun to dissect functional similarities and differences among the three defined Fc gamma R on human myeloid cells.  相似文献   

15.
To explore the molecular basis for the ability of aggregated IgG to block the phagocytosis by human polymorphonuclear leukocytes of Con A-opsonized E and of nonopsonized Escherichia coli with mannose-binding adhesins, we examined specific aspects of the glycoprotein structure of both the 40- to 43-kDa receptor for the Fc portion of IgG (Fc gamma RII) and the 50- to 78-kDa receptor for the Fc portion of IgG (Fc gamma RIIIPMN) from human polymorphonuclear leukocytes. Fc gamma RIIIPMN isolated by both mAb and ligand affinity chromatography, but not Fc gamma RII, binds Con A in Western blots. This binding is specifically inhibitable by alpha-methylmannoside. Digestion of Fc gamma RIIIPMN by recombinant endoglycosidase H, which is specific for high mannose-type (Con A-binding) oligosaccharides, alters the epitope recognized by mAb 3G8 in or near the IgG ligand-binding site of the receptor. Similarly, the ability of Fc gamma RIIIPMN to bind human IgG ligand is sensitive to endoglycosidase H digestion. Our data indicate that ligands other than the classical IgG opsonins can bind to human Fc gamma RIIIPMN per se through lectin-carbohydrate interactions. Furthermore, Fc gamma RIIIPMN contains a high mannose type oligosaccharide chain which contributes importantly to the integrity of the classical IgG ligand-binding site. Thus, specific glycosylations of the receptor are important for both classical and nonclassical engagement of Fc gamma RIII and may play a role in determining the properties of the ligand-binding site.  相似文献   

16.
P Sondermann  U Jacob  C Kutscher  J Frey 《Biochemistry》1999,38(26):8469-8477
Fc gamma RII (CD32), the receptor for the Fc part of IgG, is responsible for the clearance of immunocomplexes by macrophages and plays a role in the regulation of antibody production by B cells. To investigate the process of immunocomplex binding in terms of stoichiometry and stability of the Fc gamma RII:IgG complex, we produced both Fc gamma RII isoforms (Fc gamma RIIa and Fc gamma RIIb) as soluble proteins in insect cells. The expressed proteins could be purified in high yields and were biologically active as judged by their ability to bind IgG. Thus, the minor glycosylation performed by the insect cells is not crucial for the binding of the usually highly glycosylated Fc gamma RII to IgG. The dissociation constant of the sFc gamma RIIa:IgG-hFc complex was determined by fluorescence titration (KD = 2.5 x 10(-)7 M). Complementary sFc gamma RIIa antagonizes immunocomplex binding to B cells. Here sFc gamma RIIa showed a comparable dissociation constant (KD = 1.7 x 10(-)7 M) which was almost 10-fold lower than the constant for Fc gamma RIIb. The stoichiometry of the FcRIIa:IgG-hFc complex was determined by equilibrium gel filtration and shows that IgG is able to bind alternatively one or two Fc gamma RII molecules in a noncooperative manner. Furthermore, in an ELISA-based assay the isotype specificity of various anti-Fc gamma RII monoclonal antibodies was measured as well as their ability to interfere with the IgG recognition through its receptors. To further investigate the molecular basis of the Fc gamma RII-ligand interaction, we crystallized Fc gamma RIIb. Trigonal crystals diffracted to 3 A and the structure solution is in progress.  相似文献   

17.
Cellular receptors for IgG (Fc gamma R) mediate important protective functions. By using site-specific mutants of a chimeric antibody (mouse V H domain and L chain; human IgG3 C H domains), we have demonstrated that human Fc gamma RI interacts with a site in the lower hinge of human IgG (residues 234 to 237) and that this interaction dictates Fc gamma RI-mediated superoxide generation. Mutations at position 235 resulted in the most profound reductions in Fc gamma RI recognition. We have also mapped an interaction site for Fc gamma RII to the same region; however, mutations at position 234 and 237 resulted in the greatest reductions in Fc gamma RII recognition. The two receptors appear to recognize overlapping but nonidentical sites on the lower hinge of IgG. Deviations from the optimal motif 234-Leu-Leu-Gly-Gly-237 may then explain the human IgG subclass specificity profile for human Fc gamma RI and Fc gamma RII.  相似文献   

18.
The distribution and expression of the IgG FcRII (Fc gamma RII) on normal murine B cells was examined. Using multicolor flow cytometry, spleens from neonatal mice of increasing age and adult bone marrow were analyzed for expression of the Fc gamma RII. In addition, B cells from peripheral lymphoid organs, as well as panel of B cell tumors, were tested. The results demonstrate that the Fc gamma RII is expressed on all pre-B cells and immature B cells in the neonatal spleen and adult bone marrow, on all mature B cells in peripheral lymphoid organs, and on switched B cells in Peyer's patches. Furthermore, the Fc gamma RII was found to be present on B cell tumors representative of all stages of B cell maturation and differentiation. Taken together, the results indicate that Fc gamma RII is expressed during the entire lifetime of the B cell. In addition, examination of spleen cells from neonatal mice revealed a large number of pre-B cells, phenotypically defined as B220+, IgM-. These pre-B cells were present at birth, peaked in number between 2 and 3 wk of age, and became a minor population by day 30. Further phenotypic analysis of these cells demonstrated the expression of the BLA-1 and BP-1 Ag, and the lack of T cell and NK cell markers, thus confirming their assignment to the B cell lineage. Finally, the Fc gamma RII present on these pre-B cells was shown to be functional, by virtue of its ability to bind aggregated IgG.  相似文献   

19.
20.
The CH2-CH3 interface of the IgG Fc domain contains the binding sites for a number of Fc receptors including Staphylococcal protein A and the neonatal Fc receptor (FcRn). It has recently been proposed that the CH2-CH3 interface also contains the principal binding site for an isoform of the low affinity IgG Fc receptor II (Fc gamma RIIb). The Fc gamma RI and Fc gamma RII binding sites have previously been mapped to the lower hinge and the adjacent surface of the CH2 domain although contributions of the CH2-CH3 interface to binding have been suggested. This study addresses the question whether the CH2-CH3 interface plays a role in the interaction of IgG with Fc gamma RI and Fc gamma RIIa. We demonstrate that recombinant soluble murine Fc gamma RI and human Fc gamma RIIa did not compete with protein A and FcRn for binding to IgG, and that the CH2-CH3 interface therefore appears not to be involved in Fc gamma RI and Fc gamma RIIa binding. The importance of the lower hinge was confirmed by introducing mutations in the proposed binding site (LL234,235AA) which abrogated binding of recombinant soluble Fc gamma RIIa to human IgG1. We conclude that the lower hinge and the adjacent region of the CH2 domain of IgG Fc is critical for the interaction between Fc gamma RIIa and human IgG, whereas contributions of the CH2-CH3 interface appear to be insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号